Microbiome signatures in neonatal central line associated bloodstream infections

Mohan Pammi, Santosh Thapa, Miriam Balderas, Jessica K Runge, Alamelu Venkatachalam, Ruth Ann Luna, Mohan Pammi, Santosh Thapa, Miriam Balderas, Jessica K Runge, Alamelu Venkatachalam, Ruth Ann Luna

Abstract

Neonates are at high risk for central line associated bloodstream infections (CLABSI). Biofilm formation is universal on indwelling catheters but why some biofilms seed the bloodstream to cause CLABSI is not clearly understood. With the objective to test the hypothesis that catheter biofilm microbiome in neonates with CLABSI differs than those without infection, we prospectively enrolled neonates (n = 30) with infected and uninfected indwelling central catheters. Catheters were collected at the time of removal, along with blood samples and skin swabs at the catheter insertion sites. Microbiomes of catheter biofilms, skin swabs and blood were evaluated by profiling the V4 region of the bacterial 16S rRNA gene using Illumina MiSeq sequencing platform. The microbial DNA load was higher from catheter biofilms of CLABSI patients without differences in alpha diversity when compared to that of the non-CLABSI neonates. Proteus and unclassified Staphylococcaceae were more abundant in infected catheter biofilms while Bradyrhizobium, Cloacibacterium, and Sphingomonas were more abundant in the uninfected catheters. A blood microbiome was detected in uninfected samples. The blood microbiome in CLABSI neonates clustered separately from the uninfected blood samples in beta diversity plots. We found that the microbiome signature in catheter biofilm and blood of neonates with CLABSI is different than the microbiomes of non-CLABSI neonates.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. The bacterial load is higher…
Fig 1. The bacterial load is higher in biofilms of infected catheters.
qPCR analysis of the bacterial 16S rRNA gene abundance in various samples studied. Significantly higher levels of bacterial DNA was detected in the infected catheters (n = 14) compared to the uninfected catheters (n = 12) (Mann-Whitney test pp<0.05, ns = non-significant (p>0.05). Cath = catheter, U = uninfected, I = infected.
Fig 2. Alpha diversity metrics in CLABSI…
Fig 2. Alpha diversity metrics in CLABSI and non-CLABSI neonates.
(A) Observed OTUs and (B) the Shannon Diversity Indices are presented in scatter plots. The alpha diversity metrics did not differ between infected and uninfected catheters.
Fig 3. Multivariate analysis of beta diversity.
Fig 3. Multivariate analysis of beta diversity.
PCoA plots of the microbial communities in infected (red circles) and uninfected samples (blue circles) of (A) catheter biofilms, (B) skin swab and (C) blood respectively as measured using unweighted UniFrac distances. Uninfected blood samples are clustered separately from the infected blood samples (see Fig 3C), but there is no clustering identified in the catheter biofilm or skin swab microbial communities. Figs D-F represents scatter plots of the weighted UniFrac distance metrics for the catheter, skin swab and blood microbiomes in uninfected and infected groups. Each circle represents the complete microbial community of a biological sample. The first 2 principal components (PC1and PC2), along with the amount of variation explained are shown in the figures.
Fig 4. The microbiome profile of infected…
Fig 4. The microbiome profile of infected catheters is distinct from uninfected catheters.
Bar plots representing the taxonomic composition of the catheter biofilm microbiota at the (A) phylum and (B) genus level for uninfected (n = 12) and infected (n = 15) catheters. Taxa with a mean relative abundance <1% are grouped together. Comparisons between infected and uninfected groups used a Mann-Whitney test. There was a significantly (p<0.05) lower abundance of Bradyrhizobium, Cloacibacterium, and Sphingomonas in infected catheters when compared to uninfected catheters (C-E). In contrast, infected catheter samples had a higher proportion of (F) Proteus and (G) unclassified Staphylococcaceae in comparison to the uninfected catheters.
Fig 5. Skin and blood microbiome composition…
Fig 5. Skin and blood microbiome composition of CLABSI and non-CLABSI neonates.
Columns represent the average relative abundance of bacterial taxa at (A) phylum and (B) genus level for uninfected (n = 5) and infected (n = 6) skin swabs collected from the non-CLABSI and CLABSI neonates, respectively. Bar plots showing the relative abundances of bacteria in individual blood samples collected from (C) blood culture negative (non-CLABSI) and (D) blood culture positive (CLABSI) neonates (identified on the x-axis). The results of the blood microbiomes are not combined for uninfected and infected groups because each individual within the group are very different in terms of their blood microbiome composition.

References

    1. CDC. National HealthCare Safety Network Report. 2011.
    1. Payne NR, Carpenter JH, Badger GJ, Horbar JD, Rogowski J. Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants. Pediatrics. 2004;114(2):348–55. Epub 2004/08/03. doi: 114/2/348 [pii]. 10.1542/peds.114.2.348 .
    1. Wagner M, Bonhoeffer J, Erb TO, Glanzmann R, Hacker FM, Paulussen M, et al. Prospective study on central venous line associated bloodstream infections. Archives of disease in childhood. 2011;96(9):827–31. Epub 2011/06/07. 10.1136/adc.2010.208595 .
    1. Mahieu LM, De Dooy JJ, De Muynck AO, Van Melckebeke G, Ieven MM, Van Reempts PJ. Microbiology and risk factors for catheter exit-site and -hub colonization in neonatal intensive care unit patients. Infect Control Hosp Epidemiol. 2001;22(6):357–62. Epub 2001/08/25. doi: ICHE6828 [pii] 10.1086/501913 [doi]. .
    1. Sitges-Serra A, Puig P, Linares J, Perez JL, Farrero N, Jaurrieta E, et al. Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J Parenter Enteral Nutr. 1984;8(6):668–72. Epub 1984/11/01. 10.1177/0148607184008006668 .
    1. Hocevar SN, Edwards JR, Horan TC, Morrell GC, Iwamoto M, Lessa FC. Device-associated infections among neonatal intensive care unit patients: incidence and associated pathogens reported to the National Healthcare Safety Network, 2006–2008. Infect Control Hosp Epidemiol. 2012;33(12):1200–6. Epub 2012/11/13. 10.1086/668425 .
    1. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell. 2005;4(4):633–8. Epub 2005/04/12. doi: 4/4/633 [pii] 10.1128/EC.4.4.633-638.2005 [doi]. .
    1. NIH. SBIR/STTR STUDY AND CONTROL OF MICROBIAL BIOFILMS. In: NIH, editor. Release Date: April 21, 1999 ed1999.
    1. Anaissie E, Samonis G, Kontoyiannis D, Costerton J, Sabharwal U, Bodey G, et al. Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur J Clin Microbiol Infect Dis. 1995;14(2):134–7. Epub 1995/02/01. 10.1007/bf02111873 .
    1. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis. 1993;168(2):400–7. Epub 1993/08/01. 10.1093/infdis/168.2.400 .
    1. Moretti EW, Ofstead CL, Kristy RM, Wetzler HP. Impact of central venous catheter type and methods on catheter-related colonization and bacteraemia. J Hosp Infect. 2005;61(2):139–45. Epub 2005/07/20. doi: S0195-6701(05)00126-X [pii] 10.1016/j.jhin.2005.02.012 [doi]. .
    1. Lepainteur M, Desroches M, Bourrel AS, Aberrane S, Fihman V, L'Heriteau F, et al. Role of the Central Venous Catheter in Bloodstream Infections Caused by Coagulase Negative Staphylococci in Very Preterm Neonates. Pediatr Infect Dis J. 2013. Epub 2013/02/23. 10.1097/INF.0b013e318289de0f [doi]. .
    1. Pammi M, O'Brien JL, Ajami NJ, Wong MC, Versalovic J, Petrosino JF. Development of the cutaneous microbiome in the preterm infant: A prospective longitudinal study. PLoS One. 2017;12(4):e0176669 Epub 2017/04/28. 10.1371/journal.pone.0176669
    1. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology (Reading, England). 2002;148(Pt 1):257–66. Epub 2002/01/10. 10.1099/00221287-148-1-257 .
    1. Luna RA, Oezguen N, Balderas M, Venkatachalam A, Runge JK, Versalovic J, et al. Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder. Cellular and Molecular Gastroenterology and Hepatology. 2017;3(2):218–30. 10.1016/j.jcmgh.2016.11.008
    1. Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J. LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome. 2014;2(1):30 Epub 2014/01/01. 10.1186/2049-2618-2-30
    1. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods. 2013;10(10):996–8. 10.1038/nmeth.2604 .
    1. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584 10.7717/peerj.2584
    1. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research. 2013;41(Database issue):D590–6. 10.1093/nar/gks1219
    1. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome. 2018;6(1):196 10.1186/s40168-018-0575-4
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature methods. 2010;7(5):335–6. Epub 04/11. 10.1038/nmeth.f.303 .
    1. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics (Oxford, England). 2010;26(6):715–21. 10.1093/bioinformatics/btq041
    1. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5(1):27 10.1186/s40168-017-0237-y
    1. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6(1):226 10.1186/s40168-018-0605-2
    1. Cantey JB, Baird SD. Ending the Culture of Culture-Negative Sepsis in the Neonatal ICU. Pediatrics. 2017;140(4). Epub 2017/09/21. 10.1542/peds.2017-0044 .
    1. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP. Volume of blood required to detect common neonatal pathogens. The Journal of pediatrics. 1996;129(2):275–8. Epub 1996/08/01. 10.1016/s0022-3476(96)70254-8 .
    1. Millar M, Zhou W, Skinner R, Pizer B, Hennessy E, Wilks M, et al. Accuracy of bacterial DNA testing for central venous catheter-associated bloodstream infection in children with cancer. Health Technol Assess. 2011;15(7):1–114. Epub 2011/02/08. 10.3310/hta15070 [doi]. .
    1. Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. 2013;19(2):107–12. Epub 2012/08/29. 10.1111/j.1469-0691.2012.04001.x [doi]. .
    1. Pammi M, Liang R, Hicks J, Mistretta TA, Versalovic J. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans. BMC microbiology. 2013;13:257 10.1186/1471-2180-13-257
    1. Nishikawa K, Takasu A, Morita K, Tsumori H, Sakamoto T. Deposits on the intraluminal surface and bacterial growth in central venous catheters. J Hosp Infect. 2010;75(1):19–22. Epub 2010/03/17. doi: S0195-6701(09)00509-X [pii] 10.1016/j.jhin.2009.11.005 [doi]. .
    1. Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects contain bacterial ribosomal DNA? J Clin Microbiol. 2001;39(5):1956–9. Epub 2001/04/28. 10.1128/JCM.39.5.1956-1959.2001
    1. Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS microbiology reviews. 2015;39(4):567–91. Epub 2015/05/06. 10.1093/femsre/fuv013
    1. Schierwagen R, Alvarez-Silva C, Madsen MSA, Kolbe CC, Meyer C, Thomas D, et al. Circulating microbiome in blood of different circulatory compartments. Gut. 2018. Epub 2018/03/28. 10.1136/gutjnl-2018-316227 .
    1. Paisse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56(5):1138–47. Epub 2016/02/13. 10.1111/trf.13477 .
    1. Xu M, Yang Y, Zhou Y, Liu Z, Liu Y, He M. Metagenomics in pooled plasma, with identification of potential emerging infectious pathogens. Transfusion. 2018;58(3):633–7. Epub 2017/12/19. 10.1111/trf.14455 .
    1. Dinakaran V, Rathinavel A, Pushpanathan M, Sivakumar R, Gunasekaran P, Rajendhran J. Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS One. 2014;9(8):e105221 Epub 2014/08/19. 10.1371/journal.pone.0105221
    1. Van Leeuwen PA, Boermeester MA, Houdijk AP, Ferwerda CC, Cuesta MA, Meyer S, et al. Clinical significance of translocation. Gut. 1994;35(1 Suppl):S28–34. Epub 1994/01/01. 10.1136/gut.35.1_suppl.s28
    1. Gorski A, Wazna E, Dabrowska BW, Dabrowska K, Switala-Jelen K, Miedzybrodzki R. Bacteriophage translocation. FEMS immunology and medical microbiology. 2006;46(3):313–9. Epub 2006/03/24. 10.1111/j.1574-695X.2006.00044.x .
    1. Merlini E, Bai F, Bellistri GM, Tincati C, d'Arminio Monforte A, Marchetti G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One. 2011;6(4):e18580 Epub 2011/04/16. 10.1371/journal.pone.0018580
    1. Frances R, Gonzalez-Navajas JM, Zapater P, Munoz C, Cano R, Pascual S, et al. Translocation of bacterial DNA from Gram-positive microorganisms is associated with a species-specific inflammatory response in serum and ascitic fluid of patients with cirrhosis. Clinical and experimental immunology. 2007;150(2):230–7. Epub 2007/09/08. 10.1111/j.1365-2249.2007.03494.x
    1. Stewart CJ, Embleton ND, Marrs ECL, Smith DP, Fofanova T, Nelson A, et al. Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome. 2017;5(1):75 Epub 2017/07/14. 10.1186/s40168-017-0295-1
    1. Suresh GK, Edwards WH. Central line-associated bloodstream infections in neonatal intensive care: changing the mental model from inevitability to preventability. American journal of perinatology. 2012;29(1):57–64. Epub 2011/09/01. 10.1055/s-0031-1286182
    1. Stevens TP, Schulman J. Evidence-based approach to preventing central line-associated bloodstream infection in the NICU. Acta paediatrica (Oslo, Norway: 1992) Supplement. 2012;101(464):11–6. Epub 2012/03/21. 10.1111/j.1651-2227.2011.02547.x .
    1. Huskins WC. Quality improvement interventions to prevent healthcare-associated infections in neonates and children. Current opinion in pediatrics. 2012;24(1):103–12. Epub 2011/12/23. 10.1097/MOP.0b013e32834ebdc3 .
    1. Butler-O'Hara M, D'Angio CT, Hoey H, Stevens TP. An evidence-based catheter bundle alters central venous catheter strategy in newborn infants. The Journal of pediatrics. 2012;160(6):972–7 e2. Epub 2012/01/14. 10.1016/j.jpeds.2011.12.004 .
    1. Schulman J, Stricof R, Stevens TP, Horgan M, Gase K, Holzman IR, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatrics. 2011;127(3):436–44. Epub 2011/02/23. 10.1542/peds.2010-2873 .

Source: PubMed

3
Abonneren