Lifestyle and glycemic health 5 years postpartum in obese and non-obese high diabetes risk women

Emilia Huvinen, Elina Engberg, Jelena Meinilä, Tuija Tammelin, Janne Kulmala, Kati Heinonen, Paula Bergman, Beata Stach-Lempinen, Saila Koivusalo, Emilia Huvinen, Elina Engberg, Jelena Meinilä, Tuija Tammelin, Janne Kulmala, Kati Heinonen, Paula Bergman, Beata Stach-Lempinen, Saila Koivusalo

Abstract

Aim: Women with prior gestational diabetes (GDM) are at increased diabetes risk. This study aimed to assess whether lifestyle is associated with glycemic health of high-risk women 5 years postpartum, taking into account the pre-pregnancy BMI.

Methods: The RADIEL study enrolled before or in early pregnancy 720 women with pre-pregnancy BMI ≥ 30 kg/m2 and/or prior GDM. The follow-up visit 5 years postpartum included questionnaires and measurements of anthropometrics, blood pressure, and physical activity (PA) as well as analyses of glucose metabolism, lipids, and inflammatory markers. We measured body composition (Inbody) and calculated a Healthy Food Intake Index (HFII) from Food Frequency Questionnaires (FFQ). ArmBand measured PA, sedentary time, and sleep. To take into account the diverse risk groups of GDM, we divided the women based on pre-pregnancy BMI over/under 30 kg/m2.

Results: Altogether 348 women attended the follow-up. The obese and non-obese women showed similar prevalence of glycemic abnormalities, 13% and 19% (p = 0.139). PA levels were higher among the non-obese women (p < 0.05), except for step count, and their HFII was higher compared to the obese women (p = 0.033). After adjusting for age, education, and GDM history, PA and HFII were associated with glycemic health only among obese women. When both lifestyle factors were in the same model, only PA remained significant. PA associated with other markers of metabolic health also among the non-obese women, excluding HbA1c.

Conclusion: Lifestyle 5 years postpartum was associated with better glycemic health only among the obese high-risk women. PA, however, is essential for the metabolic health of all high-risk women.

Clinical trial registration: ClinicalTrials.gov, http://www.clinicaltrials.com , NCT01698385.

Keywords: Diet; Gestational diabetes; Heterogeneity; Physical activity; Type 2 diabetes.

Conflict of interest statement

The authors declare that there are no conflicts of interest associated with this manuscript.

Figures

Fig. 1
Fig. 1
Moderate-to-vigorous physical activity (MVPA min/day) in groups of previously non-obese and obese women, according to presence of glycemic abnormalities. Interaction p = 0.009. For the clarity of the figure, two extremely high outliers were excluded from the group of non-obese women without glycemic abnormality (383 min/day and 360 min/day)

References

    1. Risk NC, Factor collaboration (NCD-RisC) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 44 million participants. Lancet. 2016;387(10027):1513–1530. doi: 10.1016/s0140-6736(16)00618-8.
    1. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–1350. doi: 10.1056/NEJM200105033441801.
    1. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–1779. doi: 10.1016/S0140-6736(09)60731-5.
    1. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia. 2019;62(6):905–914. doi: 10.1007/s00125-019-4840-2.
    1. Goveia P, Canon-Montanez W, Santos DP, et al. Lifestyle intervention for the prevention of diabetes in women with previous gestational diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2018;9:583. doi: 10.3389/fendo.2018.00583.
    1. Huvinen H, Koivusalo S, Stach-Lempinen B, Kautiainen H, Eriksson J. Effects of a lifestyle intervention during pregnancy and 1-year postpartum—results from the RADIEL study. Gynecol Endocrinol. 2016;32:161. doi: 10.3109/09513590.2015.1103222.
    1. Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018 doi: 10.1016/S2213-8587(18)30051-2.
    1. Freinkel N, Metzger BE, Phelps RL, et al. Gestational diabetes mellitus. Heterogeneity of maternal age, weight, insulin secretion, HLA antigens, and islet cell antibodies and the impact of maternal metabolism on pancreatic B-cell and somatic development in the offspring. Diabetes. 1985;34(Suppl 2):1–7. doi: 10.2337/diab.34.2.S1.
    1. Powe CE, Allard C, Battista MC, et al. Heterogeneous contribution of insulin sensitivity and secretion defects to gestational diabetes mellitus. Diabetes Care. 2016;39(6):1052–1055. doi: 10.2337/dc15-2672.
    1. Huvinen E, Grotenfelt NE, Eriksson JG, et al. Heterogeneity of maternal characteristics and impact on gestational diabetes (GDM) risk-Implications for universal GDM screening? Ann Med. 2016;48(1–2):52–58. doi: 10.3109/07853890.2015.1131328.
    1. Huvinen E, Eriksson JG, Stach-Lempinen B, Tiitinen A, Koivusalo SB. Heterogeneity of gestational diabetes (GDM) and challenges in developing a GDM risk score. Acta Diabetol. 2018;55(12):1251–1259. doi: 10.1007/s00592-018-1224-x.
    1. Huvinen E, Eriksson JG, Koivusalo SB, et al. Heterogeneity of gestational diabetes (GDM) and long-term risk of diabetes and metabolic syndrome: findings from the RADIEL study follow-up. Acta Diabetol. 2018;55(5):493–501. doi: 10.1007/s00592-018-1118-y.
    1. Mannisto S, Harald K, Kontto J, et al. Dietary and lifestyle characteristics associated with normal-weight obesity: the National FINRISK 2007 Study. Br J Nutr. 2014;111(5):887–894. doi: 10.1017/S0007114513002742.
    1. Damm P, Kuhl C, Hornnes P, Molsted-Pedersen L. A longitudinal study of plasma insulin and glucagon in women with previous gestational diabetes. Diabetes Care. 1995;18(5):654–665. doi: 10.2337/diacare.18.5.654.
    1. Rono K, Stach-Lempinen B, Klemetti MM, et al. Prevention of gestational diabetes through lifestyle intervention: study design and methods of a Finnish randomized controlled multicenter trial (RADIEL) BMC Pregnancy Childbirth. 2014;14:70. doi: 10.1186/1471-2393-14-70.
    1. Malavolti M, Mussi C, Poli M, et al. Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21–82 years. Ann Hum Biol. 2003;30(4):380–391. doi: 10.1080/0301446031000095211.
    1. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385–401. doi: 10.1177/014662167700100306.
    1. Weissman MM, Sholomskas D, Pottenger M, Prusoff BA, Locke BZ. Assessing depressive symptoms in five psychiatric populations: a validation study. Am J Epidemiol. 1977;106(3):203–214. doi: 10.1093/oxfordjournals.aje.a112455.
    1. Huvinen E, Eriksson JG, Koivusalo SB, et al. Heterogeneity of gestational diabetes (GDM) and long-term risk of diabetes and metabolic syndrome: findings from the RADIEL study follow-up. Acta Diabetol. 2018;19:19. doi: 10.1007/s00592-018-1118-y.
    1. Malin SK, Kullman EL, Scelsi AR, Godin JP, Ross AB, Kirwan JP. A whole-grain diet increases glucose-stimulated insulin secretion independent of gut hormones in adults at risk for type 2 diabetes. Mol Nutr Food Res. 2019;63(7):e1800967. doi: 10.1002/mnfr.201800967.
    1. Pan A, Sun Q, Bernstein AM, et al. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–1096. doi: 10.3945/ajcn.111.018978.
    1. Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS., Jr Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J. 1991;1(3):147–152. doi: 10.1056/NEJM199107183250302.
    1. Lee IM, Shiroma EJ, Evenson KR, Kamada M, LaCroix AZ, Buring JE. Accelerometer-measured physical activity and sedentary behavior in relation to all-cause mortality: the women’s health study. Circulation. 2018;137(2):203–205. doi: 10.1161/CIRCULATIONAHA.117.031300.
    1. Stewart KJ. Exercise training and the cardiovascular consequences of type 2 diabetes and hypertension: plausible mechanisms for improving cardiovascular health. JAMA. 2002;288(13):1622–1631. doi: 10.1001/jama.288.13.1622.
    1. Viswanathan M, Snehalatha C, Viswanathan V, Vidyavathi P, Indu J, Ramachandran A. Reduction in body weight helps to delay the onset of diabetes even in non-obese with strong family history of the disease. Diabetes Res Clin Pract. 1997;35(2–3):107–112. doi: 10.1016/S0168-8227(97)01383-1.
    1. de Rooij BH, van der Berg JD, van der Kallen CJ, et al. Physical activity and sedentary behavior in metabolically healthy versus unhealthy obese and non-obese individuals—the maastricht study. PLoS One [Electron Resour] 2016;11(5):e0154358. doi: 10.1371/journal.pone.0154358.
    1. Zhu S, St-Onge MP, Heshka S, Heymsfield SB. Lifestyle behaviors associated with lower risk of having the metabolic syndrome. Metab Clin Exp. 2004;53(11):1503–1511. doi: 10.1016/j.metabol.2004.04.017.
    1. Hemmingsson E, Ekelund U. Is the association between physical activity and body mass index obesity dependent? Int J Obes. 2007;31(4):663–668. doi: 10.1038/sj.ijo.0803458.
    1. Bakrania K, Yates T, Edwardson CL, et al. Associations of moderate-to-vigorous-intensity physical activity and body mass index with glycated haemoglobin within the general population: a cross-sectional analysis of the 2008 Health Survey for England. BMJ Open. 2017;7(4):e014456. doi: 10.1136/bmjopen-2016-014456.
    1. Lefevre M, Redman LM, Heilbronn LK, et al. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203(1):206–213. doi: 10.1016/j.atherosclerosis.2008.05.036.
    1. Goni L, Cuervo M, Milagro FI, Martinez JA. Gene-gene interplay and gene-diet interactions involving the MTNR1B rs10830963 variant with body weight loss. J Nutrigenet Nutrigenom. 2014;7(4–6):232–242. doi: 10.1159/000380951.
    1. Uusitupa M. Gene-diet interaction in relation to the prevention of obesity and type 2 diabetes: evidence from the Finnish Diabetes Prevention Study. Nutr Metab Cardiovasc Dis. 2005;15(3):225–233. doi: 10.1016/j.numecd.2005.03.004.
    1. Grotenfelt NE, Wasenius NS, Rono K, et al. Interaction between rs10830963 polymorphism in MTNR1B and lifestyle intervention on occurrence of gestational diabetes. Diabetologia. 2016;59(8):1655–1658. doi: 10.1007/s00125-016-3989-1.
    1. Kilpelainen TO, Lakka TA, Laaksonen DE, et al. Interaction of single nucleotide polymorphisms in ADRB2, ADRB3, TNF, IL6, IGF1R, LIPC, LEPR, and GHRL with physical activity on the risk of type 2 diabetes mellitus and changes in characteristics of the metabolic syndrome: the finnish diabetes prevention study. Metab Clin Exp. 2008;57(3):428–436. doi: 10.1016/j.metabol.2007.10.022.
    1. Kilpelainen TO, Laaksonen DE, Lakka TA, et al. The rs1800629 polymorphism in the TNF gene interacts with physical activity on the changes in C-reactive protein levels in the Finnish Diabetes Prevention Study. Exp Clin Endocrinol Diabetes. 2010;118(10):757–759. doi: 10.1055/s-0030-1249686.
    1. Ellard S, Beards F, Allen LI, et al. A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia. 2000;43(2):250–253. doi: 10.1007/s001250050038.
    1. Dickens LT, Letourneau LR, Sanyoura M, Greeley SAW, Philipson LH, Naylor RN. Management and pregnancy outcomes of women with GCK-MODY enrolled in the US Monogenic Diabetes Registry. Acta Diabetol. 2019;56(4):405–411. doi: 10.1007/s00592-018-1267-z.
    1. Uusitupa M, Lindi V, Louheranta A, Salopuro T, Lindström J, Tuomilehto J. Long-term improvement in insulin sensitivity by changing lifestyles of people with impaired glucose tolerance. 4-Year results from the finnish diabetes prevention study. Diabetes. 2003;52(10):2532–2538. doi: 10.2337/diabetes.52.10.2532.
    1. Song Y, Manson JE, Tinker L, et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care. 2007;30(7):1747–1752. doi: 10.2337/dc07-0358.
    1. Tuomainen M, Lindstrom J, Lehtonen M, et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes. 2018;8(1):35. doi: 10.1038/s41387-018-0046-9.
    1. Laaksonen DE, Lindstrom J, Lakka TA, et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005;54(1):158–165. doi: 10.2337/diabetes.54.1.158.
    1. Wang DD, Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6(5):416–426. doi: 10.1016/S2213-8587(18)30037-8.
    1. Eades CE, France EF, Evans JMM. Postnatal experiences, knowledge and perceptions of women with gestational diabetes. Diabet Med. 2018;35(4):519–529. doi: 10.1111/dme.13580.
    1. Koh D, Miller YD, Marshall AL, Brown WJ, McIntyre D. Health-enhancing physical activity behaviour and related factors in postpartum women with recent gestational diabetes mellitus. J Sci Med Sport. 2010;13(1):42–45. doi: 10.1016/j.jsams.2008.10.003.

Source: PubMed

3
Abonneren