Investigating the Efficacy of an Individualized Alpha/Delta Neurofeedback Protocol in the Treatment of Chronic Tinnitus

Dominik Güntensperger, Christian Thüring, Tobias Kleinjung, Patrick Neff, Martin Meyer, Dominik Güntensperger, Christian Thüring, Tobias Kleinjung, Patrick Neff, Martin Meyer

Abstract

First attempts have demonstrated that the application of alpha/delta neurofeedback in the treatment of chronic tinnitus leads to a reduction of symptoms at the group level. However, recent research also suggests that chronic tinnitus is a decidedly heterogeneous phenomenon, one that requires treatment of distinct subgroups or even on an individual level. Thus, the purpose of this study was to evaluate an individually adjusted alpha/delta neurofeedback protocol. Following previous studies, the delta band fixed between 3 and 4 Hz was chosen as the frequency for inhibition. However, unlike the previous studies, the frequency range for the rewarded alpha band was not fixed between 8 and 12 Hz but rather individually determined according to each patient's specific alpha peak frequency (IAF). Twenty-six chronic tinnitus patients participated in 15 weekly neurofeedback training sessions and extensive pre- and post-tests, as well as follow-up testing 3 and 6 months after training. The main outcome measures were tinnitus-related distress measured with the Tinnitus Handicap Inventory (THI) and Tinnitus Questionnaire (TQ), tinnitus loudness, and pre- and post-training resting-state EEG activity in trained frequency bands. In Results, the neurofeedback protocol led to a significant reduction of tinnitus-related distress and tinnitus loudness. While distress remained on a low level even 6 months after the completion of training, loudness returned to baseline levels in the follow-up period. In addition, resting-state EEG activity showed an increase in the trained alpha/delta ratio over the course of the training. This ratio increase was related to training-induced changes of tinnitus-related distress as measured with TQ, mainly due to increases in the alpha frequency range. In sum, this study confirms the alpha/delta neurofeedback as a suitable option for the treatment of chronic tinnitus and represents a first step towards the development of individual neurofeedback protocols. This clinical trial was registered online at ClinicalTrials.gov (NCT02383147) and kofam.ch (SNCTP000001313).

Figures

Figure 1
Figure 1
Barplots showing tinnitus-related symptoms before (t1), 1 week after (t2), 3 months after (t3), and 6 months after (t4) neurofeedback training. Error bars represent ±1 standard error for within-subject designs according to Morey [60]. THI scores (a) showed significant decreases from t1 to t2, and differences between t1 and the two follow-up time points were significant. TQ scores (b) were significantly higher before (t1) than after the neurofeedback intervention (t2-t4). For tinnitus loudness (c), a significant decrease between t1 and t2 was found followed by a significant increase to t4.
Figure 2
Figure 2
Barplots showing the alpha/delta power ratio over the four electrodes used for training in measurements before (t1), 1 week after (t2), and 3 months after (t3) the neurofeedback intervention. Error bars represent ±1 standard error for within-subject designs according to Morey [60]. The alpha/delta ratio of EEG-NT (a) did not vary significantly over time. The ratio of EEG-WT (b) increased significantly over the course of the training, between t1 and t2, followed by a nonsignificant decrease to t3.
Figure 3
Figure 3
Scatterplots of difference scores (t2-t1) of EEG-NT resting-state data ((a, d, g) alpha/delta ratio; (b, e, h) rewarded individual alpha band power; (c, f, i) inhibited delta band power) and tinnitus-related symptoms ((a–c) THI; (d–f) TQ; (g–i) tinnitus loudness). The plots show the fitted regression lines with 95% confidence intervals. No correlations were found to be statistically significant.
Figure 4
Figure 4
Scatterplots of difference scores (t2-t1) of EEG-WT resting-state data ((a, d, g) alpha/delta ratio; (b, e, h) rewarded individual alpha band power; (c, f, i) inhibited delta band power) and tinnitus-related symptoms ((a–c) THI; (d–f) TQ; (g–i) tinnitus loudness). The plots show the fitted regression lines with 95% confidence intervals. The correlation between IAF and TQ difference scores is statistically significant (p > .05).

References

    1. Henry J. A., Dennis K. C., Schechter M. A. General review of tinnitus: prevalence, mechanisms, effects, and management. Journal of Speech, Language, and Hearing Research. 2005;48(5):1204–1235. doi: 10.1044/1092-4388(2005/084).
    1. Dobie R. A. Depression and tinnitus. Otolaryngologic Clinics of North America. 2003;36(2):383–388. doi: 10.1016/S0030-6665(02)00168-8.
    1. Heller A. J. Classification and epidemiology of tinnitus. Otolaryngologic Clinics of North America. 2003;36(2):239–248. doi: 10.1016/S0030-6665(02)00160-3.
    1. Langguth B., Landgrebe M., Kleinjung T., Sand G. P., Hajak G. Tinnitus and depression. The World Journal of Biological Psychiatry. 2011;12(7):489–500. doi: 10.3109/15622975.2011.575178.
    1. Holmes S., Padgham N. D. The incidence, management and consequence of tinnitus in older adults. Reviews in Clinical Gerontology. 2008;18(4):p. 269. doi: 10.1017/S0959259809002883.
    1. Eggermont J. J. On the pathophysiology of tinnitus; a review and a peripheral model. Hearing Research. 1990;48(1-2):111–123. doi: 10.1016/0378-5955(90)90202-Z.
    1. Møller A. R. Pathophysiology of tinnitus. Otolaryngologic Clinics of North America. 1984;36(2):249–266. doi: 10.1016/S0030-6665(02)00170-6.
    1. Eggermont J. J., Roberts L. E. The neuroscience of tinnitus. Trends in Neurosciences. 2004;27(11):676–682. doi: 10.1016/j.tins.2004.08.010.
    1. Elgoyhen A. B., Langguth B., De Ridder D., Vanneste S. Tinnitus: perspectives from human neuroimaging. Nature Reviews Neuroscience. 2015;16(10):632–642. doi: 10.1038/nrn4003.
    1. Langguth B., Kreuzer P. M., Kleinjung T., De Ridder D. Tinnitus: causes and clinical management. The Lancet Neurology. 2013;12(9):920–930. doi: 10.1016/S1474-4422(13)70160-1.
    1. Weisz N., Dohrmann K., Elbert T. The relevance of spontaneous activity for the coding of the tinnitus sensation. Progress in Brain Research. 2007;166:61–70. doi: 10.1016/S0079-6123(07)66006-3.
    1. Adjamian P., Sereda M., Hall D. A. The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hearing Research. 2009;253(1-2):15–31. doi: 10.1016/j.heares.2009.04.001.
    1. Ashton H., Reid K., Marsh R., Johnson I., Alter K., Griffiths T. High frequency localised “hot spots” in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neuroscience Letters. 2007;426(1):23–28. doi: 10.1016/j.neulet.2007.08.034.
    1. Kahlbrock N., Weisz N. Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power. BMC Biology. 2008;6(1):p. 4. doi: 10.1186/1741-7007-6-4.
    1. Lorenz I., Müller N., Schlee W., Hartmann T., Weisz N. Loss of alpha power is related to increased gamma synchronization—a marker of reduced inhibition in tinnitus? Neuroscience Letters. 2009;453(3):225–228. doi: 10.1016/j.neulet.2009.02.028.
    1. Schlee W., Dohrmann K., Hartmann T., et al. Assessment and modification of the tinnitus-related cortical network. Seminars in Hearing. 2008;29(3):270–287. doi: 10.1055/s-0028-1082033.
    1. Weisz N., Moratti S., Meinzer M., Dohrmann K., Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Medicine. 2005;2(6, article e153) doi: 10.1371/journal.pmed.0020153.
    1. Weisz N., Müller S., Schlee W., Dohrmann K., Hartmann T., Elbert T. The neural code of auditory phantom perception. Journal of Neuroscience. 2007;27(6):1479–1484. doi: 10.1523/JNEUROSCI.3711-06.2007.
    1. Llinás R. R., Ribary U., Jeanmonod D., Kronberg E., Mitra P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(26):15222–15227. doi: 10.1073/pnas.96.26.15222.
    1. De Ridder D., Vanneste S., Langguth B., Llinás R. R. Thalamocortical dysrhythmia: a theoretical update in tinnitus. Frontiers in Neurology. 2015;6 doi: 10.3389/fneur.2015.00124.
    1. Sterman M. B., Friar L. Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology. 1972;33(1):89–95. doi: 10.1016/0013-4694(72)90028-4.
    1. Wyrwicka W., Sterman M. B. Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology & Behavior. 1968;3(5):703–707. doi: 10.1016/0031-9384(68)90139-X.
    1. Arns M., De Ridder S., Strehl U., Breteler M., Coenen A. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clinical EEG and Neuroscience. 2009;40(3):180–189. doi: 10.1177/155005940904000311.
    1. Gevensleben H., Holl B., Albrecht B., et al. Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and Psychiatry, and Allied Disciplines. 2009;50(7):780–789. doi: 10.1111/j.1469-7610.2008.02033.x.
    1. Lévesque J., Beauregard M., Mensour B. Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Neuroscience Letters. 2006;394(3):216–221. doi: 10.1016/j.neulet.2005.10.100.
    1. Lubar J. F., Swartwood M. O., Swartwood J. N., O'Donnell P. H. Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in T.O.V.A. scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-Regulation. 1995;20(1):83–99. doi: 10.1007/BF01712768.
    1. Strehl U., Aggensteiner P., Wachtlin D., et al. Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: a multicenter randomized trial controlling for unspecific effects. Frontiers in Human Neuroscience. 2017;11, article 135 doi: 10.3389/fnhum.2017.00135.
    1. Güntensperger D., Thüring C., Meyer M., Neff P., Kleinjung T. Neurofeedback for tinnitus treatment-review and current concepts. Frontiers in Aging Neuroscience. 2017;9, article 386 doi: 10.3389/fnagi.2017.00386.
    1. Crocetti A., Forti S., Del Bo L. Neurofeedback for subjective tinnitus patients. Auris, Nasus, Larynx. 2011;38(6):735–738. doi: 10.1016/j.anl.2011.02.003.
    1. Dohrmann K., Elbert T., Schlee W., Weisz N. Tuning the tinnitus percept by modification of synchronous brain activity. Restorative Neurology and Neuroscience. 2007;25(3-4):371–378.
    1. Sedley W., Cunningham M. O. Do cortical gamma oscillations promote or suppress perception? An under-asked question with an over-assumed answer. Frontiers in Human Neuroscience. 2013;7, article 595 doi: 10.3389/fnhum.2013.00595.
    1. Sedley W., Teki S., Kumar S., Barnes G. R., Bamiou D.-E., Griffiths T. D. Single-subject oscillatory gamma responses in tinnitus. Brain. 2012;135(10):3089–3100. doi: 10.1093/brain/aws220.
    1. Sedley W., Friston K. J., Gander P. E., Kumar S., Griffiths T. D. An integrative tinnitus model based on sensory precision. Trends in Neurosciences. 2016;39(12):799–812. doi: 10.1016/j.tins.2016.10.004.
    1. Landgrebe M., Zeman F., Koller M., et al. The Tinnitus Research Initiative (TRI) database: a new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome. BMC Medical Informatics and Decision Making. 2010;10(1):1–7. doi: 10.1186/1472-6947-10-42.
    1. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews. 1999;29(2-3):169–195. doi: 10.1016/S0165-0173(98)00056-3.
    1. Schlee W., Schecklmann M., Lehner A., et al. Reduced variability of auditory alpha activity in chronic tinnitus. Neural Plasticity. 2014;2014:9. doi: 10.1155/2014/436146.436146
    1. Landgrebe M., Azevedo A., Baguley D., et al. Methodological aspects of clinical trials in tinnitus: a proposal for an international standard. Journal of Psychosomatic Research. 2012;73(2):112–121. doi: 10.1016/j.jpsychores.2012.05.002.
    1. Langguth B., Goodey R., Azevedo A., et al. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Progress in Brain Research. 2007;166:525–536. doi: 10.1016/S0079-6123(07)66050-6.
    1. Kleinjung T., Fischer B., Langguth B., et al. Validierung einer deutschsprachigen Version des “Tinnitus Handicap Inventory”. Psychiatrische Praxis. 2007;34(Supplement 1):140–142. doi: 10.1055/s-2006-940218.
    1. Goebel G., Hiller W. Tinnitus-Fragebogen (TF). Standardinstrument zur Graduierung des Tinnitusschweregrades. Ergebnisse einer Multicenterstudie mit dem Tinnitus-Fragebogen (TF) HNO. 1994;42(3):166–172.
    1. Hautzinger M., Bailer M., Worall H., Keller F. BDI Beck-Depressions-Inventar Testhandbuch. Bern: Hans Huber; 1995.
    1. Prinz M., Petermann F. Beck Angst-Inventar (BAI) Zeitschrift für Psychiatrie, Psychologie und Psychotherapie. 2009;57(1):63–66.
    1. Angermeyer M. C., Kilian R., Matschinger H. WHOQOL-100 und WHOQOL-BREF: Handbuch für die deutschsprachige Version der WHO Instrumente zur Erfassung von Lebensqualität. Göttingen: Hogrefe; 2000.
    1. Klaghofer R., Brähler E. Konstruktion und Teststatistische Prüfung einer Kurzform der SCL-90–R. Zeitschrift für Klinische Psychologie, Psychiatrie und Psychotherapie. 2001;49(2):115–124.
    1. Bullinger M., Kirchberger I., Ware J. Der deutsche SF-36 Health Survey Übersetzung und psychometrische Testung eines krankheitsübergreifenden Instruments zur Erfassung der gesundheitsbezogenen Lebensqualität. Zeitschrift für Gesundheitswissenschaften = Journal of Public Health. 1995;3(1):21–36. doi: 10.1007/BF02959944.
    1. Oostenveld R., Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology. 2001;112(4):713–719. doi: 10.1016/S1388-2457(00)00527-7.
    1. Perrin F., Pernier J., Bertrand O., Echallier J. F. Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology. 1989;72(2):184–187. doi: 10.1016/0013-4694(89)90180-6.
    1. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.
    1. Wickham H. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2009. .
    1. Ahlmann-Eltze C. Ggsignif: Significance Brackets for’ggplot2’. R Package Version 0.4.0. 2017. .
    1. Harrell F. E., Jr Hmisc: Harrell Miscellaneous. R Package Version 4.0-3. 2017. .
    1. Long J. A. Jtools: analysis and presentation of social scientific data. R package version 0.5.0. 2017. .
    1. Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models. Biometrical Journal. 2008;50(3):346–363. doi: 10.1002/bimj.200810425.
    1. Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team nlme: linear and nonlinear mixed effects models. R package version 3.1-131. 2017. .
    1. Dahl D. B. Xtable: export tables to latex or html. R package version 1.8-2. 2016. .
    1. Field A. P., Miles J., Field Z. Discovering Statistics using R. London: Sage; 2012.
    1. Cohen J. In: Statistical Power Analysis for the Behavioral Sciences. 2. Cohen J., editor. Hillsdale, NJ, USA: Erlbaum; 1988.
    1. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Morey R. D. Confidence intervals from normalized data: a correction to Cousineau (2005) Tutorial in Quantitative Methods for Psychology. 2008;4(2):61–64. doi: 10.20982/tqmp.04.2.p061.
    1. Hartmann T., Lorenz I., Müller N., Langguth B., Weisz N. The effects of neurofeedback on oscillatory processes related to tinnitus. Brain Topography. 2014;27(1):149–157. doi: 10.1007/s10548-013-0295-9.
    1. Thibault R. T., Raz A. The psychology of neurofeedback: clinical intervention even if applied placebo. The American Psychologist. 2017;72(7):679–688. doi: 10.1037/amp0000118.
    1. Gruzelier J. H. EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews. 2014;44:159–182. doi: 10.1016/j.neubiorev.2014.03.015.
    1. Congedo M., Lubar J. F., Joffe D. Low-resolution electromagnetic tomography neurofeedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004;12(4):387–397. doi: 10.1109/TNSRE.2004.840492.
    1. De Ridder D., Vanneste S., Weisz N., et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neuroscience & Biobehavioral Reviews. 2014;44:16–32. doi: 10.1016/j.neubiorev.2013.03.021.
    1. Hall D. A., Mehta R. L., Argstatter H. Interpreting the Tinnitus Questionnaire (German version): what individual differences are clinically important? International Journal of Audiology. 2018;57(7):553–557. doi: 10.1080/14992027.2018.1442591.

Source: PubMed

3
Abonneren