Treatment Patterns and Outcomes in a Nationwide Cohort of Older and Younger Veterans with Waldenström Macroglobulinemia, 2006-2019

Hsu-Chih Chien, Deborah Morreall, Vikas Patil, Kelli M Rasmussen, Christina Yong, Chunyang Li, Deborah G Passey, Zachary Burningham, Brian C Sauer, Ahmad S Halwani, Hsu-Chih Chien, Deborah Morreall, Vikas Patil, Kelli M Rasmussen, Christina Yong, Chunyang Li, Deborah G Passey, Zachary Burningham, Brian C Sauer, Ahmad S Halwani

Abstract

Little is known about real-world treatment patterns and outcomes in Waldenström macroglobulinemia (WM) following the recent introduction of newer treatments, especially among older adults. We describe patterns of first-line (1 L) WM treatment in early (2006-2012) and modern (2013-2019) eras and report outcomes (overall response rate (ORR), overall survival (OS), progression-free survival (PFS), and adverse event (AE)-related discontinuation) in younger (≤70 years) and older (>70 years) populations. We followed 166 younger and 152 older WM patients who received 1 L treatment between January 2006 and April 2019 in the Veterans Health Administration. Median follow-up was 43.5 months (range: 0.6-147.2 months). Compared to the early era, older patients in the modern era achieved improved ORRs (early: 63.8%, modern: 72.3%) and 41% lower risk of death/progression (hazard ratio (HR) for PFS: 0.59, 95% CI (confidence interval): 0.36-0.95), with little change in AE-related discontinuation between eras (HR: 0.82, 95% CI: 0.4-1.7). In younger patients, the AE-related discontinuation risk increased almost fourfold (HR: 3.9, 95% CI: 1.1-14), whereas treatment effects did not change between eras (HR for OS: 1.4, 95% CI: 0.66-2.8; HR for PFS: 1.1, 95% CI: 0.67-1.7). Marked improvements in survival among older adults accompanied a profound shift in 1 L treatment patterns for WM.

Keywords: Waldenström macroglobulinemia; age groups; older adults; rare cancer; real-world evidence; treatment outcomes; treatment patterns.

Conflict of interest statement

A.H. has received research grant support from Bristol Myers Squibb, Kyowa Hakko Kirin, Seattle Genetics, Roche, Genentech, Miragen, Immunedesign, Takeda, Amgen, Pharmacyclics, and AbbVie. B.C.S. has received research grant support from Roche, Genentech, Pharmacyclics, and AbbVie. H.-C.C., D.M., V.P., K.M.R., C.Y., C.L., D.G.P. and Z.B. certify that they have no conflicts of interest to declare. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure A1
Figure A1
Number of patients receiving active first-line treatments for Waldenström macroglobulinemia per quarter-year, 2006 to 2019: (a) number of patients on active first-line treatments in younger population (70 years of age or younger at initiation of 1 L therapy); (b) number of patients on active first-line treatments in older population (older than 70 years of age at initiation of 1 L therapy).
Figure A2
Figure A2
Hazard ratios of overall survival, progression-free survival and discontinuation due to adverse events in patients receiving first-line treatments for Waldenström macroglobulinemia in early (2006 to 2012) and modern eras of younger (70 years of age or younger at initiation of 1 L therapy) and older (older than 70 years of age at initiation of 1 L therapy) populations, in primary and sensitivity analysis settings. AE: adverse event; CI: confidence interval; HR: hazard ratio; PFS: progression free survival; PFS2: progression free survival counting all deaths after lost of follow up as events for PFS (the second setting for sensitivity analyses); OS: overall survival; TTP: time to progression (the first setting of sensitivity analyses).
Figure 1
Figure 1
Cohort selection flowchart.
Figure 2
Figure 2
1 L treatment patterns in veterans with Waldenström macroglobulinemia, 2006–2019: (a) 1 L treatment pattern in younger patients (≤70 years of age at initiation of 1 L therapy); (b) 1 L treatment pattern in older patients (>70 years of age at initiation of 1 L therapy).1 L: first-line treatment; BDR: bortezomib and dexamethasone +/− rituximab; BR: bendamustine +/− rituximab; Chloram: chlorambucil; DRC: dexamethasone, rituximab, and cyclophosphamide; FCR: fludarabine and cyclophosphamide +/− rituximab; R: rituximab; RCHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone ± rituximab.
Figure 3
Figure 3
Treatment utilization trends in BDR, BR, ibrutinib, DCR, and single-agent rituximab, 2006–2019. BDR: bortezomib and dexamethasone +/− rituximab; BR: bendamustine +/− rituximab; DRC: dexamethasone, rituximab, and cyclophosphamide; R: rituximab.
Figure 4
Figure 4
Progression-free survival, overall survival, and adverse event-related discontinuation in veterans with Waldenström macroglobulinemia, 2006 to 2019. 1 L: first-line treatment; AE: adverse event; Early: early era, 2006–2012; Modern: modern era, 2013–2019; OS: overall survival; PFS: progression-free survival.

References

    1. Groves F.D., Travis L.B., Devesa S.S., Ries L.A., Fraumeni J.F., Jr. Waldenström’s macroglobulinemia: Incidence patterns in the United States, 1988–1994. Cancer. 1998;82:1078–1081. doi: 10.1002/(SICI)1097-0142(19980315)82:6<1078::AID-CNCR10>;2-3.
    1. Fonseca R., Hayman S. Waldenström macroglobulinaemia. Br. J. Haematol. 2007;138:700–720. doi: 10.1111/j.1365-2141.2007.06724.x.
    1. Kyle R.A., Larson D.R., McPhail E.D., Therneau T.M., Dispenzieri A., Kumar S., Kapoor P., Cerhan J.R., Rajkumar S.V. Fifty-year incidence of Waldenström macroglobulinemia in Olmsted County, Minnesota, from 1961 through 2010: A population-based study with complete case capture and hematopathologic review. Mayo Clin. Proc. 2018;93:739–746. doi: 10.1016/j.mayocp.2018.02.011.
    1. Castillo J.J., Olszewski A.J., Kanan S., Meid K., Hunter Z.R., Treon S.P. Overall survival and competing risks of death in patients with Waldenström macroglobulinaemia: An analysis of the Surveillance, Epidemiology and End Results database. Br. J. Haematol. 2015;169:81–89. doi: 10.1111/bjh.13264.
    1. Leblond V., Kastritis E., Advani R., Ansell S.M., Buske C., Castillo J.J., García-Sanz R., Gert Mz Kimby E., Kyriakou C. Treatment recommendations from the Eighth International Workshop on Waldenström’s Macroglobulinemia. Blood. 2016;128:1321–1328. doi: 10.1182/blood-2016-04-711234.
    1. Treon S.P., Gertz M.A., Dimopoulos M., Anagnostopoulos A., Blade J., Branagan A.R., Garcia-Sanz R., Johnson S., Kimby E., Leblond V., et al. Update on treatment recommendations from the Third International Workshop on Waldenstrom’s macroglobulinemia. Blood. 2006;107:3442–3446. doi: 10.1182/blood-2005-02-0833.
    1. Treon S.P., Xu L., Guerrera M.L., Jimenez C., Hunter Z.R., Liu X., Demos M., Gustine J., Chan G., Munshi M., et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J. Clin. Oncol. 2020;38:1198–1208. doi: 10.1200/JCO.19.02314.
    1. Rummel M.J., Niederle N., Maschmeyer G., Banat G.A., von Grünhagen U., Losem C., Kofahl-Krause D., Heil G., Welslau M., Balser C., et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: An open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381:1203–1210. doi: 10.1016/S0140-6736(12)61763-2.
    1. Dimopoulos M.A., Kastritis E., Owen R.G., Kyle R.A., Landgren O., Morra E., Leleu X., García-Sanz R., Munshi N., Anderson K.C., et al. Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus. Blood. 2014;124:1404–1411. doi: 10.1182/blood-2014-03-565135.
    1. Treon S.P., Ioakimidis L., Soumerai J.D., Patterson C.J., Sheehy P., Nelson M., Willen M., Matous J., Mattern J., 2nd, Diener J.G., et al. Primary therapy of Waldenström macroglobulinemia with bortezomib, dexamethasone, and rituximab: WMCTG clinical trial 05-180. J. Clin. Oncol. 2009;27:3830–3835. doi: 10.1200/JCO.2008.20.4677.
    1. Ghobrial I.M., Xie W., Padmanabhan S., Badros A., Rourke M., Leduc R., Chuma S., Kunsman J., Warren D., Poon T., et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenström Macroglobulinemia. Am. J. Hematol. 2010;85:670–674. doi: 10.1002/ajh.21788.
    1. Dimopoulos M.A., García-Sanz R., Gavriatopoulou M., Morel P., Kyrtsonis M.-C., Michalis E., Kartasis Z., Leleu X., Palladini G., Tedeschi A., et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): Long-term results of a phase 2 study of the European Myeloma Network (EMN) Blood. 2013;122:3276–3282. doi: 10.1182/blood-2013-05-503862.
    1. IMBRUVICA® Drugs@FDA: FDA-Approved Drugs. Published January 29, 2015. [(accessed on 13 September 2020)]; Available online: .
    1. Klabunde C.N., Potosky A.L., Legler J.M., Warren J.L. Development of a comorbidity index using physician claims data. J. Clin. Epidemiol. 2000;53:1258–1267. doi: 10.1016/S0895-4356(00)00256-0.
    1. Center for Drug Evaluation, Research Clinical Trial Endpoints for the Approval of Non-Small Cell Lung Cancer. [(accessed on 14 September 2020)]; Available online: .
    1. Wagner A.K., Soumerai S.B., Zhang F., Ross-Degnan D. Segmented regression analysis of interrupted time series studies in medication use research. J. Clin. Pharm. Ther. 2002;27:299–309. doi: 10.1046/j.1365-2710.2002.00430.x.
    1. Bernal J.L., Cummins S., Gasparrini A. Interrupted time series regression for the evaluation of public health interventions: A tutorial. Int. J. Epidemiol. 2016;46:348–355.
    1. Liang K.-Y., Zeger S.L. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22. doi: 10.1093/biomet/73.1.13.
    1. Buske C., Leblond V., Dimopoulos M., Kimby E., Jäger U., Dreyling M. Waldenström’s macroglobulinaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013;24:vi155–vi159. doi: 10.1093/annonc/mdt298.
    1. Dimopoulos M.A., Anagnostopoulos A., Kyrtsonis M.C., Zervas K., Tsatalas C., Kokkinis G., Repoussis P., Symeonidis A., Delimpasi S., Katodritou E., et al. Primary treatment of Waldenström macroglobulinemia with dexamethasone, rituximab, and cyclophosphamide. J. Clin. Oncol. 2007;25:3344–3349. doi: 10.1200/JCO.2007.10.9926.
    1. Dimopoulos M.A., Zervas C., Zomas A., Kiamouris C., Viniou N.A., Grigoraki V., Karkantaris C., Mitsouli C., Gika D., Christakis J., et al. Treatment of Waldenström’s macroglobulinemia with rituximab. J. Clin. Oncol. 2002;20:2327–2333. doi: 10.1200/JCO.2002.09.039.
    1. Lopez Bernal J., Cummins S., Gasparrini A. The use of controls in interrupted time series studies of public health interventions. Int. J. Epidemiol. 2018;47:2082–2093. doi: 10.1093/ije/dyy135.
    1. Dimopoulos M.A., Tedeschi A., Trotman J., Trotman J., García-Sanz R., Macdonald D., Leblond V., Mahe B., Herbaux C., Tam C., et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N. Engl. J. Med. 2018;378:2399–2410. doi: 10.1056/NEJMoa1802917.
    1. Kyle R.A., Treon S.P., Alexanian R., Barlogie B., Björkholm M., Dhodapkar M., Lister T.A., Merlini G., Morel P., Stone M., et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: Consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin. Oncol. 2003;30:116–120. doi: 10.1053/sonc.2003.50038.
    1. Varettoni M., Ferrari A., Frustaci A.M., Ferretti V.V., Rizzi R., Motta M., Piazza F., Merli M., Benevolo G., Visco C., et al. Younger patients with Waldenström macroglobulinemia exhibit low risk profile and excellent outcomes in the era of immunotherapy and targeted therapies. Am. J. Hematol. 2020;95:1473–1478. doi: 10.1002/ajh.25961.
    1. Buske C., Sadullah S., Kastritis E., Tedeschi A., García-Sanz R., Bolkun L., Leleu X., Willenbacher W., Hájek R., Minnema M.C., et al. Treatment and outcome patterns in European patients with Waldenström’s macroglobulinaemia: A large, observational, retrospective chart review. Lancet Haematol. 2018;5:e299–e309. doi: 10.1016/S2352-3026(18)30087-5.
    1. Zheng Y.-H., Xu L., Cao C., Feng J., Tang H., Shu M., Gao G., Chen X. Rituximab-based combination therapy in patients with Waldenström macroglobulinemia: A systematic review and meta-analysis. Onco Targets Ther. 2019;12:2751–2766. doi: 10.2147/OTT.S191179.
    1. Brandefors L., Melin B., Lindh J., Lundqvist K., Kimby E. Prognostic factors and primary treatment for Waldenström macroglobulinemia-a Swedish Lymphoma Registry study. Br. J. Haematol. 2018;183:564–577. doi: 10.1111/bjh.15558.
    1. Paludo J., Abeykoon J.P., Shreders A., Ansell S.M., Kumar S., Ailawadhi S., King R.L., Koehler A.B., Reeder C.B., Buadi F.K., et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenström macroglobulinemia. Ann. Hematol. 2018;97:1417–1425. doi: 10.1007/s00277-018-3311-z.
    1. Kastritis E., Leblond V., Dimopoulos M.A., Kimby E., Staber P., Kersten M.J., Tedeschi A., Buske C. ESMO Guidelines Committee. Waldenström’s macroglobulinaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018;29:iv41–iv50. doi: 10.1093/annonc/mdy146.
    1. Treon S.P., Xu L., Hunter Z. MYD88 Mutations and response to ibrutinib in Waldenström’s macroglobulinemia. N. Engl. J. Med. 2015;373:584–586. doi: 10.1056/NEJMc1506192.
    1. NCCN Clinical Practice Guidelines in Oncology. Waldenstrom’s Macroglobulinemia/Lymphoplasmacytic Lymphoma, Version 2.2016. [(accessed on 8 December 2020)];2016 Available online:
    1. Hawley S., Ali M.S., Berencsi K., Judge A., Prieto-Alhambra D. Sample size and power considerations for ordinary least squares interrupted time series analysis: A simulation study. Clin. Epidemiol. 2019;11:197–205. doi: 10.2147/CLEP.S176723.

Source: PubMed

3
Abonneren