Effect of topical applications of sunflower seed oil on systemic fatty acid levels in under-two children under rehabilitation for severe acute malnutrition in Bangladesh: a randomized controlled trial

K M Shahunja, Daniel C Sévin, Lindsay Kendall, Tahmeed Ahmed, Md Iqbal Hossain, Mustafa Mahfuz, Xinyi Zhu, Krishan Singh, Sunita Singh, Jonathan M Crowther, Rachel A Gibson, Gary L Darmstadt, K M Shahunja, Daniel C Sévin, Lindsay Kendall, Tahmeed Ahmed, Md Iqbal Hossain, Mustafa Mahfuz, Xinyi Zhu, Krishan Singh, Sunita Singh, Jonathan M Crowther, Rachel A Gibson, Gary L Darmstadt

Abstract

Background: Children with severe acute malnutrition (SAM) have inadequate levels of fatty acids (FAs) and limited capacity for enteral nutritional rehabilitation. We hypothesized that topical high-linoleate sunflower seed oil (SSO) would be effective adjunctive treatment for children with SAM.

Methods: This study tested a prespecified secondary endpoint of a randomized, controlled, unblinded clinical trial with 212 children with SAM aged 2 to 24 months in two strata (2 to < 6 months, 6 to 24 months in a 1:2 ratio) at Dhaka Hospital of icddr,b, Bangladesh between January 2016 and December 2017. All children received standard-of-care management of SAM. Children randomized to the emollient group also received whole-body applications of 3 g/kg SSO three times daily for 10 days. We applied difference-in-difference analysis and unsupervised clustering analysis using t-distributed stochastic neighbor embedding (t-SNE) to visualize changes in FA levels in blood from day 0 to day 10 of children with SAM treated with emollient compared to no-emollient.

Results: Emollient therapy led to systematically higher increases in 26 of 29 FAs over time compared to the control. These effects were driven primarily by changes in younger subjects (27 of 29 FAs). Several FAs, especially those most abundant in SSO showed high-magnitude but non-significant incremental increases from day 0 to day 10 in the emollient group vs. the no-emollient group; for linoleic acid, a 237 μg/mL increase was attributable to enteral feeding and an incremental 98 μg/mL increase (41%) was due to emollient therapy. Behenic acid (22:0), gamma-linolenic acid (18:3n6), and eicosapentaenoic acid (20:5n3) were significantly increased in the younger age stratum; minimal changes were seen in the older children.

Conclusions: SSO therapy for SAM augmented the impact of enteral feeding in increasing levels of several FAs in young children. Further research is warranted into optimizing this novel approach for nutritional rehabilitation of children with SAM, especially those < 6 months.

Trial registration: ClinicalTrials.gov : NCT02616289 .

Keywords: Bangladesh; Children; Emollient; Fatty acids; Malnutrition; Sunflower seed oil; Topical application.

Conflict of interest statement

The following authors are current or former employees and shareholders of GlaxoSmithKline: Daniel Sevin, Lindsay Kendall, Xinyi Zhu, Krishan Singh, Sunita Singh, Jonathan Crowther, and Rachel Gibson.

Figures

Fig. 1
Fig. 1
Trial profile
Fig. 2
Fig. 2
t-distributed stochastic neighbor embedding (t-SNE) performed on the full dataset of absolute fatty acid concentrations (29 analytes, 415 samples), plotting data points (each representing a sample) as scatter plots colored according to metadata variable values shown. Triangles indicate samples from emollient-treated and circles from no-emollient patients. a) Analysis of all samples based on time of sample collection. b) Analysis of day-10 samples based on treatment group. c) Analysis of day-10 samples based on age strata
Fig. 3
Fig. 3
t-distributed stochastic neighbor embedding (t-SNE) difference-in-difference analysis performed between day-10 and day-0 samples of each patient, plotting data points (each representing a patient) as scatter plots colored according to treatment group, and shown for patients ages a) 2 to 24 months, b) 2 to < 6 months, and c) 6 to 24 months. Triangles indicate samples from emollient-treated and circles from no-emollient patients
Fig. 4
Fig. 4
Box-and-whisker plots showing fatty acid concentration differences for a) palmitic acid (16:0), b) oleic acid (18:1n9), and c) linoleic acid (18:2n6) by treatment group and age strata. Individual data points represent the difference from day 0 to day 10 for the indicated fatty acid for an individual subject. Box-and-whisker plots represent data as mean (heavy horizontal line), lower and upper quartile (box edges), most extreme data points below 1.5 inter-quartile ranges from box edges (whiskers), and datapoints beyond 1.5 inter-quartile ranges from box edges (points beyond whiskers)
Fig. 5
Fig. 5
Mean log2 fold changes in fatty acids levels between day 10 and day 0 in emollient treated vs. not-emollient-treated patients in the following age groups: a) 2–24 months, b) 2- < 6 months, and c) 6–24 months. Fatty acids are identified by numbers referenced in Supplemental Table 10. Fatty acids with a raw p-value < 0.05 in the difference-in-difference analysis (Table 3) are highlighted in red

References

    1. United Nations Children’s Fund (UNICEF), World Health Organization, International Bank for Reconstruction and Development/The World Bank. Levels and trends in child malnutrition: key findings of the 2021 edition of the joint child malnutrition estimates. Geneva: World Health Organization; 2021.
    1. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–451. doi: 10.1016/S0140-6736(13)60937-X.
    1. Talbert A, Thuo N, Karisa J, Chesaro C, Ohuma E, Ignas J, Berkley JA, Toromo C, Atkinson S, Maitland K. Diarrhoea complicating severe acute malnutrition in Kenyan children: a prospective descriptive study of risk factors and outcome. PLoS One. 2012;7(6):e38321. doi: 10.1371/journal.pone.0038321.
    1. Hossain MI, Haque R, Mondal D, Mahfuz M, Ahmed AS, Islam MM, et al. Undernutrition, vitamin a and iron deficiency are associated with impaired intestinal mucosal permeability in young Bangladeshi children assessed by lactulose/mannitol test. PLoS One. 2016;11(12):e0164447. doi: 10.1371/journal.pone.0164447.
    1. Murphy J, Badaloo A, Chambers B, Forrester T, Wootton S, Jackson A. Maldigestion and malabsorption of dietary lipid during severe childhood malnutrition. Arch Dis Child. 2002;87(6):522–525. doi: 10.1136/adc.87.6.522.
    1. Boaz R, Joseph A, Kang G, Bose A. Intestinal permeability in normally nourished and malnourished children with and without diarrhea. Indian Pediatr. 2013;50(1):152–153. doi: 10.1007/s13312-013-0030-3.
    1. Hossain MI, Nahar B, Hamadani JD, Ahmed T, Roy AK, Brown KH. Intestinal mucosal permeability of severely underweight and non-malnourished Bangladeshi children, and effects of nutritional rehabilitation. J Pediatr Gastroenterol Nutr. 2010;51(5):638–644. doi: 10.1097/MPG.0b013e3181eb3128.
    1. Love A. Metabolic response to malnutrition: its relevance to enteral feeding. Gut. 1986;27(Suppl 1):9–13. doi: 10.1136/gut.27.Suppl_1.9.
    1. Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog. 2017;106:127–138. doi: 10.1016/j.micpath.2016.02.003.
    1. Platts-Mills JA, Taniuchi M, Uddin MJ, Sobuz SU, Mahfuz M, Gaffar SA, et al. Association between enteropathogens and malnutrition in children aged 6-23 mo in Bangladesh: a case-control study. Am J Clin Nutr. 2017;105(5):1132–1138. doi: 10.3945/ajcn.116.138800.
    1. Hornstra G. Essential fatty acids in mothers and their neonates. Am J Clin Nutr. 2000;71(5):1262S–1269S. doi: 10.1093/ajcn/71.5.1262s.
    1. Rambold AS, Cohen S, Lippincott-Schwartz J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 2015;32(6):678–692. doi: 10.1016/j.devcel.2015.01.029.
    1. Prentice AM, Paul AA. Fat and energy needs of children in developing countries. Am J Clin Nutr. 2000;72(5):1253s–1265s. doi: 10.1093/ajcn/72.5.1253s.
    1. Yaméogo CW, Cichon B, Fabiansen C, Rytter MJH, Faurholt-Jepsen D, Stark K, et al. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition. Nutr J. 2017;16(1):44. doi: 10.1186/s12937-017-0264-3.
    1. Marín MC, De Tomás ME, Mercuri O, Fernández A, de Serres CT. Interrelationship between protein-energy malnutrition and essential fatty acid deficiency in nursing infants. Am J Clin Nutr. 1991;53(2):466–468. doi: 10.1093/ajcn/53.2.466.
    1. Bartz S, Mody A, Hornik C, Bain J, Muehlbauer M, Kiyimba T, Kiboneka E, Stevens R, Bartlett J, St Peter JV, Newgard CB, Freemark M. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality. J Clin Endocrinol Metab. 2014;99(6):2128–2137. doi: 10.1210/jc.2013-4018.
    1. Brewster DR, Manary M, Menzies I, O'loughlin E, Henry R. Intestinal permeability in kwashiorkor. Arch Dis Child. 1997;76(3):236–241. doi: 10.1136/adc.76.3.236.
    1. Kostecka M. Fatty acid composition of diets of early school-age children and its health implications. Pak J Med Sci. 2015;31(6):1467–1471. doi: 10.12669/pjms.316.7614.
    1. World Health Organization. Management of severe malnutrition: a manual for physicians and other senior health workers. 1999. , accessed 3 Aug 2020.
    1. World Health Organization . Guideline: updates on the management of severe acute malnutrition in infants and children. Geneva: World Health Organization; 2013.
    1. Nel E. Severe acute malnutrition. Curr Opin Clin Nutr Metabolic Care. 2018;21(3):195–199. doi: 10.1097/MCO.0000000000000465.
    1. Weber JM, Ryan KN, Tandon R, Mathur M, Girma T, Steiner-Asiedu M, Saalia F, Zaidi S, Soofi S, Okos M, Vosti SA, Manary MJ. Acceptability of locally produced ready-to-use therapeutic foods in Ethiopia, Ghana, Pakistan and India. Matern Child Nutr. 2017;13(2):e12250. doi: 10.1111/mcn.12250.
    1. Hossain MI, Huq S, Islam MM, Ahmed T. Acceptability and efficacy of ready-to-use therapeutic food using soy protein isolate in under-5 children suffering from severe acute malnutrition in Bangladesh: a double-blind randomized non-inferiority trial. Eur J Nutr. 2020;59(3):1149–1161. doi: 10.1007/s00394-019-01975-w.
    1. Ahmed T, Ali M, Ullah MM, Choudhury IA, Haque ME, Salam MA, Rabbani GH, Suskind RM, Fuchs GJ. Mortality in severely malnourished children with diarrhoea and use of a standardised management protocol. Lancet. 1999;353(9168):1919–1922. doi: 10.1016/S0140-6736(98)07499-6.
    1. Hsieh J-C, Liu L, Zeilani M, Ickes S, Trehan I, Maleta K, Craig C, Thakwalakwa C, Singh L, Brenna JT, Manary MJ. High oleic ready-to-use therapeutic food maintains docosahexaenoic acid status in severe malnutrition: a randomized, blinded trial. J Pediatr Gastroenterol Nutr. 2015;61(1):138–143. doi: 10.1097/MPG.0000000000000741.
    1. Jones KD, Ali R, Khasira MA, Odera D, West AL, Koster G, et al. Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition: a randomized controlled trial. BMC Med. 2015;13(1):93. doi: 10.1186/s12916-015-0315-6.
    1. Darmstadt G, Saha S, Ahmed A, Khatun M, Chowdhury M. The skin as a potential portal of entry for invasive infections in neonates. Perinatology. 2003;5(5):205–212.
    1. Darmstadt G. The skin and nutritional disorders in the newborn. Eur J Pediatr Dermatol. 1998;8(4):221–228.
    1. Feingold KR, Elias PM. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta (BBA)-Molec cell biol. Lipids. 2014;1841(3):280–294.
    1. Elias P. The skin as an organ of protection. Dermatol General Med. 2003:107–18.
    1. Darmstadt GL, Mao-Qiang M, Chi E, Saha SK, Ziboh VA, Black RE, et al. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 2002;91:1–9. doi: 10.1111/j.1651-2227.2002.tb03275.x.
    1. Fernandez A, Patkar S, Chawla C, Taskar T, Prabhu S. Oil application in preterm babies. A source of warmth and nutrition. Indian Pediatr. 1987;24(12):1111–1116.
    1. Prottey C, Hartop PJ, Press M. Correction of the cutaneous manifestations of essential fatty acid deficiency in man by application of sunflower-seed oil to the skin. J Invest Dermatol. 1975;64(4):228–234. doi: 10.1111/1523-1747.ep12510667.
    1. Darmstadt GL, Badrawi N, Law PA, Ahmed S, Bashir M, Iskander I, Said DA, Kholy AE, Husein MH, Alam A, Winch PJ, Gipson R, Santosham M. Topically applied sunflower seed oil prevents invasive bacterial infections in preterm infants in Egypt: a randomized, controlled clinical trial. Pediatr Infect Dis J. 2004;23(8):719–725. doi: 10.1097/01.inf.0000133047.50836.6f.
    1. Darmstadt GL, Saha SK, Ahmed ANU, Chowdhury MA, Law PA, Ahmed S, et al. Effect of topical treatment with skin barrier-enhancing emollients on nosocomial infections in preterm infants in Bangladesh: a randomised controlled trial. Lancet. 2005;365(9464):1039–1045. doi: 10.1016/S0140-6736(05)71140-5.
    1. Salam RA, Darmstadt GL, Bhutta ZA. Effect of emollient therapy on clinical outcomes in preterm neonates in Pakistan: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2015;100(3):F210–F2F5. doi: 10.1136/archdischild-2014-307157.
    1. Salam RA, Das JK, Darmstadt GL, Bhutta ZA. Emollient therapy for preterm newborn infants–evidence from the developing world. BMC Public Health. 2013;13(S3):S31. doi: 10.1186/1471-2458-13-S3-S31.
    1. Darmstadt GL, Saha SK, Ahmed ANU, Choi Y, Chowdhury MA, Islam M, et al. Effect of topical emollient treatment of preterm neonates in Bangladesh on invasion of pathogens into the bloodstream. Pediatr Res. 2007;61(5):588–593. doi: 10.1203/pdr.0b013e3180459f75.
    1. Darmstadt GL, Ahmed S, Ahmed ANU, Saha SK. Mechanism for prevention of infection in preterm neonates by topical emollients: a randomized, controlled clinical trial. Pediatr Infect Dis J. 2014;33(11):1124–1127. doi: 10.1097/INF.0000000000000423.
    1. Aberg KM, Man M-Q, Gallo RL, Ganz T, Crumrine D, Brown BE, Choi EH, Kim DK, Schröder JM, Feingold KR, Elias PM. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol. 2008;128(4):917–925. doi: 10.1038/sj.jid.5701099.
    1. Elias P, Mao-Qiang M, Thornfeldt C, Feingold K. The epidermal permeability barrier: effects of physiologic and non-physiologic lipids. The Lanolin Book Hamburg. Germany: Beiersdorf AG; 1999. pp. 253–279.
    1. Hanley K, Jiang Y, He SS, Friedman M, Elias PM, Bikle DD, et al. Keratinocyte differentiation is stimulated by activators of the nuclear hormone receptor PPARα. J Invest Dermatol. 1998;110(4):368–375. doi: 10.1046/j.1523-1747.1998.00139.x.
    1. Schürer N, Schliep V, Williams ML. Differential utilization of linoleic and arachidonic acid by cultured human keratinocytes. Skin Pharmacol Physiol. 1995;8(1–2):30–40. doi: 10.1159/000211328.
    1. Fluhr JW, Man M-Q, Hachem J-P, Crumrine D, Mauro TM, Elias PM, Feingold KR. Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol. 2009;129(2):365–374. doi: 10.1038/jid.2008.218.
    1. Elias PM, Brown BE, Ziboh VA. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J Invest Dermatol. 1980;74(4):230–233. doi: 10.1111/1523-1747.ep12541775.
    1. Prottey C, Hartop P, Black J, McCormack J. The repair of impaired epidermal barrier function in rats by the cutaneous application of linoleic acid. Br J Dermatol. 1976;94(1):13–21. doi: 10.1111/j.1365-2133.1976.tb04336.x.
    1. Prottey C. Essential fatty acids and the skin. Br J Dermatol. 1976;94(5):579–587. doi: 10.1111/j.1365-2133.1976.tb05151.x.
    1. Press M, Hartop P, Prottey C. Correction of essential fatty-acid deficiency in man by the cutaneous application of sunflower-seed oil. Lancet. 1974;303(7858):597–599. doi: 10.1016/S0140-6736(74)92653-1.
    1. Friedman Z, Shochat SJ, Maisels MJ. Correction of essential fatty acid deficiency in newborn infants by cutaneous application of sunflower seed oil. Pediatrics. 1976;58(5):650–654.
    1. Fernandez A, Krishnamoorthy G, Patil N, Mondkar J, Swar B. Transcutaneous absorption of oil in preterm babies—a pilot study. Indian Pediatr. 2005;42(3):255–258.
    1. Otto A, Du Plessis J, Wiechers J. Formulation effects of topical emulsions on transdermal and dermal delivery. Int J Cosmetic Sci. 2009;31(1):1–19. doi: 10.1111/j.1468-2494.2008.00467.x.
    1. Saunders J, Davis H, Coetzee L, Botha S, Kruger A, Grobler A. A novel skin penetration enhancer: evaluation by membrane diffusion and confocal microscopy. J Pharm Pharmaceutical Sci. 1999;2(3):99–107.
    1. Solanki K, Matnani M, Kale M, Joshi K, Bavdekar A, Bhave S, Pandit A. Transcutaneous absorption of topically massaged oil in neonates. Indian Pediatr. 2005;42(10):998–1005.
    1. Shahunja KM, Ahmed T, Hossain MI, Mahfuz M, Kendall L, Zhu X, Singh KP, et al. Topical emollient therapy in the management of severe acute malnutrition in under-two children: a randomised controlled clinical trial in Bangladesh. J Glob Health. 2020;10:010414.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc: Series B (Methodological) 1995;57(1):289–300.
    1. Jamieson AR, Giger ML, Drukker K, Li H, Yuan Y, Bhooshan N. Exploring nonlinear feature space dimension reduction and data representation in breast CADx with Laplacian eigenmaps and-SNE. Med Phys. 2010;37(1):339–351. doi: 10.1118/1.3267037.
    1. Koletzko B, Decsi T. Fatty acid composition of plasma lipid classes in healthy subjects from birth to young adulthood. Eur J Pediatr. 1994;153(7):520–525. doi: 10.1007/BF01957009.
    1. Babirekere-Iriso E, Lauritzen L, Mortensen CG, Rytter MJH, Mupere E, Namusoke H, Michaelsen KF, Briend A, Stark KD, Metherel AH, Friis H. Essential fatty acid composition and correlates in children with severe acute malnutrition. Clin Nutr ESPEN. 2016;11:e40–ee6. doi: 10.1016/j.clnesp.2015.12.001.
    1. Burns-Whitmore B, Froyen E, Heskey C, Parker T, San PG. Alpha-linolenic and linoleic fatty acids in the vegan diet: do they require dietary reference intake/adequate intake special consideration? Nutrients. 2019;11(10):2365. doi: 10.3390/nu11102365.
    1. Man MM, Feingold KR, Thornfeldt CR, Elias PM. Optimization of physiological lipid mixtures for barrier repair. J Invest Dermatol. 1996;106(5):1096–1101. doi: 10.1111/1523-1747.ep12340135.
    1. Goldyne ME. Prostaglandins and cutaneous inflammation. J Invest Dermatol. 1975;64(6):377–385. doi: 10.1111/1523-1747.ep12512319.
    1. Hanley K, Jiang Y, Crumrine D, Bass NM, Appel R, Elias PM, Williams ML, Feingold KR. Activators of the nuclear hormone receptors PPARalpha and FXR accelerate the development of the fetal epidermal permeability barrier. J Clin Investigation. 1997;100(3):705–712. doi: 10.1172/JCI119583.
    1. Houtsmuller U, Van der Beek A. Effects of topical application of fatty acids. Progr Lipid Res. 1981;20:219–224. doi: 10.1016/0163-7827(81)90041-2.
    1. Vaivre-Douret L, Oriot D, Blossier P, Py A, Kasolter-Péré M, Zwang J. The effect of multimodal stimulation and cutaneous application of vegetable oils on neonatal development in preterm infants: a randomized controlled trial. Child Care Health Dev. 2009;35(1):96–105. doi: 10.1111/j.1365-2214.2008.00895.x.
    1. Brenna JT, Akomo P, Bahwere P, Berkley JA, Calder PC, Jones KD, Liu L, Manary M, Trehan I, Briend A. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF) BMC Med. 2015;13(1):117. doi: 10.1186/s12916-015-0352-1.
    1. Darmstadt GL, Khan NZ, Rosenstock S, Muslima H, Parveen M, Mahmood W, Ahmed ASMNU, Chowdhury MAKA, Law PA, Zeger S, Saha SK. Impact of emollient therapy for preterm infants in the neonatal period on child neurodevelopment in Bangladesh. J Health Popul Nutr 2021;40(1):24. 10.1186/s41043-021-00248-9.
    1. Shaheen N, Rahim ATMA, Mohiduzzaman M, Banu CP, Bari ML, Tukun AB, et al. Food composition table for Bangladesh. Institute of Nutrition and Food Science, Centre for Advanced Research in sciences, University of Dhaka , accessed 18 March 2021.
    1. Katan M, Deslypere J, Van Birgelen A, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–2022. doi: 10.1016/S0022-2275(20)37132-7.
    1. Sun Q, Ma J, Campos H, Hankinson SE, Hu FB. Comparison between plasma and erythrocyte fatty acid content as biomarkers of fatty acid intake in US women. Am J Clin Nutr. 2007;86(1):74–81. doi: 10.1093/ajcn/86.1.74.
    1. Álvarez MJ, Fernández D, Gómez-Salgado J, Rodríguez-González D, Rosón M, Lapeña S. The effects of massage therapy in hospitalized preterm neonates: a systematic review. Int J Nurs Stud. 2017;69:119–136. doi: 10.1016/j.ijnurstu.2017.02.009.
    1. Pados BF, McGlothen-Bell K. Benefits of infant massage for infants and parents in the NICU. Nurs Womens Health. 2019;23(3):265–271. doi: 10.1016/j.nwh.2019.03.004.
    1. Vickers A, Ohlsson A, Lacy JB, Horsley A. Massage for promoting growth and development of preterm and/or low birth-weight infants. Cochrane Database Syst Rev. 2004;(2):CD000390.
    1. LeFevre A, Shillcutt SD, Saha SK, Ahmed A, Ahmed S, Chowdhury M, et al. Cost-effectiveness of skin-barrier-enhancing emollients among preterm infants in Bangladesh. Bull World Health Organ. 2010;88(2):104–112. doi: 10.2471/BLT.08.058230.

Source: PubMed

3
Abonneren