Predicting language recovery in post-stroke aphasia using behavior and functional MRI

Michael Iorga, James Higgins, David Caplan, Richard Zinbarg, Swathi Kiran, Cynthia K Thompson, Brenda Rapp, Todd B Parrish, Michael Iorga, James Higgins, David Caplan, Richard Zinbarg, Swathi Kiran, Cynthia K Thompson, Brenda Rapp, Todd B Parrish

Abstract

Language outcomes after speech and language therapy in post-stroke aphasia are challenging to predict. This study examines behavioral language measures and resting state fMRI (rsfMRI) as predictors of treatment outcome. Fifty-seven patients with chronic aphasia were recruited and treated for one of three aphasia impairments: anomia, agrammatism, or dysgraphia. Treatment effect was measured by performance on a treatment-specific language measure, assessed before and after three months of language therapy. Each patient also underwent an additional 27 language assessments and a rsfMRI scan at baseline. Patient scans were decomposed into 20 components by group independent component analysis, and the fractional amplitude of low-frequency fluctuations (fALFF) was calculated for each component time series. Post-treatment performance was modelled with elastic net regression, using pre-treatment performance and either behavioral language measures or fALFF imaging predictors. Analysis showed strong performance for behavioral measures in anomia (R2 = 0.948, n = 28) and for fALFF predictors in agrammatism (R2 = 0.876, n = 11) and dysgraphia (R2 = 0.822, n = 18). Models of language outcomes after treatment trained using rsfMRI features may outperform models trained using behavioral language measures in some patient populations. This suggests that rsfMRI may have prognostic value for aphasia therapy outcomes.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Multicollinearity across Behavioral Measures. (A) A shaded color-plot of the correlation matrix across all 27 behavioral measures is shown. Due to imbalance in sample sizes, correlations were first calculated within each impairment group, and then averaged. Box colors correspond to pairwise Kendall’s Tau-b values (red is positive, blue is negative correlation). Only pairwise complete observations were used (no imputation). (B) An association dendrogram of behavioral measures is shown. Correlation distance is one minus the absolute pairwise Kendall’s Tau correlation. The dendrogram was created by analyzing correlation distances using hierarchical clustering (Unweighted Pair Group Method with Arithmetic Mean).
Figure 2
Figure 2
Predicting scores on the post-treatment TSM with behavioral measures. Linear models which predict the TSM after therapy were constructed for each aphasia impairment: anomia, agrammatism, and dysgraphia. The dashed line represents a perfect prediction (predicted score = actual score). Black circles show the median predicted score for each patient across all 1000 imputations during LOOCV.
Figure 3
Figure 3
Predicting scores on the post-treatment TSM with GICA fALFF and pre-treatment TSM. Linear models which predict the TSM after therapy were constructed for each aphasia impairment (anomia, agrammatism, and dysgraphia) using a combination of the pre-treatment TSM and the fALFF for each GICA component. The dashed line represents a perfect prediction (predicted score = actual score). Black circles show the predicted score for each patient using LOOCV. For the agrammatism model, the circles represent median values across 1000 imputations.

References

    1. Goodglass, H. Understanding Aphasia. (1993).
    1. Lazar RM, Boehme AK. Aphasia as a predictor of stroke outcome. Curr. Neurol. Neurosci. Rep. 2017;17:83. doi: 10.1007/s11910-017-0797-z.
    1. Engelter ST, et al. Epidemiology of aphasia attributable to first ischemic stroke: Incidence, severity, fluency, etiology, and thrombolysis. Stroke. 2006;37:1379–1384. doi: 10.1161/01.STR.0000221815.64093.8c.
    1. Winstein CJ, et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:e98–e169. doi: 10.1161/STR.0000000000000098.
    1. Thiel A, Zumbansen A. Recent advances in the treatment of post-stroke aphasia. Neural Regen. Res. 2014;9:703. doi: 10.4103/1673-5374.131570.
    1. Laska AC, Hellblom A, Murray V, Kahan T, Von Arbin M. Aphasia in acute stroke and relation to outcome. J. Intern. Med. 2001;249:413–422. doi: 10.1046/j.1365-2796.2001.00812.x.
    1. Lazar RM, et al. Improvement in aphasia scores after stroke is well predicted by initial severity. Stroke. 2010;41:1485–1488. doi: 10.1161/STROKEAHA.109.577338.
    1. Hilari K, Byng S. Health-related quality of life in people with severe aphasia. Int. J. Lang. Commun. Disord. 2009;44:193–205. doi: 10.1080/13682820802008820.
    1. Watila MM, Balarabe SA. Factors predicting post-stroke aphasia recovery. J. Neurol. Sci. 2015;352(1–2):12–18.
    1. Brady MC, Kelly H, Godwin J, Enderby P, Campbell P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.cd000425.pub4.
    1. Charidimou A, et al. Why is it difficult to predict language impairment and outcome in patients with aphasia after stroke? J. Clin. Neurol. 2014;10:75–83. doi: 10.3988/jcn.2014.10.2.75.
    1. Seghier ML, et al. The PLORAS database: A data repository for predicting language outcome and recovery after stroke. Neuroimage. 2016;124:1208–1212. doi: 10.1016/j.neuroimage.2015.03.083.
    1. Tippett, D. C. & Hillis, A. E. Where are aphasia theory and management ‘headed’? F1000Res.6 (2017).
    1. Doogan C, Dignam J, Copland D, Leff A. Aphasia recovery: When, how and who to treat? Curr. Neurol. Neurosci. Rep. 2018;18:90. doi: 10.1007/s11910-018-0891-x.
    1. Benghanem S, et al. Aphasia outcome: The interactions between initial severity, lesion size and location. J. Neurol. 2019;266:1303–1309. doi: 10.1007/s00415-019-09259-3.
    1. El Hachioui H, et al. Long-term prognosis of aphasia after stroke. J. Neurol. Neurosurg. Psychiatry. 2013;84:310–315. doi: 10.1136/jnnp-2012-302596.
    1. Osa García A, et al. Predicting early post-stroke aphasia outcome from initial aphasia severity. Front. Neurol. 2020;11:120. doi: 10.3389/fneur.2020.00120.
    1. Halai AD, Woollams AM, Lambon Ralph MA. Predicting the pattern and severity of chronic post-stroke language deficits from functionally-partitioned structural lesions. Neuroimage Clin. 2018;19:1–13. doi: 10.1016/j.nicl.2018.03.011.
    1. Schumacher R, Halai AD, Lambon Ralph MA. Assessing and mapping language, attention and executive multidimensional deficits in stroke aphasia. Brain. 2019;142:3202–3216. doi: 10.1093/brain/awz258.
    1. Sul B, et al. Association of lesion location with long-term recovery in post-stroke aphasia and language deficits. Front. Neurol. 2019;10:776. doi: 10.3389/fneur.2019.00776.
    1. Price CJ, Seghier ML, Leff AP. Predicting language outcome and recovery after stroke: The PLORAS system. Nat. Rev. Neurol. 2010;6:202–210. doi: 10.1038/nrneurol.2010.15.
    1. Harvey RL. Predictors of functional outcome following stroke. Phys. Med. Rehabil. Clin. N. Am. 2015;26:583–598. doi: 10.1016/j.pmr.2015.07.002.
    1. Tochadse M, Halai AD, Lambon Ralph MA, Abel S. Unification of behavioural, computational and neural accounts of word production errors in post-stroke aphasia. Neuroimage Clin. 2018;18:952–962. doi: 10.1016/j.nicl.2018.03.031.
    1. Halai AD, Woollams AM, Lambon Ralph MA. Triangulation of language-cognitive impairments, naming errors and their neural bases post-stroke. Neuroimage Clin. 2018;17:465–473. doi: 10.1016/j.nicl.2017.10.037.
    1. Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. 2017;86:275–289. doi: 10.1016/j.cortex.2016.04.016.
    1. Pustina D, et al. Enhanced estimations of post-stroke aphasia severity using stacked multimodal predictions. Hum. Brain Mapp. 2017;38:5603–5615. doi: 10.1002/hbm.23752.
    1. Yang M, et al. Altered structure and intrinsic functional connectivity in post-stroke aphasia. Brain Topogr. 2018;31:300–310. doi: 10.1007/s10548-017-0594-7.
    1. Sandberg CW. Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Front. Hum. Neurosci. 2017;11:91. doi: 10.3389/fnhum.2017.00091.
    1. Balaev V, Petrushevsky A, Martynova O. Changes in functional connectivity of default mode network with auditory and right frontoparietal networks in poststroke aphasia. Brain Connect. 2016;6:714–723. doi: 10.1089/brain.2016.0419.
    1. Baliki MN, Babbitt EM, Cherney LR. Brain network topology influences response to intensive comprehensive aphasia treatment. NeuroRehabilitation. 2018;43:63–76. doi: 10.3233/NRE-182428.
    1. Siegel JS, et al. Re-emergence of modular brain networks in stroke recovery. Cortex. 2018;101:44–59. doi: 10.1016/j.cortex.2017.12.019.
    1. Nair VA, et al. Functional connectivity changes in the language network during stroke recovery. Ann Clin Transl Neurol. 2015;2:185–195. doi: 10.1002/acn3.165.
    1. Zhao Y, Lambon Ralph MA, Halai AD. Relating resting-state hemodynamic changes to the variable language profiles in post-stroke aphasia. Neuroimage Clin. 2018;20:611–619. doi: 10.1016/j.nicl.2018.08.022.
    1. Kertesz A. Western aphasia battery-revised. PsycTESTS Dataset. 2006 doi: 10.1037/t15168-000.
    1. Gilmore N, Dwyer M, Kiran S. Benchmarks of significant change after aphasia rehabilitation. Arch. Phys. Med. Rehabil. 2018 doi: 10.1016/j.apmr.2018.08.177.
    1. Martin N, Minkina I, Kohen FP, Kalinyak-Fliszar M. Assessment of linguistic and verbal short-term memory components of language abilities in aphasia. J. Neurolinguistics. 2018;48:199–225. doi: 10.1016/j.jneuroling.2018.02.006.
    1. Fromm D, et al. Discourse characteristics in aphasia beyond the western aphasia battery cutoff. Am. J. Speech. Lang. Pathol. 2017;26:762–768. doi: 10.1044/2016_AJSLP-16-0071.
    1. Rohde A, et al. Diagnosis of aphasia in stroke populations: A systematic review of language tests. PLoS ONE. 2018;13:e0194143. doi: 10.1371/journal.pone.0194143.
    1. El Hachioui H, et al. Screening tests for aphasia in patients with stroke: A systematic review. J. Neurol. 2017;264:211–220. doi: 10.1007/s00415-016-8170-8.
    1. Pritchard M, Hilari K, Cocks N, Dipper L. Psychometric properties of discourse measures in aphasia: Acceptability, reliability, and validity. Int. J. Lang. Commun. Disord. 2018 doi: 10.1111/1460-6984.12420.
    1. Wilson SM, Eriksson DK, Schneck SM, Lucanie JM. A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function. PLoS ONE. 2018;13:e0192773. doi: 10.1371/journal.pone.0192773.
    1. Gilmore, N., Meier, E. L., Johnson, J. P. & Kiran, S. Typicality-based semantic treatment for anomia results in multiple levels of generalisation. Neuropsychol. Rehabil. 1–27 (2018).
    1. Thompson CK, Shapiro LP. Treating agrammatic aphasia within a linguistic framework: Treatment of underlying forms. Aphasiology. 2005;19:1021–1036. doi: 10.1080/02687030544000227.
    1. Rapp B, Kane A. Remediation of deficits affecting different components of the spelling process. Aphasiology. 2002;16:439–454. doi: 10.1080/02687030244000301.
    1. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images. (Elsevier, 2011).
    1. Cox RW. AFNI: What a long strange trip it’s been. Neuroimage. 2012;62:743–747. doi: 10.1016/j.neuroimage.2011.08.056.
    1. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015.
    1. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72. doi: 10.1016/j.neuroimage.2009.06.060.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. doi: 10.1016/j.neuroimage.2007.07.007.
    1. Nachev P, Coulthard E, Jäger HR, Kennard C, Husain M. Enantiomorphic normalization of focally lesioned brains. Neuroimage. 2008;39:1215–1226. doi: 10.1016/j.neuroimage.2007.10.002.
    1. Rorden C, Bonilha L, Fridriksson J, Bender B, Karnath H-O. Age-specific CT and MRI templates for spatial normalization. Neuroimage. 2012;61:957–965. doi: 10.1016/j.neuroimage.2012.03.020.
    1. Du Y, et al. Artifact removal in the context of group ICA: A comparison of single-subject and group approaches. Hum. Brain Mapp. 2015;37:1005–1025. doi: 10.1002/hbm.23086.
    1. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001;14:140–151. doi: 10.1002/hbm.1048.
    1. Himberg, J. & Hyvarinen, A. Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. In 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718). 10.1109/nnsp.2003.1318025.
    1. La C, et al. Differing Patterns of altered slow-5 oscillations in healthy aging and ischemic stroke. Front. Hum. Neurosci. 2016;10:156. doi: 10.3389/fnhum.2016.00156.
    1. Egorova N, Veldsman M, Cumming T, Brodtmann A. Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression. Neuroimage Clin. 2017;16:116–124. doi: 10.1016/j.nicl.2017.07.014.
    1. van Hees S, et al. A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Hum. Brain Mapp. 2014;35:3919–3931. doi: 10.1002/hbm.22448.
    1. Li J, et al. The regional neuronal activity in left posterior middle temporal gyrus is correlated with the severity of chronic aphasia. Neuropsychiatr. Dis. Treat. 2017;13:1937–1945. doi: 10.2147/NDT.S140091.
    1. Zou Q-H, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. J. Neurosci. Methods. 2008;172:137–141. doi: 10.1016/j.jneumeth.2008.04.012.
    1. Zou H, Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005;67:301–320. doi: 10.1111/j.1467-9868.2005.00503.x.
    1. Breiman L. Random Forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324.
    1. Bates E, Saygın AP, Moineau S, Marangolo P, Pizzamiglio L. Analyzing aphasia data in a multidimensional symptom space. Brain Lang. 2005;92(2):106–116. doi: 10.1016/j.bandl.2004.06.108.
    1. Marshall RC, Wright HH. Developing a clinician-friendly aphasia test. Am. J. Speech. Lang. Pathol. 2007;16:295–315. doi: 10.1044/1058-0360(2007/035).
    1. Butler RA, Lambon Ralph MA, Woollams AM. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain. 2014;137:3248–3266. doi: 10.1093/brain/awu286.
    1. Brumm KP, et al. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage. 2010;51:995–1005. doi: 10.1016/j.neuroimage.2010.03.008.
    1. Bokkers RPH, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke. 2012;43:1290–1294. doi: 10.1161/STROKEAHA.110.589234.
    1. Shirayama Y, et al. rCBF and cognitive impairment changes assessed by SPECT and ADAS-cog in late-onset Alzheimer’s disease after 18 months of treatment with the cholinesterase inhibitors donepezil or galantamine. Brain Imaging Behav. 2019;13:75–86. doi: 10.1007/s11682-017-9803-y.
    1. Zhou Z, et al. Regional cerebral blood flow correlates eating abnormalities in frontotemporal dementia. Neurol. Sci. 2019;40:1695–1700. doi: 10.1007/s10072-019-03910-7.
    1. Yeh C-B, et al. The rCBF brain mapping in adolescent ADHD comorbid developmental coordination disorder and its changes after MPH challenging. Eur. J. Paediatr. Neurol. 2012;16:613–618. doi: 10.1016/j.ejpn.2012.02.007.
    1. Goozée R, Handley R, Kempton MJ, Dazzan P. A systematic review and meta-analysis of the effects of antipsychotic medications on regional cerebral blood flow (rCBF) in schizophrenia: association with response to treatment. Neurosci. Biobehav. Rev. 2014;43:118–136. doi: 10.1016/j.neubiorev.2014.03.014.
    1. Hara T, et al. Effects of low-frequency repetitive transcranial magnetic stimulation combined with intensive speech therapy on cerebral blood flow in post-stroke aphasia. Transl. Stroke Res. 2015;6:365–374. doi: 10.1007/s12975-015-0417-7.
    1. Thompson CK, Lukic S, King MC, Mesulam MM, Weintraub S. Verb and noun deficits in stroke-induced and primary progressive aphasia: The Northwestern Naming Battery() Aphasiology. 2012;26:632–655. doi: 10.1080/02687038.2012.676852.
    1. Cho-Reyes S, Thompson CK. Verb and sentence production and comprehension in aphasia: Northwestern Assessment of Verbs and Sentences (NAVS) Aphasiology. 2012;26:1250–1277. doi: 10.1080/02687038.2012.693584.
    1. Kay J, Lesser R, Coltheart M. Psycholinguistic assessments of language processing in aphasia (PALPA): An introduction. Aphasiology. 1996;10:159–180. doi: 10.1080/02687039608248403.
    1. Klein LA, Buchanan JA. Psychometric properties of the Pyramids and Palm Trees Test. J. Clin. Exp. Neuropsychol. 2009;31:803–808. doi: 10.1080/13803390802508926.
    1. Baddeley, A. D. Doors and People: A Test of Visual and Verbal Recall and Recognition. (2006).
    1. MacWhinney B, Fromm D, Holland A, Forbes M, Wright H. Automated analysis of the Cinderella story. Aphasiology. 2010;24:856. doi: 10.1080/02687030903452632.

Source: PubMed

3
Abonneren