Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges

Swathi Kiran, Cynthia K Thompson, Swathi Kiran, Cynthia K Thompson

Abstract

Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.

Keywords: aphasia; neuroimaging (anatomic and functional); plasticity; recovery; stroke.

Figures

Figure 1
Figure 1
A schematic representation of organism intrinsic variables and organism extrinsic variables that influence language recovery.
Figure 2
Figure 2
Reduced connectivity in both language and domain-general networks in a patient with aphasia compared to healthy controls.

References

    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. (2008) 51:S225–39. 10.1044/1092-4388(2008/018)
    1. Berthier ML. Poststroke aphasia. Drugs Aging. (2005) 22:163–82. 10.2165/00002512-200522020-00006
    1. Koleck M, Gana K, Lucot C, Darrigrand B, Mazaux JM, Glize B. Quality of life in aphasic patients 1 year after a first stroke. Qual Life Res. (2017) 26:45–54. 10.1007/s11136-016-1361-z
    1. Flowers HL, Skoretz SA, Silver FL, Rochon E, Fang J, Flamand-Roze C, et al. . Poststroke aphasia frequency, recovery, and outcomes: a systematic review and meta-analysis. Arch Phys Med Rehabil. (2016) 97:2188–201 e8. 10.1016/j.apmr.2016.03.006
    1. Lam JMC, Wodchis WP. The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in ontario hospital-based long-term care residents. Med Care. (2010) 48:380–7. 10.1097/MLR.0b013e3181ca2647
    1. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Ann Rev Neurosci. (1998) 21:149–86. 10.1146/annurev.neuro.21.1.149
    1. Recanzone GH, Schreiner CE, Merzenich MM. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci. (1993) 13:87–103. 10.1523/JNEUROSCI.13-01-00087.1993
    1. Kerr AL, Cheng SY, Jones TA. Experience-dependent neural plasticity in the adult damaged brain. J Commun Disord. (2011) 44:538–48. 10.1016/j.jcomdis.2011.04.011
    1. Kleim JA. Neural plasticity and neurorehabilitation: teaching the new brain old tricks. J Commun Disord. (2011) 44:521–8. 10.1016/j.jcomdis.2011.04.006
    1. Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage. (2017). 10.1016/j.neuroimage.2017.11.056
    1. Teasell R, Mehta S, Pereira S, McIntyre A, Janzen S, Allen L, et al. . Time to rethink long-term rehabilitation management of stroke patients. Topics Stroke Rehabili. (2012) 19:457–62. 10.1310/tsr1906-457
    1. Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. (2008) 63:272–87. 10.1002/ana.21393
    1. Feeney DM, Baron JC. Diaschisis. Stroke. (1986) 17:817–30. 10.1161/01.STR.17.5.817
    1. Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci USA. (2011) 108:E183–91. 10.1073/pnas.1101914108
    1. Baird AE, Benfield A, Schlaug G, Siewert B, Lovblad KO, Edelman RR, et al. . Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol. (1997) 41:581–9. 10.1002/ana.410410506
    1. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. (2004) 22:281–99.
    1. Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. (2003) 9:64–75. 10.1177/1073858402239592
    1. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, et al. . Dynamics of language reorganization after stroke. Brain. (2006) 129:1371–84. 10.1093/brain/awl090
    1. Warraich Z, Kleim JA. Neural plasticity: the biological substrate for neurorehabilitation. PMR. (2010) 2:S208–19. 10.1016/j.pmrj.2010.10.016
    1. Allen L, Mehta S, McClure JA, Teasell R. Therapeutic interventions for aphasia initiated more than six months post stroke: a review of the evidence. Topics Stroke Rehabili. (2012) 19:523–35. 10.1310/tsr1906-523
    1. Seghier ML, Ramsden S, Lim L, Leff AP, Price CJ. Gradual lesion expansion and brain shrinkage years after stroke. Stroke. (2014) 45:877–9. 10.1161/STROKEAHA.113.003587
    1. Karmiloff-smith A. Language and cognitive processes from a developmental perspective. Language Cognit Process. (1985) 1:61–85. 10.1080/01690968508402071
    1. Karmiloff-Smith A. Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Dev Psychol. (2009) 45:56–63. 10.1037/a0014506
    1. Ghotra SK, Johnson JA, Qiu W, Newton A, Rasmussen C, Yager JY. Age at stroke onset influences the clinical outcome and health-related quality of life in pediatric ischemic stroke survivors. Dev Med Child Neurol. (2015) 57:1027–34. 10.1111/dmcn.12870
    1. Dick AS, Raja Beharelle A, Solodkin A, Small SL. Interhemispheric functional connectivity following prenatal or perinatal brain injury predicts receptive language outcome. J Neurosci. (2013) 33:5612–25. 10.1523/JNEUROSCI.2851-12.2013
    1. Watila MM, Balarabe SA. Factors predicting post-stroke aphasia recovery. J Neurol Sci. (2015) 352:12–8. 10.1016/j.jns.2015.03.020
    1. Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging. (2002) 17:85–100. 10.1037/0882-7974.17.1.85
    1. Plowman E, Hentz B, Ellis C, Jr. Post-stroke aphasia prognosis: a review of patient-related and stroke-related factors. J Evaluat Clin Pract. (2012) 18:689–94. 10.1111/j.1365-2753.2011.01650.x
    1. Hope TM, Seghier ML, Leff AP, Price CJ. Predicting outcome and recovery after stroke with lesions extracted from MRI images. NeuroImage Clin. (2013) 2:424–33. 10.1016/j.nicl.2013.03.005
    1. Payabvash S, Kamalian S, Fung S, Wang Y, Passanese J, Souza LC, et al. . Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based analysis of admission CT perfusion scans. AJNR. (2010) 31:1661–8. 10.3174/ajnr.A2125
    1. Riley JD, Le V, Der-Yeghiaian L, See J, Newton JM, Ward NS, et al. . Anatomy of stroke injury predicts gains from therapy. Stroke. (2011) 42:421–6. 10.1161/STROKEAHA.110.599340
    1. Cheng B, Forkert ND, Zavaglia M, Hilgetag CC, Golsari A, Siemonsen S, et al. . Influence of stroke infarct location on functional outcome measured by the modified rankin scale. Stroke. (2014) 45:1695–702. 10.1161/STROKEAHA.114.005152
    1. Hillis AE, Beh YY, Sebastian R, Breining B, Tippett DC, Wright A, et al. . Predicting recovery in acute poststroke aphasia. Ann Neurol. (2018) 83:612–22. 10.1002/ana.25184
    1. Bonilha L, Gleichgerrcht E, Nesland T, Rorden C, Fridriksson J. Success of anomia treatment in aphasia is associated with preserved architecture of global and left temporal lobe structural networks. Neurorehabil Neural Repair. (2016) 30:266–79. 10.1177/1545968315593808
    1. Fridriksson J, Richardson JD, Fillmore P, Cai B. Left hemisphere plasticity and aphasia recovery. Neuroimage. (2012) 60:854–63. 10.1016/j.neuroimage.2011.12.057
    1. Skipper-Kallal LM, Lacey EH, Xing S, Turkeltaub PE. Right hemisphere remapping of naming functions depends on lesion size and location in poststroke aphasia. Neural Plast. (2017) 2017:8740353. 10.1155/2017/8740353
    1. Skipper-Kallal LM, Lacey EH, Xing S, Turkeltaub PE. Functional activation independently contributes to naming ability and relates to lesion site in post-stroke aphasia. Human Brain Mapping. (2017) 38:2051–66. 10.1002/hbm.23504
    1. Barbieri E, Mack J, Chiappetta B, Europa E, Thompson CK. Recovery of offline and online sentence processing in aphasia: language and domain-general neuroplasticity. Cortex. (under revision).
    1. Butler RA, Lambon Ralph MA, Woollams AM. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain. (2014) 137:3248–66. 10.1093/brain/awu286
    1. Baldo JV, Katseff S, Dronkers NF. Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: evidence from voxel-based lesion symptom mapping. Aphasiology. (2012) 26:338–54. 10.1080/02687038.2011.602391
    1. Pillay SB, Stengel BC, Humphries C, Book DS, Binder JR. Cerebral localization of impaired phonological retrieval during rhyme judgment. Ann Neurol. (2014) 76:738–46. 10.1002/ana.24266
    1. Geva S, Jones PS, Crinion JT, Price CJ, Baron JC, Warburton EA. The neural correlates of inner speech defined by voxel-based lesion-symptom mapping. Brain. (2011) 134:3071–82. 10.1093/brain/awr232
    1. Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, et al. . Neural organization of spoken language revealed by lesion-symptom mapping. Nat Commun. (2015) 6:6762. 10.1038/ncomms7762
    1. Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. (2017) 86:275–89. 10.1016/j.cortex.2016.04.016
    1. Seghier ML, Patel E, Prejawa S, Ramsden S, Selmer A, Lim L, et al. . The PLORAS database: a data repository for predicting language outcome and recovery after stroke. Neuroimage. (2016) 124:1208–12. 10.1016/j.neuroimage.2015.03.083
    1. Hope TMH, Leff AP, Prejawa S, Bruce R, Haigh Z, Lim L, et al. . Right hemisphere structural adaptation and changing language skills years after left hemisphere stroke. Brain. (2017) 140:1718–28. 10.1093/brain/awx086
    1. Hope TMH, Leff AP, Price CJ. Predicting language outcomes after stroke: Is structural disconnection a useful predictor? NeuroImage Clin. (2018) 19:22–9. 10.1016/j.nicl.2018.03.037
    1. Heiss W-D. Ischemic penumbra: evidence from functional imaging in man. J Cerebral Blood Flow Metabol. (2000) 20:1276–93. 10.1097/00004647-200009000-00002
    1. Baron JC. How healthy is the acutely reperfused ischemic penumbra? Cerebrovascular Dis. (2005) 20:25–31. 10.1159/000089354
    1. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain. (2001) 124:20–9. 10.1093/brain/124.1.20
    1. Hillis AE, Kane A, Tuffiash E, Ulatowski JA, Barker PB, Beauchamp NJ, et al. . Reperfusion of specific brain regions by raising blood pressure restores selective language functions in subacute stroke. Brain Language. (2001) 79:495–510. 10.1006/brln.2001.2563
    1. Hillis AE, Wityk RJ, Tuffiash E, Beauchamp NJ, Jacobs MA, Barker PB, et al. . Hypoperfusion of Wernicke's area predicts severity of semantic deficit in acute stroke. Ann Neurol. (2001) 50:561–6. 10.1002/ana.1265
    1. Wityk RJ, Hillis A, Beauchamp N, Barker PB, Rigamonti D. Perfusion-weighted magnetic resonance imaging in adult moyamoya syndrome: characteristic patterns and change after surgical intervention: case report. Neurosurgery. (2002) 51:1499–505; discussion 1506. 10.1097/00006123-200212000-00023
    1. Reineck LA, Agarwal S, Hillis AE. Diffusion-clinical mismatch is associated with potential for early recovery of aphasia. Neurology. (2005) 64:828–33. 10.1212/01.WNL.0000152983.52869.51
    1. Hillis AE, Kleinman JT, Newhart M, Heidler-Gary J, Gottesman R, Barker PB, et al. . Restoring cerebral blood flow reveals neural regions critical for naming. J Neurosci. (2006) 26:8069–73. 10.1523/JNEUROSCI.2088-06.2006
    1. Brumm KP, Perthen JE, Liu TT, Haist F, Ayalon L, Love T. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage. (2010) 51:995–1005. 10.1016/j.neuroimage.2010.03.008
    1. Richardson JD, Baker JM, Morgan PS, Rorden C, Bonilha L, Fridriksson J. Cerebral perfusion in chronic stroke: implications for lesion-symptom mapping and functional MRI. Behav Neurol. (2011) 24:117–22. 10.1155/2011/380810
    1. Thompson CK, Walenski M, Chen Y, Caplan D, Kiran S, Rapp B, et al. . Intrahemispheric perfusion in chronic stroke-induced aphasia. Neural Plast. (2017) 2017:2361691. 10.1155/2017/2361691
    1. Thompson CK, den Ouden DB, Bonakdarpour B, Garibaldi K, Parrish TB. Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia. (2010) 48:3211–27. 10.1016/j.neuropsychologia.2010.06.036
    1. Catani M, Mesulam M. The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex. (2008) 44:953–61. 10.1016/j.cortex.2008.04.002
    1. Marchina S, Zhu LL, Norton A, Zipse L, Wan CY, Schlaug G. Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke. (2011) 42:2251–6. 10.1161/STROKEAHA.110.606103
    1. Pani E, Zheng X, Wang J, Norton A, Schlaug G. Right hemisphere structures predict poststroke speech fluency. Neurology. (2016) 86:1574–81. 10.1212/WNL.0000000000002613
    1. Wang J, Marchina S, Norton AC, Wan CY, Schlaug G. Predicting speech fluency and naming abilities in aphasic patients. Front Hum Neurosci. (2013) 7:831. 10.3389/fnhum.2013.00831
    1. Han Z, Ma Y, Gong G, He Y, Caramazza A, Bi Y. White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. Brain. (2013) 136:2952–65. 10.1093/brain/awt205
    1. Ivanova MV, Isaev DY, Dragoy OV, Akinina YS, Petrushevskiy AG, Fedina ON, et al. . Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex. (2016) 85:165–81. 10.1016/j.cortex.2016.04.019
    1. Breier JI, Juranek J, Papanicolaou AC. Changes in maps of language function and the integrity of the arcuate fasciculus after therapy for chronic aphasia. Neurocase. (2011) 17:506–17. 10.1080/13554794.2010.547505
    1. Rolheiser T, Stamatakis EA, Tyler LK. Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule. J Neurosci. (2011) 31:16949–57. 10.1523/JNEUROSCI.2725-11.2011
    1. Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, et al. . Ventral and dorsal pathways for language. Proc Natl Acad Sci USA. (2008) 105:18035–40. 10.1073/pnas.0805234105
    1. Hope TM, Seghier ML, Prejawa S, Leff AP, Price CJ. Distinguishing the effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi. Neuroimage. (2016) 125:1169–73. 10.1016/j.neuroimage.2015.09.025
    1. Meier E, Johnson J, Pan Y, Kiran S. The utility of lesion classification in predicting language and treatment outcomes in chronic stroke-induced aphasia. Brain Imaging Behav. (under revision).
    1. Catani MM, Allin PG, Husain M, Pugliese L, Mesulam MM, Murray RM, et al. . Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA. (2007) 104:17163–8. 10.1073/pnas.0702116104
    1. Kertesz A. Western Aphasia Battery (Revised). San Antonio, TX: PsychCorp; (2007).
    1. Meinzer M, Mohammadi S, Kugel H, Schiffbauer H, Floel A, Albers J, et al. . Integrity of the hippocampus and surrounding white matter is correlated with language training success in aphasia. Neuroimage. (2010) 53:283–90. 10.1016/j.neuroimage.2010.06.004
    1. van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA. Changes in white matter connectivity following therapy for anomia post stroke. Neurorehabil Neural Repair. (2014) 28:325–34. 10.1177/1545968313508654
    1. Schlaug G, Marchina S, Norton A. Evidence for plasticity in white-matter tracts of patients with chronic Broca's aphasia undergoing intense intonation-based speech therapy. Ann N York Acad Sci. (2009) 1169:385–94. 10.1111/j.1749-6632.2009.04587.x
    1. Wan CY, Zheng X, Marchina S, Norton A, Schlaug G. Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca's aphasia. Brain Lang. (2014) 136:1–7. 10.1016/j.bandl.2014.03.011
    1. Jones TA, Jefferson SC. Reflections of experience-expectant development in repair of the adult damaged brain. Dev Psychobiol. (2011) 53:466–75. 10.1002/dev.20557
    1. Kolb B, Muhammad A, Gibb R. Searching for factors underlying cerebral plasticity in the normal and injured brain. J Commun Disord. (2011) 44:503–14. 10.1016/j.jcomdis.2011.04.007
    1. Nudo RJ. Postinfarct cortical plasticity and behavioral recovery. Stroke. (2007) 38:840–5. 10.1161/01.STR.0000247943.12887.d2
    1. Nudo RJ. Neural bases of recovery after brain injury. J Commun Disord. (2011) 44:515–20. 10.1016/j.jcomdis.2011.04.004
    1. Overman JJ, Carmichael ST. Plasticity in the injured brain: more than molecules matter. Neuroscientist. (2014) 20:15–28. 10.1177/1073858413491146
    1. Thompson CK. Neuroplasticity: evidence from aphasia. J Commun Disord. (2000) 33:357–66. 10.1016/S0021-9924(00)00031-9
    1. Thompson CK. The “right” hemisphere and language recovery in aphasia. Paper presented at the Clinical Aphasiology Conference. Snowbird, UT: (2017).
    1. Abo M, Senoo A, Watanabe S, Miyano S, Doseki K, Sasaki N, et al. . Language-related brain function during word repetition in post-stroke aphasics. Neuroreport. (2004) 15:1891–4. 10.1097/00001756-200408260-00011
    1. Fridriksson J, Morrow L. Cortical activation and language task difficulty in aphasia. Aphasiology. (2005) 19:239–50. 10.1080/02687030444000714
    1. Benjamin ML, Towler S, Garcia A, Park H, Sudhyadhom A, Harnish S, et al. . A behavioral manipulation engages right frontal cortex during aphasia therapy. Neurorehab Neural Rep. (2014) 28:545–53. 10.1177/1545968313517754
    1. Mohr B, Difrancesco S, Harrington K, Evans S, Pulvermuller F. Changes of right-hemispheric activation after constraint-induced, intensive language action therapy in chronic aphasia: fMRI evidence from auditory semantic processing1. Front Human Neurosci. (2014) 8:e00919. 10.3389/fnhum.2014.00919
    1. Raboyeau G, De Boissezon X, Marie N, Balduyck S, Puel M, Bezy C, et al. Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology. (2008) 70:290–8. 10.1212/01.wnl.0000287115.85956.87
    1. Fridriksson J. Preservation and modulation of specific left hemisphere regions is vital for treated recovery from anomia in stroke. J Neurosci. (2010) 30:11558–64. 10.1523/JNEUROSCI.2227-10.2010
    1. Christie J, Ginsberg JP, Steedman J, Fridriksson J, Bonilha L, Rorden C. Global versus local processing: seeing the left side of the forest and the right side of the trees. Front Human Neurosci. (2012) 6:28. 10.3389/fnhum.2012.00028
    1. Rochon E, Leonard C, Burianova H, Laird L, Soros P, Graham S, et al. . Neural changes after phonological treatment for anomia: An fMRI study. Brain Language. (2010) 114:164–79. 10.1016/j.bandl.2010.05.005
    1. Fridriksson J, Morrow-Odom L, Moser D, Fridriksson A, Baylis G. Neural recruitment associated with anomia treatment in aphasia. Neuroimage. (2006) 32:1403–12. 10.1016/j.neuroimage.2006.04.194
    1. Abutalebi J, Della Rosa PA, Tettamanti M, Green DW, Cappa SF. Bilingual aphasia and language control: a follow-up fMRI and intrinsic connectivity study. Brain Language. (2009) 109:141–56. 10.1016/j.bandl.2009.03.003
    1. Cornelissen K, Laine M, Tarkiainen A, Jarvensivu T, Martin N, Salmelin R. Adult brain plasticity elicited by anomia treatment. J Cogn Neurosci. (2003) 15:444–61. 10.1162/089892903321593153
    1. Fridriksson J, Moser D, Bonilha L, Morrow-Odom KL, Shaw H, Fridriksson A, et al. . Neural correlates of phonological and semantic-based anomia treatment in aphasia. Neuropsychologia. (2007) 45:1812–22. 10.1016/j.neuropsychologia.2006.12.017
    1. Menke R, Meinzer M, Kugel H, Deppe M, Baumgartner A, Schiffbauer H, et al. . Imaging short- and long-term training success in chronic aphasia. BMC Neurosci. (2009) 10:118. 10.1186/1471-2202-10-118
    1. Thompson CK, Riley EA, den Ouden D-B, Meltzer-Asscher A, Lukic S. Training verb argument structure production in agrammatic aphasia: Behavioral and neural recovery patterns. Cortex. (2013) 49:2358–76. 10.1016/j.cortex.2013.02.003
    1. Kiran S, Meier EL, Kapse KJ, Glynn PA. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front Hum Neurosci. (2015) 9:316. 10.3389/fnhum.2015.00316
    1. Abel S, Weiller C, Huber W, Willmes K, Specht K. Therapy-induced brain reorganization patterns in aphasia. Brain. (2015) 138:1097–112. 10.1093/brain/awv022
    1. Leger A, Demonet JF, Ruff S, Aithamon B, Touyeras B, Puel M, et al. . Neural substrates of spoken language rehabilitation in an aphasic patient: an fMRI study. Neuroimage. (2002) 17:174–83. 10.1006/nimg.2002.1238
    1. Richter MW, Miltner HR, Straube T. Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain. (2008) 131:1391–401. 10.1093/brain/awn043
    1. Vigneau M, Beaucousin VP, Herve Y, Duffau H, Crivello F, Houde O, et al. . Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage. (2006) 30:1414–32. 10.1016/j.neuroimage.2005.11.002
    1. Basso A, Gardelli M, Grassi MP, Mariotti M. The role of the right hemisphere in recovery from aphasia. Two Case Studies Cortex. (1989) 25:555–66. 10.1016/S0010-9452(89)80017-6
    1. Turkeltaub PE, Coslett HB, Thomas AL, Faseyitan O, Benson J, Norise C, et al. The right hemisphere is not unitary in its role in aphasia recovery. Cortex. (2012) 48:1179–86. 10.1016/j.cortex.2011.06.010
    1. van Hees S, McMahon K, Angwin A, de Zubicaray G, Copland DA. Neural activity associated with semantic versus phonological anomia treatments in aphasia. Brain Langauge. (2014) 129:47–57. 10.1016/j.bandl.2013.12.004
    1. Heiss WD, Thiel A. A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Langauge. (2006) 98:118–23. 10.1016/j.bandl.2006.02.002
    1. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Kobayashi M, et al. . Improved picture naming in chronic aphasia after TMS to part of right Broca's area: an open-protocol study. Brain Langauge. (2005) 93:95–105. 10.1016/j.bandl.2004.08.004
    1. Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H, Helm-Estabrooks N, et al. . Improved naming after TMS treatments in a chronic, global aphasia patient – case report. Neurocase. (2005) 11:182–93. 10.1080/13554790590944663
    1. Norise C, Hamilton RH. Non-invasive brain stimulation in the treatment of post-stroke and neurodegenerative aphasia: parallels, differences, and lessons learned. Front Human Neurosci. (2017) 10:00675. 10.3389/fnhum.2016.00675
    1. Turkeltaub PE, Messing S, Norise C, Hamilton RH. Are networks for residual language function and recovery consistent across aphasic patients? Neurology. (2011) 76:1726–34. 10.1212/WNL.0b013e31821a44c1
    1. Sandberg CW, Bohland JW, Kiran S. Changes in functional connectivity related to direct training and generalization effects of a word finding treatment in chronic aphasia. Brain Language. (2015) 150:103–16. 10.1016/j.bandl.2015.09.002
    1. Meier EL, Kapse KJ, Kiran S. The relationship between frontotemporal effective connectivity during picture naming, behavior, and preserved cortical tissue in chronic aphasia. Front Hum Neurosci. (2016) 10:109. 10.3389/fnhum.2016.00109
    1. Sims J, Kapse K, Glynn P, Sandberg C, Kiran S. The relationship between the amount of spared tissue, percent signal change and accuracy in language recovery in aphasia. Neuropsychologia. (2016) 84:113–26. 10.1016/j.neuropsychologia.2015.10.019
    1. Woolgar A, Parr A, Cusack R, Thompson R, Nimmo-Smith I, Torralva T, et al. . Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proc Natl Acad Sci USA. (2010) 107:14899–902. 10.1073/pnas.1007928107
    1. Fedorenko E. The role of domain-general cognitive control in language comprehension. Front Psychol. (2014) 5:335. 10.3389/fpsyg.2014.00335
    1. Duncan J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci. (2010) 14:172–9. 10.1016/j.tics.2010.01.004
    1. Duncan J, Owen AM. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. (2000) 23:475–83. 10.1016/S0166-2236(00)01633-7
    1. Brownsett SL, Warren JE, Geranmayeh F, Woodhead Z, Leech R, Wise RJ. Cognitive control and its impact on recovery from aphasic stroke. Brain. (2014) 137:242–54. 10.1093/brain/awt289
    1. Geranmayeh F, Brownsett SL, Wise RJ. Task-induced brain activity in aphasic stroke patients: what is driving recovery? Brain. (2014) 137:2632–48. 10.1093/brain/awu163
    1. Turken AU, Dronkers NF. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci. (2011) 5:1. 10.3389/fnsys.2011.00001
    1. Tomasi D, Volkow ND. Language network: segregation, laterality and connectivity. Mol Psychiatry. (2012) 17:759. 10.1038/mp.2012.99
    1. Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding SL, et al. . Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex. (2015) 25:680–702. 10.1093/cercor/bht260
    1. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. . The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. (2011) 106:1125–65. 10.1152/jn.00338.2011
    1. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. (2014) 137:2408–22. 10.1093/brain/awu101
    1. Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol. (2013) 591:17–31. 10.1113/jphysiol.2012.243469
    1. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. . Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. (2010) 67:365–75. 10.1002/ana.21905
    1. Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci. (2011) 5:8. 10.3389/fnsys.2011.00008
    1. Yourganov G, Fridriksson J, Rorden C, Gleichgerrcht E, Bonilha L. Multivariate connectome-based symptom mapping in post-stroke patients: networks supporting language and speech. J Neurosci. (2016) 36:6668–79. 10.1523/JNEUROSCI.4396-15.2016
    1. Gleichgerrcht E, Kocher M, Nesland T, Rorden C, Fridriksson J, Bonilha L. Preservation of structural brain network hubs is associated with less severe post-stroke aphasia. Restor Neurol Neurosci. (2015) 34:19–28. 10.3233/RNN-150511
    1. Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, et al. . (2018). Anatomy of aphasia revisited. Brain. 141:848–62. 10.1093/brain/awx363
    1. Bonilha L, Gleichgerrcht E, Fridriksson J, Rorden C, Breedlove JL, Nesland T, et al. . Reproducibility of the structural brain connectome derived from diffusion tensor imaging. PLoS ONE. (2015) 10:e0135247. 10.1371/journal.pone.0135247
    1. Basilakos A, Fillmore PT, Rorden C, Guo D, Bonilha L, Fridriksson J. Regional white matter damage predicts speech fluency in chronic post-stroke aphasia. Front Hum Neurosci. (2014) 8:845. 10.3389/fnhum.2014.00845
    1. Vitali P, Tettamanti M, Abutalebi J, Ansaldo AI, Perani D, Cappa SF, et al. . Generalization of the effects of phonological training for anomia using structural equation modelling: A multiple single-case study. Neurocase. (2010) 16:93–105. 10.1080/13554790903329117
    1. Yang M, Li J, Yao D, Chen H. Disrupted intrinsic local synchronization in poststroke aphasia. Medicine. (2016) 95:e3101. 10.1097/MD.0000000000003101
    1. Zhu Y, Bai L, Liang P, Kang S, Gao H, Yang H. Disrupted brain connectivity networks in acute ischemic stroke patients. Brain Imaging Behav. (2017) 11:444–53. 10.1007/s11682-016-9525-6
    1. Balaev V, Petrushevsky A, Martynova O. Changes in functional connectivity of default mode network with auditory and right frontoparietal networks in poststroke aphasia. Brain Connect. (2016) 6:714–23. 10.1089/brain.2016.0419
    1. Dijkhuizen RM, Zaharchuk G, Otte WM. Assessment and modulation of resting-state neural networks after stroke. Curr Opin Neurol. (2014) 27:637–43. 10.1097/WCO.0000000000000150
    1. Sandberg CW. Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Front Hum Neurosci. (2017) 11:91. 10.3389/fnhum.2017.00091
    1. Sebastian R, Long C, Purcell JJ, Faria AV, Lindquist M, Jarso S, et al. . Imaging network level language recovery after left PCA stroke. Restor Neurol Neurosci. (2016) 34:473–89. 10.3233/RNN-150621
    1. Zhu D, Chang J, Freeman S, Tan Z, Xiao J, Gao Y, et al. . Changes of functional connectivity in the left frontoparietal network following aphasic stroke. Front Behav Neurosci. (2014) 8:167. 10.3389/fnbeh.2014.00167
    1. Siegel JS, Seitzman BA, Ramsey LE, Ortega M, Gordon EMN, Dosenbach NUF, et al. . Re-emergence of modular brain networks in stroke recovery. Cortex. (2018) 101:44–59. 10.1016/j.cortex.2017.12.019
    1. van Hees S, McMahon K, Angwin A, de Zubicaray G, Read S, Copland DA. A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum Brain Mapp. (2014) 35:3919–31. 10.1002/hbm.22448
    1. Duncan ES, Small SL. Changes in dynamic resting state network connectivity following aphasia therapy. Brain Imaging Behav. (2017) 12:1141–9. 10.1007/s11682-017-9771-2
    1. Taub E, Uswatte G, Morris DM. Improved motor recovery after stroke and massive cortical reorganization following constraint-induced movement therapy. Phys Med Rehabil Clin N Am. (2003) 14:S77–91. 10.1016/S1047-9651(02)00052-9
    1. Maher LM, Kendall D, Swearengin JA, Rodriguez A, Leon SA, Pingel K, et al. . A pilot study of use-dependent learning in the context of constraint induced language therapy. J Int Neuropsychol Soc. (2006) 12:843–52. 10.1017/S1355617706061029
    1. Cherney LR, Patterson JP, Raymer A, Frymark T, Schooling T. Evidence-based systematic review: effects of intensity of treatment and constraint-induced language therapy for individuals with stroke-induced aphasia. J Speech Lang Hear Res. (2008) 51:1282–99. 10.1044/1092-4388(2008/07-0206)
    1. Johnson ML, Taub E, Harper LH, Wade JT, Bowman MH, Bishop-McKay S, et al. . An enhanced protocol for constraint-induced aphasia therapy II: a case series. Am J Speech-Language Pathol Am Speech-Language-Hearing Assoc. (2014) 23:60–72. 10.1044/1058-0360(2013/12-0168)
    1. Meinzer M, Elbert T, Djundja D, Taub E, Rockstroh B. Extending the constraint-induced movement therapy (cimt) approach to cognitive functions: constraint-induced aphasia therapy (CIAT) of chronic aphasia. NeuroRehabilitation. (2007) 22:311–8.
    1. Barthel G, Meinzer M, Djundja D, Rockstroh B. Intensive language therapy in chronic aphasia: Which aspects contribute most? Aphasiology. (2008) 22:408–21. 10.1080/02687030701415880
    1. Wilssens I, Vandenborre D, van Dun K, Verhoeven J, Visch-Brink E, MariÃ≪n P. Constraint-induced aphasia therapy versus intensive semantic treatment in fluent aphasia. Am J Speech-Lang Pathol. (2015) 24:281–94. 10.1044/2015_AJSLP-14-0018
    1. Boyle M. Semantic feature analysis treatment for aphasic word retrieval impairments: what's in a name? Top Stroke Rehabil. (2010) 17:411–22. 10.1310/tsr1706-411
    1. Kiran S, Thompson CK. The role of semantic complexity in treatment of naming deficits: training semantic categories in fluent aphasia by controlling exemplar typicality. J Speech Language Hear Res. (2003) 46:773–87. 10.1044/1092-4388(2003/061)
    1. Kendall DL, Oelke M, Brookshire CE, Nadeau SE. The influence of phonomotor treatment on word retrieval abilities in 26 individuals with chronic aphasia: an open trial. J Speech Language Hear Res. (2015) 58:798. 10.1044/2015_JSLHR-L-14-0131
    1. Edmonds LA, Mammino K, Ojeda J. Effect of verb network strengthening treatment (VNeST) in persons with aphasia: extension and replication of previous findings. Am J Speech-Language Pathol. (2014) 23:S312–S329. 10.1044/2014_AJSLP-13-0098
    1. Thompson CK, Shapiro LP. Treating agrammatic aphasia within a linguistic framework: treatment of underlying forms. Aphasiology. (2005) 19:1021–36. 10.1080/02687030544000227
    1. Weinberger NM. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci. (2004) 5:279–90. 10.1038/nrn1366
    1. Stefan K, Wycislo M, Classen J. Modulation of associative human motor cortical plasticity by attention. J Neurophysiol. (2004) 92:66–72. 10.1152/jn.00383.2003
    1. Kagan AN, Simmons-Mackie Rowland A, Huijbregts M, Shumway E, McEwen S, et al. Counting what counts: A framework for capturing real-life outcomes of aphasia intervention. Aphasiology. (2008) 22:258–80. 10.1080/02687030701282595
    1. Stahl B, Mohr B, Dreyer FR, Lucchese G, Pulvermuller F. Using language for social interaction: Communication mechanisms promote recovery from chronic non-fluent aphasia. Cortex. (2016) 85:90–9. 10.1016/j.cortex.2016.09.021
    1. Monfils MH, Plautz EJ, Kleim JA. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist. (2005) 11:471–83. 10.1177/1073858405278015
    1. Monfils MH, Teskey GC. Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation. Neuroscience. (2004) 125:329–36. 10.1016/j.neuroscience.2004.01.048
    1. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci. (2004) 24:628–33. 10.1523/JNEUROSCI.3440-03.2004
    1. Schuell H. Aphasia Theory and Therapy: Selected Lectures and Papers of Hildred Schuell. Baltimore, MD: Park Press Baltimore; (1974).
    1. Schuell H, Carroll V, Street BS. Clinical treatment of aphasia. J Speech Hear Disord. (1955) 20:43. 10.1044/jshd.2001.43
    1. Godecke E, Rai T, Ciccone N, Armstrong E, Granger A, Hankey GJ. Amount of therapy matters in very early aphasia rehabilitation after stroke: a clinical prognostic model. Semin Speech Langauge. (2013) 34:129–41. 10.1055/s-0033-1358369
    1. Off CA, Griffin JR, Spencer KA, Rogers M. The impact of dose on naming accuracy with persons with aphasia. Aphasiology. (2016) 30:983–1011. 10.1080/02687038.2015.1100705
    1. Stahl B, Mohr B, Büscher V, Dreyer FR, Lucchese G, Pulvermüller F. Efficacy of intensive aphasia therapy in patients with chronic stroke: a randomised controlled trial. J Neurol Neurosurg Psychiatry. (2017) 89:586–92. 10.1136/jnnp-2017-315962
    1. Sage K, Snell C, Lambon Ralph MA. How intensive does anomia therapy for people with aphasia need to be? Neuropsychol Rehabili. (2011) 21:26–41. 10.1080/09602011.2010.528966
    1. Raymer AM, Kohen FP, Saffell D. Computerised training for impairments of word comprehension and retrieval in aphasia. Aphasiology. (2006) 20:257–68. 10.1080/02687030500473312
    1. Harnish SM, Morgan J, Lundine JP, Bauer A, Singletary F, Benjamin ML, et al. . Dosing of a cued picture-naming treatment for anomia. Am J Speech-Language Pathol Am Speech-Language-Hear Assoc. (2014) 23:S285–S299. 10.1044/2014_AJSLP-13-0081
    1. Martins IP, Leal G, Fonseca I, Farrajota L, Aguiar M, Fonseca J, et al. . A randomized, rater-blinded, parallel trial of intensive speech therapy in sub-acute post-stroke aphasia: the SP-I-R-IT study. Int J Lang Commun Disord. (2013) 48:421–31. 10.1111/1460-6984.12018
    1. Bakheit AM, Shaw S, Barrett L, Wood J, Carrington S, Griffiths S, et al. . A prospective, randomized, parallel group, controlled study of the effect of intensity of speech and language therapy on early recovery from poststroke aphasia. Clin Rehabil. (2007) 21:885–94. 10.1177/0269215507078486
    1. Hinckley J, Carr T. Comparing the outcomes of intensive and non-intensive context-based aphasia treatment. Aphasiology. (2005) 19:965–74. 10.1080/02687030544000173
    1. Dignam JK, Rodriguez AD, Copland DA. Evidence for intensive aphasia therapy: consideration of theories from neuroscience and cognitive psychology. PMR. (2016) 8:254–67. 10.1016/j.pmrj.2015.06.010
    1. Kiran S. Typicality of inanimate category exemplars in aphasia treatment: further evidence for semantic complexity. J Speech Language Hear Res. (2008) 51:1550. 10.1044/1092-4388(2008/07-0038)
    1. Gray T, Kiran S. The relationship between language control and cognitive control in bilingual aphasia. Bilingual Lang Cogn. (2016) 19:433–52. 10.1017/S1366728915000061
    1. Riley EA, Thompson CK. Training pseudoword reading in acquired dyslexia: a phonological complexity approach. Aphasiology. (2015) 29:129–50. 10.1080/02687038.2014.955389
    1. Thompson CK, Shapiro LP. Complexity in treatment of syntactic deficits. Am J Speech-Language pathol Am Speech-Language-Hear Assoc. (2007) 16:30–42. 10.1044/1058-0360(2007/005)
    1. Fregni F, Pascual-Leone A. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn Behav Neurol. (2006) 19:21–33. 10.1097/00146965-200603000-00003
    1. Takeuchi N, Izumi S. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast. (2012) 2012:359728. 10.1155/2012/359728
    1. Keane C, Kiran S. The nature of facilitation and interference in the multilingual language system: insights from treatment in a case of trilingual aphasia. Cogn Neuropsychol. (2015) 32:169–94. 10.1080/02643294.2015.1061982
    1. Gierut JA, Champion AH. Syllable onsets II: three-element clusters in phonological treatment. J Speech Lang Hear Res. (2001) 44:886–904. 10.1044/1092-4388(2001/071)
    1. Kiran S. Complexity in the treatment of naming deficits. Am J Speech-Language pathol Am Speech-Language-Hear Assoc. (2007) 16:18–29. 10.1044/1058-0360(2007/004)
    1. Van Horne AJO, Fey M, Curran M. Do the hard things first: a randomized controlled trial testing the effects of exemplar selection on generalization following therapy for grammatical morphology. J Speech Lang Hear Res. (2017) 60:2569–88. 10.1044/2017_JSLHR-L-17-0001
    1. Thompson CK, Shapiro LP, Kiran S, Sobecks J. The role of syntactic complexity in treatment of sentence deficits in agrammatic aphasia: The complexity account of treatment efficacy (CATE). J Speech Language Hear Res. (2003) 46:591–607. 10.1044/1092-4388(2003/047)
    1. Kiran S, Sandberg C, Abbott K. Treatment for lexical retrieval using abstract and concrete words in persons with aphasia: Effect of complexity. Aphasiology. (2009) 23:835–53. 10.1080/02687030802588866
    1. Sandberg C, Kiran S. How justice can affect jury: Training abstract words promotes generalisation to concrete words in patients with aphasia. Neuropsychol Rehabili. (2014) 24:738–69. 10.1080/09602011.2014.899504

Source: PubMed

3
Abonneren