The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients

Caroline Morin, André M Cantin, Félix-Antoine Vézina, Samuel Fortin, Caroline Morin, André M Cantin, Félix-Antoine Vézina, Samuel Fortin

Abstract

Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18⁻48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients.

Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672.

Keywords: DHA; EFAD; cystic fibrosis; inflammation; medical food.

Conflict of interest statement

Samuel Fortin is the owner of SCF Pharma, which has an exclusive worldwide license of the patented compositions and uses of MAG-DHA.

Figures

Figure 1
Figure 1
Effect of docosahexaenoic acid sn1-monoacylglyceride (MAG-DHA) supplementation on lipid profile of erythrocytes in Cystic Fibrosis (CF) patients. (A) Quantitative analyses of relative DHA levels in erythrocytes (RBC) and (B) relative AA/DHA ratio in erythrocytes derived from healthy subjects (n = 6), CF patients of placebo group before (T0, n = 5) and after supplementation for 30 days (T30, n = 5) and 60 days (T60, n = 2), as well as from CF patients of MAG-DHA group before (T0, n = 6) and after supplementation for 30 days (T30, n = 6) and 60 days (T60, n = 3), * p < 0.05.
Figure 2
Figure 2
Effect of MAG-DHA on expression levels of alpha1 antitrypsin-deactivated human leukocyte elastase (pHLE) complexes in plasma of CF patients. (A) pHLE complex levels were assessed using a specific ELISA in plasma of healthy subjects (n = 6) and CF patients of placebo group before (n = 5) and after 30 (n = 5) and 60 days (n = 2) of supplementation. (B) pHLE complex levels in plasma of healthy subjects (n = 6) and CF patients of MAG-DHA group before (n = 6) and after 30 (n = 6) and 60 days (n = 3) of daily supplementation. (C) Bar graph displaying changes in pHLE levels after 30 days of placebo (n = 5) or MAG-DHA (n = 6) daily intake in CF patients. (D) Bar graph displaying changes in pHLE levels after 60 days of placebo (n = 2) or MAG-DHA (n = 3) supplementation CF patients. Results are expressed as means ± SEM, * p ≤ 0.05.
Figure 3
Figure 3
Effect of MAG-DHA on expression levels of circulating IL-6 in CF patients. (A) IL-6 levels were assessed using specific ELISA in plasma of healthy subjects (n = 6) and CF patients of placebo group before (n = 5) and after 30 (n = 5) and 60 days (n = 2) of supplementation. (B) IL-6 levels in plasma of healthy subjects (n = 6) and CF patients of MAG-DHA group before (n = 6) and after 30 (n = 6) and 60 days (n = 3) of daily supplementation. (C) Bar graph displaying changes in IL-6 levels after 30 days of placebo (n = 5) or MAG-DHA (n = 6) daily intake in CF patients. (D) Bar graph displaying changes in IL-6 levels after 60 days of placebo (n = 2) or MAG-DHA (n = 3) supplementation CF patients. Results are expressed as means ± SEM, * p ≤ 0.05.

References

    1. Morin C., Fortin S., Guibert C., Rousseau É. 5 3 and 6 CYP450 Eicosanoid Derivatives: Key Lipid Mediators in the Regulation of Pulmonary Hypertension. [(accessed on 1 May 2018)];2011 Available online: .
    1. Fortin S. Polyunsaturated Fatty Acid Monoglycerides, Derivatives, and Uses Thereof. CA2672513, 2008; CA2677670, 2010; US8119690, 2011
    1. Fortin S. Compositions Comprising Polyunsaturated Fatty Acid Monoglycerides or Derivatives Thereof and Uses Thereof. US819690, 2012; US8222295, 2012
    1. Morin C., Cantin A.M., Rousseau É., Sirois M., Sirois C., Rizcallah E., Fortin S. Proresolving Action of Docosahexaenoic Acid Monoglyceride in Lung Inflammatory Models Related to Cystic Fibrosis. Am. J. Respir. Cell Mol. Biol. 2015;53:574–583. doi: 10.1165/rcmb.2014-0223OC.
    1. Kerem B., Rommens J.M., Buchanan J.A., Markiewicz D., Cox T.K., Chakravarti A., Buchwald M., Tsui L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science. 1989;245:1073–1080. doi: 10.1126/science.2570460.
    1. Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J.L. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science. 1989;245:1066–1073. doi: 10.1126/science.2475911.
    1. Sinaasappel M., Stern M., Littlewood J., Wolfe S., Steinkamp G., Heijerman H.G., Robberecht E., Döring G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002;1:51–75. doi: 10.1016/S1569-1993(02)00032-2.
    1. Steinkamp G., Wiedemann B. Relationship between nutritional status and lung function in cystic fibrosis: Cross sectional and longitudinal analyses from the German CF quality assurance (CFQA) project. Thorax. 2002;57:596–601. doi: 10.1136/thorax.57.7.596.
    1. Freedman S.D., Blanco P.G., Zaman M.M., Shea J.C., Ollero M., Hopper I.K., Weed D.A., Gelrud A., Regan M.M., Laposata M., et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004;350:560–569. doi: 10.1056/NEJMoa021218.
    1. Rosenlund M.L., Kim H.K., Kritchevsky D. Essential fatty acids in cystic fibrosis. Nature. 1974;251:719. doi: 10.1038/251719a0.
    1. Lepage G., Levy E., Ronco N., Smith L., Galéano N., Roy C.C. Direct transesterification of plasma fatty acids for the diagnosis of essential fatty acid deficiency in cystic fibrosis. J. Lipid Res. 1989;30:1483–1490.
    1. Landon C., Kerner J.A., Castillo R., Adams L., Whalen R., Lewiston N.J. Oral correction of essential fatty acid deficiency in cystic fibrosis. J. Parenter. Enteral Nutr. 1981;5:501–504. doi: 10.1177/0148607181005006501.
    1. Strandvik B., Brönnegård M., Gilljam H., Carlstedt-Duke J. Relation between defective regulation of arachidonic acid release and symptoms in cystic fibrosis. Scand. J. Gastroenterol. Suppl. 1988;143:1–4. doi: 10.3109/00365528809090205.
    1. Strandvik B., Svensson E., Seyberth H.W. Prostanoid biosynthesis in patients with cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids. 1996;55:419–425. doi: 10.1016/S0952-3278(96)90125-8.
    1. Rogiers V., Vercruysse A., Dab I., Crokaert R., Vis H.L. Fatty acid pattern of platelet phospholipids in cystic fibrosis. Eur. J. Pediatr. 1984;142:305–306. doi: 10.1007/BF00540261.
    1. Farrell P.M., Kosorok M.R., Rock M.J., Laxova A., Zeng L., Lai H.C., Hoffman G., Laessig R.H., Splaingard M.L. Early d4iagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics. 2001;107:1–13. doi: 10.1542/peds.107.1.1.
    1. Lévy E., Roy C., Lacaille F., Lambert M., Messier M., Gavino V., Lepage G., Thibault L. Lipoprotein abnormalities associated with cholesteryl ester transfer activity in cystic fibrosis patients: The role of essential fatty acid deficiency. Am. J. Clin. Nutr. 1993;57:573–579. doi: 10.1093/ajcn/57.4.573.
    1. Hanssens L., Thiébaut I., Lefèvre N., Malfroot A., Knoop C., Duchateau J., Casimir G. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients—A pilot study. Prostaglandins Leukot. Essent. Fatty Acids. 2016;108:45–50. doi: 10.1016/j.plefa.2016.03.014.
    1. Coste T.C., Armand M., Lebacq J., Lebecque P., Wallemacq P., Leal T. An overview of monitoring and supplementation of omega 3 fatty acids in cystic fibrosis. Clin. Biochem. 2007;40:511–520. doi: 10.1016/j.clinbiochem.2007.01.002.
    1. De Vizia B., Raia V., Spano C., Pavlidis C., Coruzzo A., Alessio M. Effect of an 8-month treatment with omega-3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. J. Parenter. Enteral Nutr. 2003;27:52–57. doi: 10.1177/014860710302700152.
    1. Katz D.P., Manner T., Furst P., Askanazi J. The use of an intravenous fish oil emulsion enriched with omega-3 fatty acids in patients with cystic fibrosis. Nutrition. 1996;12:334–339. doi: 10.1016/S0899-9007(96)80056-6.
    1. Leggieri E., De Biase R.V., Savi D., Zullo S., Halili I., Quattrucci S. Clinical effects of diet supplementation with DHA in pediatric patients suffering from cystic fibrosis. Minerva Pediatr. 2013;65:389–398.
    1. Olveira G., Olveira C., Acosta E., Espíldora F., Garrido-Sánchez L., García-Escobar E., Rojo-Martínez G., Gonzalo M., Soriguer F. Fatty acid supplements improve respiratory, inflammatory and nutritional parameters in adults with cystic fibrosis. Arch. Bronconeumol. 2010;46:70–77. doi: 10.1016/j.arbres.2009.11.001.
    1. Cantin A.M., Bilodeau G., Larivée P., Richter M.V. Plasma biomarkers and cystic fibrosis lung disease. Clin. Investig. Med. 2012;35:E173–E181. doi: 10.25011/cim.v35i4.17145.
    1. Eckrich J., Zissler U.M., Serve F., Leutz P., Smaczny C., Schmitt-Grohé S., Fussbroich D., Schubert R., Zielen S., Eickmeier O. Airway inflammation in mild cystic fibrosis. J. Cyst. Fibros. 2017;16:107–115. doi: 10.1016/j.jcf.2016.05.016.
    1. Strandvik B. Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids. 2010;83:121–129. doi: 10.1016/j.plefa.2010.07.002.
    1. Al-Turkmani M.R., Andersson C., Alturkmani R., Katrangi W., Cluette-Brown J.E., Freedman S.D., Laposata M. A mechanism accounting for the low cellular level of linoleic acid in cystic fibrosis and its reversal by DHA. J. Lipid Res. 2008;49:1946–1954. doi: 10.1194/jlr.M800035-JLR200.
    1. Innis S.M., Davidson A.G. Cystic fibrosis and nutrition: Linking phospholipids and essential fatty acids with thiol metabolism. Annu. Rev. Nutr. 2008;28:55–72. doi: 10.1146/annurev.nutr.27.061406.093625.
    1. Thomsen K.F., Laposata M., Njoroge S.W., Umunakwe O.C., Katrangi W., Seegmiller A.C. Increased elongase 6 and Delta9-desaturase activity are associated with n-7 and n-9 fatty acid changes in cystic fibrosis. Lipids. 2011;46:669–677. doi: 10.1007/s11745-011-3563-z.
    1. Njoroge S.W., Laposata M., Katrangi W., Seegmiller A.C. DHA and EPA reverse cystic fibrosis-related FA abnormalities by suppressing FA desaturase expression and activity. J. Lipid Res. 2012;53:257–265. doi: 10.1194/jlr.M018101.
    1. Cruz-Hernandez C., Destaillats F., Thakkar S.K., Goulet L., Wynn E., Grathwohl D., Roessle C., de Giorgi S., Tappy L., Giuffrida F., et al. Monoacylglycerol-enriched oil increases EPA/DHA delivery to circulatory system in humans with induced lipid malabsorption conditions. J. Lipid Res. 2016;57:2208–2216. doi: 10.1194/jlr.P070144.
    1. Morin C., Fortin S., Cantin A.M., Sirois M., Sirois C., Rizcallah E., Rousseau É. Anti-cancer effects of a new docosahexaenoic acid monoacylglyceride in lung adenocarcinoma. Recent Pat. Anticancer Drug Discov. 2013;8:319–334. doi: 10.2174/1574891X113089990032.
    1. Morin C., Fortin S., Cantin A.M., Rousseau E. Docosahexaenoic acid derivative prevents inflammation and hyperreactivity in lung: Implication of PKC-Potentiated inhibitory protein for heterotrimeric myosin light chain phosphatase of 17 kD in asthma. J. Respir. Cell Mol. Biol. 2011;45:366–375. doi: 10.1165/rcmb.2010-0156OC.
    1. Panchaud A., Sauty A., Kernen Y., Decosterd L.A., Buclin T., Boulat O., Hug C., Pilet M., Roulet M. Biological effects of a dietary omega-3 polyunsaturated fatty acids supplementation in cystic fibrosis patients: A randomized, crossover placebo-controlled trial. Clin. Nutr. 2006;25:418–427. doi: 10.1016/j.clnu.2005.10.011.
    1. Yang J., Eiserich J.P., Cross C.E., Morrissey B.M., Hammock B.D. Metabolomic profiling of regulatory lipid mediators in sputum from adult cystic fibrosis patients. Free Radic. Biol. Med. 2012;53:160–171. doi: 10.1016/j.freeradbiomed.2012.05.001.

Source: PubMed

3
Abonneren