Vaginal Microbiome-Based Bacterial Signatures for Predicting the Severity of Cervical Intraepithelial Neoplasia

Yoon Hee Lee, Gi-Ung Kang, Se Young Jeon, Setu Bazie Tagele, Huy Quang Pham, Min-Sueng Kim, Sajjad Ahmad, Da-Ryung Jung, Yeong-Jun Park, Hyung Soo Han, Jae-Ho Shin, Gun Oh Chong, Yoon Hee Lee, Gi-Ung Kang, Se Young Jeon, Setu Bazie Tagele, Huy Quang Pham, Min-Sueng Kim, Sajjad Ahmad, Da-Ryung Jung, Yeong-Jun Park, Hyung Soo Han, Jae-Ho Shin, Gun Oh Chong

Abstract

Although emerging evidence revealed that the gut microbiome served as a tool and as biomarkers for predicting and detecting specific cancer or illness, it is yet unknown if vaginal microbiome-derived bacterial markers can be used as a predictive model to predict the severity of CIN. In this study, we sequenced V3 region of 16S rRNA gene on vaginal swab samples from 66 participants (24 CIN 1-, 42 CIN 2+ patients) and investigated the taxonomic composition. The vaginal microbial diversity was not significantly different between the CIN 1- and CIN 2+ groups. However, we observed Lactobacillus amylovorus dominant type (16.7%), which does not belong to conventional community state type (CST). Moreover, a minimal set of 33 bacterial species was identified to maximally differentiate CIN 2+ from CIN 1- in a random forest model, which can distinguish CIN 2+ from CIN 1- (area under the curve (AUC) = 0.952). Among the 33 bacterial species, Lactobacillus iners was selected as the most impactful predictor in our model. This finding suggests that the random forest model is able to predict the severity of CIN and vaginal microbiome may play a role as biomarker.

Keywords: cervical intraepithelial neoplasia; machine learning; vaginal microbiome.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Phylogenetic trees of the vaginal microbiome network by metadata. From outside to inside, the stacked bar chart represents normalized relative abundances of community state type (CST)-related bacterial species; the heatmap represents each clinical stage; the bar charts were enriched in each HPV status, and the trees were grouped according to the phylum level.
Figure 2
Figure 2
Vaginal microbiome diversity in each CST. (A) Alpha diversity including Shannon index and observed operational taxonomic units (OTUs) at the species level. (B) Non-metric multidimensional scaling (NMDS) ordination plots based on Bray–Curtis. The microbial communities of each CST type were significantly (Adonis, p < 0.001) different from each other. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Figure 3
Figure 3
Bacterial differences between CIN stages. The circular phylogenetic tree at the species level is the same as shown in Figure 1. (A) The outer circle represents the enriched bacterial species in each CIN and (B) the bar charts show mean relative abundance of the most significant species in each CIN stage.
Figure 4
Figure 4
Random forest classifier model using vaginal microbiome-derived bacterial signatures to predict the severity of CIN. (A) The 33 most important bacterial species based on their mean decrease Gini scores of the optimal random forest model. (B) The 33 bacterial species selected by optimizing the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. (C) The AUC of vaginal microbiome-based classification. Random forest classifiers were used to predict CIN 1− and CIN 2+ based on species-level vaginal microbiome composition. The green area of the curve represents the 95% confidence interval (CI) shape.

References

    1. Arbyn M., Castellsagué X., de Sanjosé S., Bruni L., Saraiya M., Bray F., Ferlay J. Worldwide burden of cervical cancer in 2008. Ann. Oncol. 2011;22:2675–2686. doi: 10.1093/annonc/mdr015.
    1. Okuma K., Yamashita H., Yokoyama T., Nakagawa K., Kawana K. Undetected human papillomavirus DNA and uterine cervical carcinoma. Strahlentherapie und Onkologie. 2016;192:55–62. doi: 10.1007/s00066-015-0909-0.
    1. Ronco G., Dillner J., Elfström K.M., Tunesi S., Snijders P.J., Arbyn M., Kitchener H., Segnan N., Gilham C., Giorgi-Rossi P. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet. 2014;383:524–532. doi: 10.1016/S0140-6736(13)62218-7.
    1. Doorbar J., Egawa N., Griffin H., Kranjec C., Murakami I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015;25:2–23. doi: 10.1002/rmv.1822.
    1. Westrich J.A., Warren C.J., Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231:21–33. doi: 10.1016/j.virusres.2016.11.023.
    1. Hellberg D. Sex steroids and cervical cancer. Anticancer Res. 2012;32:3045–3054.
    1. Zhu H., Shen Z., Luo H., Zhang W., Zhu X. Chlamydia trachomatis infection-associated risk of cervical cancer: A meta-analysis. Medicine. 2016;95:e3077. doi: 10.1097/MD.0000000000003077.
    1. Kyrgiou M., Mitra A., Moscicki A.-B. Does the vaginal microbiota play a role in the development of cervical cancer? Transl. Res. 2017;179:168–182. doi: 10.1016/j.trsl.2016.07.004.
    1. King C.C., Jamieson D.J., Wiener J., Cu-Uvin S., Klein R.S., Rompalo A.M., Shah K.V., Sobel J.D. Bacterial vaginosis and the natural history of human papillomavirus. Infect. Dis. Obstetr. Gynecol. 2011;2011:319460.
    1. Piyathilake C.J., Ollberding N.J., Kumar R., Macaluso M., Alvarez R.D., Morrow C.D. Cervical microbiota associated with higher grade cervical intraepithelial neoplasia in women infected with high-risk human papillomaviruses. Cancer Prev. Res. 2016;9:357–366. doi: 10.1158/1940-6207.CAPR-15-0350.
    1. Oh H., Kim B.-S., Seo S.-S., Kong J.-S., Lee J.-K., Park S.-Y., Hong K.-M., Kim H.-K., Kim M. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin. Microbiol. Infect. 2015;21:674.e671–674.e679. doi: 10.1016/j.cmi.2015.02.026.
    1. Zhang C., Liu Y., Gao W., Pan Y., Gao Y., Shen J., Xiong H. The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 2018;7:2172–2179. doi: 10.1002/cam4.1471.
    1. Beck D., Foster J.A. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS ONE. 2014;9:e87830. doi: 10.1371/journal.pone.0087830.
    1. Li J., Zhao F., Wang Y., Chen J., Tao J., Tian G., Wu S., Liu W., Cui Q., Geng B. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:1–19. doi: 10.1186/s40168-016-0222-x.
    1. Armour C.R., Nayfach S., Pollard K.S., Sharpton T.J. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. MSystems. 2019;4:e00332-18. doi: 10.1128/mSystems.00332-18.
    1. Loomba R., Seguritan V., Li W., Long T., Klitgord N., Bhatt A., Dulai P.S., Caussy C., Bettencourt R., Highlander S.K. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–1062.e1055. doi: 10.1016/j.cmet.2017.04.001.
    1. De Seta F., Campisciano G., Zanotta N., Ricci G., Comar M. The vaginal community state types microbiome-immune network as key factor for bacterial vaginosis and aerobic vaginitis. Front. Microbiol. 2019;10:2451. doi: 10.3389/fmicb.2019.02451.
    1. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170.
    1. Caporaso J.G., Lauber C.L., Walters W.A., Berg-Lyons D., Lozupone C.A., Turnbaugh P.J., Fierer N., Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107.
    1. Comeau A.M., Douglas G.M., Langille M.G. Microbiome helper: A custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127-16. doi: 10.1128/mSystems.00127-16.
    1. Rognes T., Flouri T., Nichols B., Quince C., Mahé F. VSEARCH: A versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584.
    1. Fettweis J.M., Serrano M.G., Sheth N.U., Mayer C.M., Glascock A.L., Brooks J.P., Jefferson K.K., Buck G.A., Consortium V.M. Species-level classification of the vaginal microbiome. BMC Genom. 2012;13:S17. doi: 10.1186/1471-2164-13-S8-S17.
    1. Lennard K., Dabee S., Barnabas S.L., Havyarimana E., Blakney A., Jaumdally S.Z., Botha G., Mkhize N.N., Bekker L.-G., Lewis D.A. Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females. Infect. Immunity. 2018;86:e00410-17. doi: 10.1128/IAI.00410-17.
    1. R Foundation for Statistical Computing . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.
    1. Youngblut N.D., Reischer G.H., Walters W., Schuster N., Walzer C., Stalder G., Ley R.E., Farnleitner A.H. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-10191-3.
    1. Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324.
    1. Liaw A., Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
    1. Ravel J., Gajer P., Abdo Z., Schneider G.M., Koenig S.S., McCulle S.L., Karlebach S., Gorle R., Russell J., Tacket C.O. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA. 2011;108:4680–4687. doi: 10.1073/pnas.1002611107.
    1. Gajer P., Brotman R., Bai G., Sakamoto J., Schütte U., Zhong X., Koenig S., Fu L., Ma Z., Zhou X. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012;4:132ra52. doi: 10.1126/scitranslmed.3003605.
    1. Liu Y., Geng R., Liu L., Jin X., Yan W., Zhao F., Wang S., Guo X., Ghimire G., Wei Y. Gut microbiota-based algorithms in the prediction of metachronous adenoma in colorectal cancer patients following surgery. Front. Microbiol. 2020;11:1106. doi: 10.3389/fmicb.2020.01106.
    1. Lennard K., Dabee S., Barnabas S.L., Havyarimana E., Blakney A., Jaumdally S.Z., Botha G., Mkhize N.N., Bekker L.-G., Lewis D.A. Vaginal microbiota varies by geographical location in South African women. arXiv. 20191905.11946
    1. Schloss P.D., Jenior M.L., Koumpouras C.C., Westcott S.L., Highlander S.K. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ. 2016;4:e1869. doi: 10.7717/peerj.1869.
    1. Zhang H., Lu J., Lu Y., Cai Q., Liu H., Xu C. Cervical microbiome is altered in cervical intraepithelial neoplasia after loop electrosurgical excision procedure in china. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-23389-0.
    1. MacIntyre D.A., Chandiramani M., Lee Y.S., Kindinger L., Smith A., Angelopoulos N., Lehne B., Arulkumaran S., Brown R., Teoh T.G. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 2015;5:8988. doi: 10.1038/srep08988.
    1. Matsumoto K., Oki A., Furuta R., Maeda H., Yasugi T., Takatsuka N., Mitsuhashi A., Fujii T., Hirai Y., Iwasaka T. Predicting the progression of cervical precursor lesions by human papillomavirus genotyping: A prospective cohort study. Int. J. Cancer. 2011;128:2898–2910. doi: 10.1002/ijc.25630.
    1. Gil N.F., Martinez R.C., Gomes B.C., Nomizo A., De Martinis E.C. Vaginal lactobacilli as potential probiotics against Candida spp. Braz. J. Microbiol. 2010;41:6–14. doi: 10.1590/S1517-83822010000100002.
    1. Marrazzo J.M., Thomas K.K., Fiedler T.L., Ringwood K., Fredricks D.N. Relationship of specific vaginal bacteria and bacterial vaginosis treatment failure in women who have sex with women. Ann. Intern. Med. 2008;149:20–28. doi: 10.7326/0003-4819-149-1-200807010-00006.
    1. Verhelst R., Verstraelen H., Claeys G., Verschraegen G., Delanghe J., Van Simaey L., De Ganck C., Temmerman M., Vaneechoutte M. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004;4:16. doi: 10.1186/1471-2180-4-16.
    1. Boris S., Suárez J.E., Vázquez F., Barbés C. Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect. Immunity. 1998;66:1985–1989. doi: 10.1128/IAI.66.5.1985-1989.1998.
    1. Vásquez A., Jakobsson T., Ahrné S., Forsum U., Molin G. Vaginal Lactobacillus flora of healthy Swedish women. J. Clin. Microbiol. 2002;40:2746–2749. doi: 10.1128/JCM.40.8.2746-2749.2002.
    1. Yang X., Da M., Zhang W., Qi Q., Zhang C., Han S. Role of Lactobacillus in cervical cancer. Cancer Manag. Res. 2018;10:1219. doi: 10.2147/CMAR.S165228.
    1. Kaambo E., Africa C., Chambuso R., Passmore J.-A.S. Vaginal microbiomes associated with aerobic vaginitis and bacterial vaginosis. Front. Public Health. 2018;6:78. doi: 10.3389/fpubh.2018.00078.
    1. Tao Z., Zhang L., Zhang Q., Lv T., Chen R., Wang L., Huang Z., Hu L., Liao Q. The Pathogenesis Of Streptococcus anginosus In Aerobic Vaginitis. Infect. Drug Resist. 2019;12:3745. doi: 10.2147/IDR.S227883.
    1. Masood U., Sharma A., Lowe D., Khan R., Manocha D. Colorectal cancer associated with streptococcus anginosus bacteremia and liver abscesses. Case Rep. Gastroenterol. 2016;10:769–774. doi: 10.1159/000452757.
    1. Hui M. Streptococcus anginosus bacteremia: Sutton’s law. J. Clin. Microbiol. 2005;43:6217. doi: 10.1128/JCM.43.12.6217.2005.
    1. Sasaki H., Ishizuka T., Muto M., Nezu M., Nakanishi Y., Inagaki Y., Watanabe H., Watanabe H., Terada M. Presence of Streptococcus anginosus DNA in esophageal cancer, dysplasia of esophagus, and gastric cancer. Cancer Res. 1998;58:2991–2995.
    1. Sasaki M., Yamaura C., Ohara-Nemoto Y., Tajika S., Kodama Y., Ohya T., Harada R., Kimura S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis. 2005;11:151–156. doi: 10.1111/j.1601-0825.2005.01051.x.
    1. Kelly H., Benavente Y., Pavon M.A., De Sanjose S., Mayaud P., Lorincz A.T. Performance of DNA methylation assays for detection of high-grade cervical intraepithelial neoplasia (CIN2+): A systematic review and meta-analysis. Br. J. Cancer. 2019;121:954–965. doi: 10.1038/s41416-019-0593-4.
    1. Uleberg K.-E., Øvestad I.T., Munk A.C., Brede C., Diermen B.v., Gudlaugsson E., Janssen E.A., Hjelle A., Baak J. Prediction of spontaneous regression of cervical intraepithelial neoplasia lesions grades 2 and 3 by proteomic analysis. Int. J. Proteomics. 2014;2014:129064. doi: 10.1155/2014/129064.
    1. Beck D., Foster J.A. Machine learning classifiers provide insight into the relationship between microbial communities and bacterial vaginosis. BioData Min. 2015;8:23. doi: 10.1186/s13040-015-0055-3.
    1. Perrotta A.R., Borrelli G.M., Martins C.O., Kallas E.G., Sanabani S.S., Griffith L.G., Alm E.J., Abrao M.S. The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: A Pilot Study. Reproductive Sciences. 2020;27:1064–1073. doi: 10.1007/s43032-019-00113-5.

Source: PubMed

3
Abonneren