Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function

Sanna Laurila, Eleni Rebelos, Minna Lahesmaa, Lihua Sun, Katharina Schnabl, Tia-Mari Peltomaa, Riku Klén, Mueez U-Din, Miikka-Juhani Honka, Olli Eskola, Anna K Kirjavainen, Lauri Nummenmaa, Martin Klingenspor, Kirsi A Virtanen, Pirjo Nuutila, Sanna Laurila, Eleni Rebelos, Minna Lahesmaa, Lihua Sun, Katharina Schnabl, Tia-Mari Peltomaa, Riku Klén, Mueez U-Din, Miikka-Juhani Honka, Olli Eskola, Anna K Kirjavainen, Lauri Nummenmaa, Martin Klingenspor, Kirsi A Virtanen, Pirjo Nuutila

Abstract

The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 μmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.

Keywords: gastrointestinal hormone; kidney function; myocardial metabolism; secretin.

Conflict of interest statement

M.K. is an inventor on a patent application from the Technical University of Munich (Publication No. WO/2017/20285; International Application No. PCT/EP2017/062420) addressing the role of secretin receptor agonists and modulators in the regulation of energy homeostasis. This patent is based on the initial discovery that meal-induced secretin inhibits food intake, and this anorexigenic action of secretin depends on the activation of brown fat (6). None of the other authors has any conflicts of interest, financial or otherwise, to disclose.

Figures

Graphical abstract
Graphical abstract
Figure 1.
Figure 1.
Overview of the scanning protocol. Two PET/CT scans were conducted in fasting conditions, in a single-blinded and randomized order, with a placebo (saline) and secretin (secretin pentahydrochloride 1 IU/kg *2) intervention. Arrows indicate the timing of intravenous secretin/placebo infusions. [18F]FDG (150 MBq) was injected at 20 min, after which PET scanning of the neck, and then the thoracic region, was initiated. Indirect calorimetry was conducted for 2 h. Timing of arterialized samples is indicated with test tube figures. Twelve-lead ECG was collected at timepoints 0, 60 and 120 min. CT, computed tomography; [18F]FDG, [18F]2-fluoro-2-deoxy-d-glucose.
Figure 2.
Figure 2.
Myocardial glucose uptake results. A: representative [18F]FDG PET/CT vertical long axis images showing Ki of the heart after secretin and placebo infusions (n = 1). Short axis images are shown in Supplemental Fig. S1. (see https://doi.org/10.6084/m9.figshare.16912807). B: the effect of secretin infusion on myocardial glucose uptake compared with placebo (n = 15). Data were analyzed by Student’s paired t test. C: whole body carbohydrate oxidation (CHO) correlates with myocardial glucose uptake (MGU) after secretin administration (n = 15). Data were analyzed by Pearson correlation. A line has been drawn on the data to indicate a significant association whereas dotted curves represent confidence interval. CT, computed tomography; [18F]FDG, [18F]2-fluoro-2-deoxy-d-glucose.
Figure 3.
Figure 3.
Organ glucose uptake correlations (n = 15). A: brown adipose tissue glucose uptake is strongly associated with myocardial glucose uptake after secretin infusion, while no association is seen during placebo (B). C: skeletal muscle glucose uptake is not associated with myocardial glucose uptake after secretin infusion, while an association exists during placebo (D). Data were analyzed by Pearson correlation. A line has been drawn on the data to indicate a significant association whereas dotted curves represent confidence interval. All units are μmol/100 g/min.
Figure 4.
Figure 4.
Renal function results. A: secretin decreases serum creatinine compared with placebo (n = 10). Values were normalized, dividing by the value of the first time point. Mean values and standard error are shown on graph. Each timepoint was analyzed by paired Wilcoxon signed-rank test. The secretin intervention is shown in orange whereas the placebo intervention is shown in gray. B: eGFR, calculated by Cockroft–Gault equation, was increased by secretin from baseline at 30 minutes, compared with placebo (n = 10). C: [18F]FDG renal clearance was increased after secretin (n = 15). B and C: data were analyzed by Student’s paired t test. [18F]FDG, [18F]2-fluoro-2-deoxy-d-glucose; eGFR, estimated glomerular filtration rate.

References

    1. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx N, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41: 255–323, 2020. doi:10.1093/eurheartj/ehz486.
    1. Nauck MA, Meier JJ, Cavender MA, El Aziz MA, Drucker DJ. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 136: 849–870, 2017. doi:10.1161/CIRCULATIONAHA.117.028136.
    1. Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 28: 325–353, 1902. doi:10.1113/jphysiol.1902.sp000920.
    1. Kim MS, Lee KY, Chey WY. Plasma secretin concentrations in fasting and postprandial states in dog. Am J Physiol Endocrinol Physiol 5: E539–E544, 1979. doi:10.1152/ajpendo.1979.236.5.e539.
    1. Laurila S, Sun L, Lahesmaa M, Schnabl K, Laitinen K, Klén R, Li Y, Balaz M, Wolfrum C, Steiger K, Niemi T, Taittonen M, U-Din M, Välikangas T, Elo LL, Eskola O, Kirjavainen AK, Nummenmaa L, Virtanen KA, Klingenspor M, Nuutila P. Secretin activates brown fat and induces satiation. Nat Metab 3: 798–809, 2021. doi:10.1038/s42255-021-00409-4.
    1. Li Y, Schnabl K, Gabler S-MM, Willershäuser M, Reber J, Karlas A, Laurila S, Lahesmaa M, U Din M, Bast-Habersbrunner A, Virtanen KA, Fromme T, Bolze F, O'Farrell LS, Alsina-Fernandez J, Coskun T, Ntziachristos V, Nuutila P, Klingenspor M. Secretin-Activated brown fat mediates prandial thermogenesis to induce satiation. Cell 175: 1561–1574.e12, 2018. doi:10.1016/j.cell.2018.10.016.
    1. Chu JYS, Yung WH, Chow BKC. Secretin: a pleiotrophic hormone. Ann N Y Acad Sci 1070: 27–50, 2006. doi:10.1196/annals.1317.013.
    1. Gunnes P, Rasmussen K. Haemodynamic effects of pharmacological doses of secretin in patients with impaired left ventricular function. Eur Heart J 7: 146–149, 1986. doi:10.1093/oxfordjournals.eurheartj.a062037.
    1. Gunnes P, Waldum HL, Rasmussen K, Ostensen H, Burhol PG. Cardiovascular effects of secretin infusion in man. Scand J Clin Lab Invest 43: 637–642, 1983.
    1. Bell D, McDermott BJ. Secretin and vasoactive intestinal peptide are potent stimulants of cellular contraction and accumulation of cyclic AMP in rat ventricular cardiomyocytes. J Cardiovasc Pharmacol 23: 959–969, 1994. doi:10.1097/00005344-199406000-00015.
    1. Grossini E, Molinari C, Morsanuto V, Mary DASG, Vacca G. Intracoronary secretin increases cardiac perfusion and function in anaesthetized pigs through pathways involving β-adrenoceptors and nitric oxide. Exp Physiol 98: 973–987, 2013. doi:10.1113/expphysiol.2012.070607.
    1. Chu JYS, Cheng CYY, Lee VHY, Chan Y, Chow BKC. Secretin and body fluid homeostasis. Kidney Int 79: 280–287, 2011. doi:10.1038/ki.2010.397.
    1. Chu JYS, Lee LTO, Lai CH, Vaudry H, Chan YS, Yung WH, Chow BKC. Secretin as a neurohypophysial factor regulating body water homeostasis. Proc Natl Acad Sci USA 106: 15961–15966, 2009. doi:10.1073/pnas.0903695106.
    1. Chu JYS, Chung SCK, Lam AKM, Tam S, Chung S, Chow BKC. Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption. Mol Cell Biol 27: 2499–2511, 2007. doi:10.1128/MCB.01088-06.
    1. Waldum HL, Sundsfjord JA, Aanstad U, Burhol PG. The effect of secretin on renal haemodynamics in man. Scand J Clin Lab Invest 40: 475–478, 1980. doi:10.3109/00365518009101870.
    1. Baron DN, Newman F, Warrick A. The effects of secretin on urinary volume and electrolytes in normal subjects and patients with chronic pancreatic disease. Experientia 14: 30–32, 1958. doi:10.1007/BF02159660.
    1. Viteri AL, Poppell JW, Lasater JM, Dyck WP. Renal response to secretin. J Appl Physiol 38: 661–664, 1975. doi:10.1152/jappl.1975.38.4.661.
    1. Londong W, Londong V, Mühlbauer R, König A. Pharmacological effects of secretin and somatostatin on gastric and renal function in man. Scand J Gastroenterol Suppl 139: 25–31, 1987. doi:10.3109/00365528709089771.
    1. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S, Virtanen KA. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14: 272–279, 2011. doi:10.1016/j.cmet.2011.06.012.
    1. Hamacher K, Coenen HH, Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27: 235–238, 1986.
    1. Thie JA. Clarification of a fractional uptake concept. J Nucl Med 36: 711–712, 1995.
    1. Report of the task group on reference man ICRP Publication 23. Ann ICRP 4 : III–III. doi:10.1016/0146-6453(80)90047-0.
    1. Bøtker HE, Böttcher M, Schmitz O, Gee A, Hansen SB, Cold GE, Nielsen TT, Gjedde A. Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose. J Nucl Cardiol 4: 125–132, 1997. doi:10.1016/s1071-3581(97)90061-1.
    1. U Din M, Saari T, Raiko J, Kudomi N, Maurer SF, Lahesmaa M, Fromme T, Amri EZ, Klingenspor M, Solin O, Nuutila P, Virtanen KA. Postprandial oxidative metabolism of human brown fat indicates thermogenesis. Cell Metab 28: 207–216.e3, 2018. doi:10.1016/j.cmet.2018.05.020.
    1. Heymsfield SB, Stanley A, Pietrobelli A, Heo M. Simple skeletal muscle mass estimation formulas: what we can learn from them. Front Endocrinol (Lausanne) 11: 31, 2020. doi:10.3389/FENDO.2020.00031.
    1. Bazzett H. An analysis of the time-relations of electrocardiograms. Heart 7: 353–337, 1920. doi:10.1016/j.vascn.2005.02.005.
    1. Weir JBDE. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109: 1–9, 1949. doi:10.1113/jphysiol.1949.sp004363.
    1. Meriläinen PT. Metabolic monitor. Int J Clin Monit Comput 4: 167–177, 1987. doi:10.1007/BF02915904.
    1. U-Din M, Raiko J, Saari T, Kudomi N, Tolvanen T, Oikonen V, Teuho J, Sipilä HT, Savisto N, Parkkola R, Nuutila P, Virtanen KA. Human brown adipose tissue [15O]O2 PET imaging in the presence and absence of cold stimulus. Eur J Nucl Med Mol Imaging 43: 1878–1886, 2016. doi:10.1007/s00259-016-3364-y.[26993316]
    1. Soininen P, Kangas AJ, Würtz P, Tukiainen T, Tynkkynen T, Laatikainen R, Järvelin M-R, Kähönen M, Lehtimäki T, Viikari J, Raitakari OT, Savolainen MJ, Ala-Korpela M. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134: 1781–1785, 2009. doi:10.1039/b910205a.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41, 1976. doi:10.1159/000180580.
    1. Latva-Rasku A, Honka MJ, Kullberg J, Mononen N, Lehtimäki T, Saltevo J, Kirjavainen AK, Saunavaara V, Iozzo P, Johansson L, Oscarsson J, Hannukainen JC, Nuutila P. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care 42: 931–937, 2019. doi:10.2337/dc18-1569.
    1. Iozzo P, Gastaldelli A, Järvisalo MJ, Kiss J, Borra R, Buzzigoli E, Viljanen A, Naum G, Viljanen T, Oikonen V, Knuuti J, Savunen T, Salvadori PA, Ferrannini E, Nuutila P. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J Nucl Med 47: 1016–1022, 2006.
    1. Rebelos E, Immonen H, Bucci M, Hannukainen JC, Nummenmaa L, Honka M-J, Soinio M, Salminen P, Ferrannini E, Iozzo P, Nuutila P. Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up. Diabetes Obes Metab 21: 218–226, 2019. doi:10.1111/dom.13501.
    1. Garcia GL, Dong M, Miller LJ. Differential determinants for coupling of distinct G proteins with the class B secretin receptor. Am J Physiol Cell Physiol 302: C1202–C1212, 2012. doi:10.1152/ajpcell.00273.2011.
    1. Waaler BA, Eriksen M, Toska K. The effect of meal size on postprandial increase in cardiac output. Acta Physiol Scand 142: 33–39, 1991. doi:10.1111/j.1748-1716.1991.tb09125.x.
    1. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316: 1429–1435, 1987. doi:10.1056/nejm198706043162301.
    1. Laurila S, Rebelos E, Honka M-J, Nuutila P. Pleiotropic effects of secretin: a potential drug candidate in the treatment of obesity? Front Endocrinol (Lausanne) 12: 737686, 2021. doi:10.3389/fendo.2021.737686.
    1. Nicholls DP, Riley M, Elborn JS, Stanford CF, Shaw C, McKillop JM, Buchanan KD. Regulatory peptides in the plasma of patients with chronic cardiac failure at rest and during exercise. Eur Heart J 13: 1399–1404, 1992. doi:10.1093/oxfordjournals.eurheartj.a060073.
    1. Kintscher U, Foryst-Ludwig A, Haemmerle G, Zechner R. The role of adipose triglyceride lipase and cytosolic lipolysis in cardiac function and heart failure. Cell Rep Med 1: 100001, 2020. doi:10.1016/j.xcrm.2020.100001.
    1. Sekar R, Chow BKC. Lipolytic actions of secretin in mouse adipocytes. J Lipid Res 55: 190–200, 2014. doi:10.1194/jlr.M038042.
    1. Depre C, Vanoverschelde J-L, Taegtmeyer H. Glucose for the heart? Circulation 99: 578–588, 1999. PMC] doi:10.1161/01.cir.99.4.578.
    1. An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291: H1489–H506, 2006. doi:10.1152/ajpheart.00278.2006.
    1. Lopaschuk GD, Stanley WC. Glucose metabolism in the ischemic heart. Circulation 95: 313–315, 1997. doi:10.1161/01.CIR.95.2.313.
    1. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 19: 59–113, 1994. doi:10.1016/0146-2806(94)90008-6.
    1. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teräs M, Haaparanta M, Bergman J, Solin O, Voipio-Pulkki L-M, Wegelius U, Yki-Järvinen H. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89: 1767–1744, 1992. doi:10.1172/JCI115780.
    1. Duchenne J, Turco A, Ünlü S, Pagourelias ED, Vunckx K, Degtiarova G, Bézy S, Cvijic M, Nuyts J, Claus P, Rega F, Gheysens O, Voigt J-U. Left ventricular remodeling results in homogenization of myocardial work distribution. Circ Arrhythm Electrophysiol 12: e007224, 2019. doi:10.1161/CIRCEP.118.007224.
    1. Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M, L’Abbate A, Neglia D. Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy: a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3: 482–490, 2010. doi:10.1161/CIRCIMAGING.109.934638.
    1. Taubel J, Wong AH, Naseem A, Ferber G, Camm AJ. Shortening of the QT interval after food can be used to demonstrate assay sensitivity in thorough QT studies. J Clin Pharmacol 52: 1558–1565, 2012. doi:10.1177/0091270011419851.
    1. Taubel J, Lorch U, Ferber G, Singh J, Batchvarov VN, Savelieva I, Camm AJ. Insulin at normal physiological levels does not prolong QTc interval in thorough QT studies performed in healthy volunteers. Br J Clin Pharmacol 75: 392–403, 2013. doi:10.1111/j.1365-2125.2012.04376.x.
    1. Scott EM, Greenwood JP, Vacca G, Stoker JB, Gilbey SG, Mary DASG. Carbohydrate ingestion, with transient endogenous insulinaemia, produces both sympathetic activation and vasodilatation in normal humans. Clin Sci (Lond) 102: 523–529, 2002.
    1. Täubel J, Ferber G, Van Langenhoven L, del Bianco T, Fernandes S, Djumanov D, Kanters JK, Graff C, Camm AJ. The cardiovascular effects of a meal: J-Tpeak and Tpeak-Tend assessment and further insights into the physiological effects. J Clin Pharmacol 59: 799–810, 2019. doi:10.1002/jcph.1374.
    1. van Bommel EJM, Muskiet MHA, van Baar MJB, Tonneijck L, Smits MM, Emanuel AL, Bozovic A, Danser AHJ, Geurts F, Hoorn EJ, Touw DJ, Larsen EL, Poulsen HE, Kramer MHH, Nieuwdorp M, Joles JA, van Raalte DH. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 97: 202–212, 2020. doi:10.1016/j.kint.2019.09.013.
    1. Barbezat GO, Isenberg JI, Grossman MI. Diuretic action of secretin in dog. Proc Soc Exp Biol Med 139: 211–215, 1972. doi:10.3181/00379727-139-36111.
    1. Owen SE, Ivy AC. The diuretic action of secretin preparations. Am J Physiol Content 97: 276–281, 1931. doi:10.1152/ajplegacy.1931.97.2.276.
    1. Oikonen V. Quantification of metabolic rate of glucose uptake with [18F]FDG (Online). [Accessed Oct 12, 2021] .
    1. Gerngroß C, Schretter J, Klingenspor M, Schwaiger M, Fromme T. Active brown fat during 18F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J Nucl Med 58: 1104–1110, 2017. doi:10.2967/jnumed.116.183988.
    1. Refsum HE, Strömme SB. Urea and creatinine production and excretion in urine during and after prolonged heavy exercise. Scand J Clin Lab Invest 33: 247–254, 1974. doi:10.1080/00365517409082493.
    1. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC, Kajimura S, Gygi SP, Spiegelman BM. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163: 643–655, 2015. doi:10.1016/j.cell.2015.09.035.
    1. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, Kumari M, Zhang S, Vuckovic I, Laznik-Bogoslavski D, Dzeja P, Banks AS, Rosen ED, Spiegelman BM. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab 26: 660–671.e3, 2017. doi:10.1016/j.cmet.2017.08.009.
    1. Becher T, Palanisamy S, Kramer DJ, Eljalby M, Marx SJ, Wibmer AG, Butler SD, Jiang CS, Vaughan R, Schöder H, Mark A, Cohen P. Brown adipose tissue is associated with cardiometabolic health. Nat Med 27: 58–65, 2021. doi:10.1038/s41591-020-1126-7.

Source: PubMed

3
Abonneren