The relationship between markers of antenatal iron stores and birth outcomes differs by malaria prevention regimen-a prospective cohort study

Holger W Unger, Valentina Laurita Longo, Andie Bleicher, Maria Ome-Kaius, Stephan Karl, Julie A Simpson, Amalia Karahalios, Elizabeth H Aitken, Stephen J Rogerson, Holger W Unger, Valentina Laurita Longo, Andie Bleicher, Maria Ome-Kaius, Stephan Karl, Julie A Simpson, Amalia Karahalios, Elizabeth H Aitken, Stephen J Rogerson

Abstract

Background: Iron deficiency (ID) has been associated with adverse pregnancy outcomes, maternal anaemia, and altered susceptibility to infection. In Papua New Guinea (PNG), monthly treatment with sulphadoxine-pyrimethamine plus azithromycin (SPAZ) prevented low birthweight (LBW; <2500 g) through a combination of anti-malarial and non-malarial effects when compared to a single treatment with SP plus chloroquine (SPCQ) at first antenatal visit. We assessed the relationship between ID and adverse birth outcomes in women receiving SPAZ or SPCQ, and the mediating effects of malaria infection and haemoglobin levels during pregnancy.

Methods: Plasma ferritin levels measured at antenatal enrolment in a cohort of 1892 women were adjusted for concomitant inflammation using C-reactive protein and α-1-acid glycoprotein. Associations of ID (defined as ferritin <15 μg/L) or ferritin levels with birth outcomes (birthweight, LBW, preterm birth, small-for-gestational-age birthweight [SGA]) were determined using linear or logistic regression analysis, as appropriate. Mediation analysis assessed the degree of mediation of ID-birth outcome relationships by malaria infection or haemoglobin levels.

Results: At first antenatal visit (median gestational age, 22 weeks), 1256 women (66.4%) had ID. Overall, ID or ferritin levels at first antenatal visit were not associated with birth outcomes. There was effect modification by treatment arm. Amongst SPCQ recipients, ID was associated with a 81-g higher mean birthweight (95% confidence interval [CI] 10, 152; P = 0.025), and a twofold increase in ferritin levels was associated with increased odds of SGA (adjusted odds ratio [aOR] 1.25; 95% CI 1.06, 1.46; P = 0.007). By contrast, amongst SPAZ recipients, a twofold increase in ferritin was associated with reduced odds of LBW (aOR 0.80; 95% CI 0.67, 0.94; P = 0.009). Mediation analyses suggested that malaria infection or haemoglobin levels during pregnancy do not substantially mediate the association of ID with birth outcomes amongst SPCQ recipients.

Conclusions: Improved antenatal iron stores do not confer a benefit for the prevention of adverse birth outcomes in the context of malaria chemoprevention strategies that lack the non-malarial properties of monthly SPAZ. Research to determine the mechanisms by which ID protects from suboptimal foetal growth is needed to guide the design of new malaria prevention strategies and to inform iron supplementation policy in malaria-endemic settings.

Trial registration: ClinicalTrials.gov NCT01136850 .

Keywords: Adverse birth outcomes; Infection; Intermittent preventive treatment; Iron deficiency; Iron stores; Iron supplementation; Plasmodium falciparum.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Participant flow chart. Of 2793 women enrolled in the parent trial, 1892 had plasma available for ferritin, alpha-1-acid glycoprotein, and C-reactive protein and were included in the present analyses. Reasons for exclusion are indicated in the diagram. Abbreviations: AGP, α-1-acid glycoprotein; CRP, C-reactive protein; IPTp, intermittent preventive treatment in pregnancy
Fig. 2
Fig. 2
Conceptual directed acyclic graph of mediation iron deficiency (ferritin P. falciparum and/or P. vivax infections on light microscopy and/or polymerase chain reaction, and placental malaria as active or past infection on histology

References

    1. Lopez A, Cacoub P, Macdougall IC, Peyrin-Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907–916. doi: 10.1016/S0140-6736(15)60865-0.
    1. GBD 2017 DALYs and HALE Collaborators Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1859–1922. doi: 10.1016/S0140-6736(18)32335-3.
    1. Pena-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst Rev. 2015;7:CD004736. doi: 10.1002/14651858.CD004736.pub5.
    1. Xiong X, Buekens P, Alexander S, Demianczuk N, Wollast E. Anemia during pregnancy and birth outcome: a meta-analysis. Am J Perinatol. 2000;17(3):137–146. doi: 10.1055/s-2000-9508.
    1. Iqbal S, Ekmekcioglu C. Maternal and neonatal outcomes related to iron supplementation or iron status: a summary of meta-analyses. J Matern Fetal Neonatal Med. 2019;32(9):1528–1540. doi: 10.1080/14767058.2017.1406915.
    1. Dewey KG, Oaks BM. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr. 2017;106(Suppl 6):1694S–1702S. doi: 10.3945/ajcn.117.156075.
    1. Iglesias L, Canals J, Arija V. Effects of prenatal iron status on child neurodevelopment and behavior: a systematic review. Crit Rev Food Sci Nutr. 2018;58(10):1604–1614. doi: 10.1080/10408398.2016.1274285.
    1. Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365(9462):891–900. doi: 10.1016/S0140-6736(05)71048-5.
    1. WHO . WHO recommendations on antenatal care for a positive pregnancy experience. Geneva: World Health Organization (WHO); 2016.
    1. Sazawal S, Black RE, Ramsan M, Chwaya HM, Stoltzfus RJ, Dutta A, Dhingra U, Kabole I, Deb S, Othman MK, Kabole FM. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet. 2006;367(9505):133–143. doi: 10.1016/S0140-6736(06)67962-2.
    1. Sangare L, van Eijk AM, Ter Kuile FO, Walson J, Stergachis A. The association between malaria and iron status or supplementation in pregnancy: a systematic review and meta-analysis. PLoS One. 2014;9(2):e87743. doi: 10.1371/journal.pone.0087743.
    1. Brabin B, Gies S, Roberts SA, Diallo S, Lompo OM, Kazienga A, Brabin L, Ouedraogo S, Tinto H. Excess risk of preterm birth with periconceptional iron supplementation in a malaria endemic area: analysis of secondary data on birth outcomes in a double blind randomized controlled safety trial in Burkina Faso. Malar J. 2019;18(1):161. doi: 10.1186/s12936-019-2797-8.
    1. WHO . Serum ferritin concentations for the assessment of iron status and iron deficiency in populations. Geneva: World Health Organization (WHO); 2011.
    1. Raiten DJ, Sakr Ashour FA, Ross AC, Meydani SN, Dawson HD, Stephensen CB, Brabin BJ, Suchdev PS, van Ommen B. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) J Nutr. 2015;145(5):1039S–1108S. doi: 10.3945/jn.114.194571.
    1. Thurnham DI, McCabe LD, Haldar S, Wieringa FT, Northrop-Clewes CA, McCabe GP. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr. 2010;92(3):546–555. doi: 10.3945/ajcn.2010.29284.
    1. Namaste SM, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, Mei Z, Rawat R, Williams AM, Raiten DJ, Northrop-Lewes CA, Suchdev PS. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106(Suppl 1):359S–371S. doi: 10.3945/ajcn.116.141762.
    1. Bolnga JW, Hamura NN, Umbers AJ, Rogerson SJ, Unger HW. Insights into maternal mortality in Madang Province, Papua New Guinea. Int J Gynaecol Obstet. 2014;124(2):123–127. doi: 10.1016/j.ijgo.2013.08.012.
    1. Unger HW, Ome-Kaius M, Karl S, Singirok D, Siba P, Walker J, Wangnapi RA, Mueller I, Rogerson SJ. Factors associated with ultrasound-aided detection of suboptimal fetal growth in a malaria-endemic area in Papua New Guinea. BMC Pregnancy Childbirth. 2015;15(1):83. doi: 10.1186/s12884-015-0511-6.
    1. Amoa AB, Lavu E, Ray U, Sapuri M, Kariwiga G, Heywood S. The aetiology of severe anaemia among antenatal patients of the Port Moresby General Hospital. P N G Med J. 2003;46(3-4):143–151.
    1. Fowkes FJI, Moore KA, Opi DH, Simpson JA, Langham F, Stanisic DI, Ura A, King CL, Siba PM, Mueller I, Rogerson SJ, Beeson JG. Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study. BMC Med. 2018;16(1):156. doi: 10.1186/s12916-018-1146-z.
    1. Fowkes FJI, Davidson E, Agius PA, Beeson JG. Understanding the interactions between iron supplementation, infectious disease and adverse birth outcomes is essential to guide public health recommendations. BMC Med. 2019;17(1):153. doi: 10.1186/s12916-019-1376-8.
    1. Verhoef H, Mwangi MN, Cerami C, Prentice AM. Antenatal iron supplementation and birth weight in conditions of high exposure to infectious diseases. BMC Med. 2019;17(1):146. doi: 10.1186/s12916-019-1375-9.
    1. Unger HW, Ome-Kaius M, Wangnapi RA, Umbers AJ, Hanieh S, Suen CS, Robinson LJ, Rosanas-Urgell A, Wapling J, Lufele E, Kongs C, Samol P, Sui D, Singirok D, Bardaji A, Schofield L, Menendez C, Betuela I, Siba P, Mueller I, Rogerson SJ. Sulphadoxine-pyrimethamine plus azithromycin for the prevention of low birthweight in Papua New Guinea: a randomised controlled trial. BMC Med. 2015;13(1):9. doi: 10.1186/s12916-014-0258-3.
    1. Cates JE, Westreich D, Unger HW, Bauserman M, Adair L, Cole SR, Meshnick S, Rogerson SJ. Maternal Malaria and Malnutrition Initiative. Intermittent preventive therapy in pregnancy and incidence of low birth weight in malaria-endemic countries. Am J Public Health. 2018;108(3):399–406. doi: 10.2105/AJPH.2017.304251.
    1. Roh ME, Kuile FOT, Rerolle F, Glymour MM, Shiboski S, Gosling R, Gutman J, Kakuru A, Desai M, Kajubi R, L'Ianziva A, Kamya MR, Dorsey G, Chico RM. Overall, anti-malarial, and non-malarial effect of intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine on birthweight: a mediation analysis. The Lancet Glob Health. 2020;8(7):e942–e953. doi: 10.1016/S2214-109X(20)30119-4.
    1. Ome-Kaius M, Unger HW, Singirok D, Wangnapi RA, Hanieh S, Umbers AJ, Elizah J, Siba P, Mueller I, Rogerson SJ. Determining effects of areca (betel) nut chewing in a prospective cohort of pregnant women in Madang Province, Papua New Guinea. BMC Pregnancy Childbirth. 2015;15(1):177. doi: 10.1186/s12884-015-0615-z.
    1. Stanisic DI, Moore KA, Baiwog F, Ura A, Clapham C, King CL, Siba PM, Beeson JG, Mueller I, Fowkes FJ, Rogerson SJ. Risk factors for malaria and adverse birth outcomes in a prospective cohort of pregnant women resident in a high malaria transmission area of Papua New Guinea. Trans R Soc Trop Med Hyg. 2015;109(5):313–324. doi: 10.1093/trstmh/trv019.
    1. Bleicher AV, Unger HW, Rogerson SJ, Aitken EH. A sandwich enzyme-linked immunosorbent assay for the quantitation of human plasma ferritin. MethodsX. 2018;5:648–651. doi: 10.1016/j.mex.2018.06.010.
    1. Unger HW, Hansa AP, Buffet C, Hasang W, Teo A, Randall L, Ome-Kaius M, Karl S, Anuan AA, Beeson JG, Mueller I, Stock SJ, Rogerson SJ. Sulphadoxine-pyrimethamine plus azithromycin may improve birth outcomes through impacts on inflammation and placental angiogenesis independent of malarial infection. Sci Rep. 2019;9(1):2260. doi: 10.1038/s41598-019-38821-2.
    1. Umbers AJ, Unger HW, Rosanas-Urgell A, Wangnapi RA, Kattenberg JH, Jally S, Silim S, Lufele E, Karl S, Ome-Kaius M, Robinson LJ, Rogerson SJ, Mueller I. Accuracy of an HRP-2/panLDH rapid diagnostic test to detect peripheral and placental Plasmodium falciparum infection in Papua New Guinean women with anaemia or suspected malaria. Malar J. 2015;14(1):412. doi: 10.1186/s12936-015-0927-5.
    1. Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J, Zimmerman PA, del Portillo HA, Siba P, Mueller I, Felger I. Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J. 2010;9(1):361. doi: 10.1186/1475-2875-9-361.
    1. Lufele E, Umbers A, Ordi J, Ome-Kaius M, Wangnapi R, Unger H, Tarongka N, Siba P, Mueller I, Robinson L, Rogerson S. Risk factors and pregnancy outcomes associated with placental malaria in a prospective cohort of Papua New Guinean women. Malar J. 2017;16(1):427. doi: 10.1186/s12936-017-2077-4.
    1. Imrie H, Fowkes FJ, Michon P, Tavul L, Reeder JC, Day KP. Low prevalence of an acute phase response in asymptomatic children from a malaria-endemic area of Papua New Guinea. Am J Trop Med Hyg. 2007;76(2):280–284. doi: 10.4269/ajtmh.2007.76.280.
    1. Mwangi MN, Echoka E, Knijff M, Kaduka L, Werema BG, Kinya FM, Mutisya R, Muniu EM, Demir AY, Verhoef H, Bourdet-Sicard R. Iron status of Kenyan pregnant women after adjusting for inflammation using BRINDA regression analysis and other correction methods. Nutrients. 2019;11(2):420. doi: 10.3390/nu11020420.
    1. WHO . Assessing the iron status of populations. Geneva: World Health Organization (WHO); 2007.
    1. Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, Lambert A, Papageorghiou AT, Carvalho M, Jaffer YA, Gravett MG, Purwar M, Frederick IO, Noble AJ, Pang R, Barros FC, Chumlea C, Bhutta ZA, Kennedy SH. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384(9946):857–868. doi: 10.1016/S0140-6736(14)60932-6.
    1. NDOH . Manual of Standard Managements in Obstetrics and Gynaecology for Doctors, H.E.O.s and Nurses in Papua New Guinea. Port Moresby: National Department of Health (NDOH); 2018.
    1. Scholl TO, Hediger ML, Fischer RL, Shearer JW. Anemia vs iron deficiency: increased risk of preterm delivery in a prospective study. Am J Clin Nutr. 1992;55(5):985–988. doi: 10.1093/ajcn/55.5.985.
    1. Burke RM, Leon JS, Suchdev PS. Identification, prevention and treatment of iron deficiency during the first 1000 days. Nutrients. 2014;6(10):4093–4114. doi: 10.3390/nu6104093.
    1. Godfrey KM, Redman CW, Barker DJ, Osmond C. The effect of maternal anaemia and iron deficiency on the ratio of fetal weight to placental weight. Br J Obstet Gynaecol. 1991;98(9):886–891. doi: 10.1111/j.1471-0528.1991.tb13510.x.
    1. Mwangi MN, Roth JM, Smit MR, Trijsburg L, Mwangi AM, Demir AY, Wielders JP, Mens PF, Verweij JJ, Cox SE, Prentice AM, Brouwer ID, Savelkoul HF, Andgang'o PE, Verhoef H. Effect of daily antenatal iron supplementation on Plasmodium infection in Kenyan women: a randomized clinical trial. JAMA. 2015;314(10):1009–1020. doi: 10.1001/jama.2015.9496.
    1. Hou J, Cliver SP, Tamura T, Johnston KE, Goldenberg R. Maternal serum ferritin and fetal growth. Obstet Gynecol. 2000;95(3):447–452. doi: 10.1016/s0029-7844(99)00562-1.
    1. Tamura T, Goldenberg RL, Johnston KE, Cliver SP, Hickey CA. Serum ferritin: a predictor of early spontaneous preterm delivery. Obstet Gynecol. 1996;87(3):360–365. doi: 10.1016/0029-7844(95)00437-8.
    1. Yuan X, Hu H, Zhang M, Long W, Liu J, Jiang J, Yu B. Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: a retrospective cohort study. Nutr Metab (Lond) 2019;16:30. doi: 10.1186/s12986-019-0360-9.
    1. Rahman SM, Siraj MS, Islam MR, Rahman A, Ekstrom EC. Association between maternal plasma ferritin level and infants’ size at birth: a prospective cohort study in rural Bangladesh. Global Health Action. 2021;14(1):1870421. doi: 10.1080/16549716.2020.1870421.
    1. Shastri L, Mishra PE, Dwarkanath P, Thomas T, Duggan C, Bosch R, McDonald CM, Thomas A, Kurpad AV. Association of oral iron supplementation with birth outcomes in non-anaemic South Indian pregnant women. Eur J Clin Nutr. 2015;69(5):609–613. doi: 10.1038/ejcn.2014.248.
    1. Abdel-Malek K, El-Halwagi MA, Hammad BE, Azmy O, Helal O, Eid M, Abdel-Rasheed M. Role of maternal serum ferritin in prediction of preterm labour. J Obstet Gynaecol. 2018;38(2):222–225. doi: 10.1080/01443615.2017.1347915.
    1. Lao TT, Tam KF, Chan LY. Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod. 2000;15(8):1843–1848. doi: 10.1093/humrep/15.8.1843.
    1. Schumann K, Solomons NW. Can iron supplementation be reconciled with benefits and risks in areas hyperendemic for malaria? Food Nutr Bull. 2013;34(3):349–356. doi: 10.1177/156482651303400307.
    1. Goheen MM, Bah A, Wegmuller R, Verhoef H, Darboe B, Danso E, Prentice AM, Cerami C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci Rep. 2017;7(1):17674. doi: 10.1038/s41598-017-16896-z.
    1. Oppenheimer SJ, Gibson FD, Macfarlane SB, Moody JB, Harrison C, Spencer A, Bunari O. Iron supplementation increases prevalence and effects of malaria: report on clinical studies in Papua New Guinea. Trans R Soc Trop Med Hyg. 1986;80(4):603–612. doi: 10.1016/0035-9203(86)90154-9.
    1. Clark MA, Goheen MM, Fulford A, Prentice AM, Elnagheeb MA, Patel J, Fisher N, Taylor SM, Kasthuri RS, Cerami C. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum. Nature Commun. 2014;5(1):4446. doi: 10.1038/ncomms5446.
    1. Goheen MM, Wegmuller R, Bah A, Darboe B, Danso E, Affara M, Gardner D, Patel JC, Prentice AM, Cerami C. Anemia offers stronger protection than sickle cell trait against the erythrocytic stage of falciparum malaria and this protection is reversed by iron supplementation. EBioMedicine. 2016;14:123–130. doi: 10.1016/j.ebiom.2016.11.011.
    1. Prentice AM, Cox SE. Iron and malaria interactions: research needs from basic science to global policy. Adv Nutr. 2012;3(4):583–591. doi: 10.3945/an.111.001230.
    1. Cross JH, Bradbury RS, Fulford AJ, Jallow AT, Wegmuller R, Prentice AM, Cerami C. Oral iron acutely elevates bacterial growth in human serum. Sci Rep. 2015;5(1):16670. doi: 10.1038/srep16670.
    1. Kayentao K, Garner P, van Eijk AM, Naidoo I, Roper C, Mulokozi A, MacArthur JR, Luntamo M, Ashorn P, Doumbo OK, ter Kuile FO. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in Africa: systematic review and meta-analysis. JAMA. 2013;309(6):594–604. doi: 10.1001/jama.2012.216231.
    1. Chico RM, Chaponda EB, Ariti C, Chandramohan D. Sulfadoxine-pyrimethamine exhibits dose-response protection against adverse birth outcomes related to malaria and sexually transmitted and reproductive tract infections. Clin Infect Dis. 2017;64(8):1043–1051. doi: 10.1093/cid/cix026.
    1. Etheredge AJ, Premji Z, Gunaratna NS, Abioye AI, Aboud S, Duggan C, Mongi R, Meloney L, Spiegelman D, Roberts D, Hamer DH, Fawzi WW. Iron supplementation in iron-replete and nonanemic pregnant women in Tanzania: a randomized clinical trial. JAMA Pediatr. 2015;169(10):947–955. doi: 10.1001/jamapediatrics.2015.1480.
    1. Casanueva E, Viteri FE. Iron and oxidative stress in pregnancy. J Nutr. 2003;133(5 Suppl 2):1700S–1708S. doi: 10.1093/jn/133.5.1700S.
    1. Scholl TO Iron status during pregnancy: setting the stage for mother and infant. Am J Clin Nutr. 2005;81(5):1218S–1222S. doi: 10.1093/ajcn/81.5.1218.
    1. Bah A, Muhammad AK, Wegmuller R, Verhoef H, Goheen MM, Sanyang S, Danso E, Sise EA, Pasricha SR, Armitage AE, Drakesmith H, Cross JH, Moore SE, Cerami C, Prentice AM. Hepcidin-guided screen-and-treat interventions against iron-deficiency anaemia in pregnancy: a randomised controlled trial in The Gambia. Lancet Glob Health. 2019;7(11):e1564–e1574. doi: 10.1016/S2214-109X(19)30393-6.
    1. Karl S, Li Wai Suen CS, Unger HW, Ome-Kaius M, Mola G, White L, Wangnapi RA, Rogerson SJ, Mueller I. Preterm or not - an evaluation of estimates of gestational age in a cohort of women from rural Papua New Guinea. PLoS One. 2015;10(5):e0124286. doi: 10.1371/journal.pone.0124286.
    1. Perneger TV. What’s wrong with Bonferroni adjustments. BMJ. 1998;316(7139):1236–1238. doi: 10.1136/bmj.316.7139.1236.
    1. Diallo S, Roberts SA, Gies S, Rouamba T, Swinkels DW, Geurts-Moespot AJ, Ouedraogo S, Ouedraogo GA, Tinto H, Brabin BJ. Malaria early in the first pregnancy: potential impact of iron status. Clin Nutr. 2020;39(1):204–214. doi: 10.1016/j.clnu.2019.01.016.

Source: PubMed

3
Abonneren