Early fiberoptic bronchoscopy during non-invasive ventilation in patients with decompensated chronic obstructive pulmonary disease due to community-acquired-pneumonia

Raffaele Scala, Mario Naldi, Uberto Maccari, Raffaele Scala, Mario Naldi, Uberto Maccari

Abstract

Introduction: Inefficient clearance of copious respiratory secretion is a cause of non-invasive positive pressure ventilation (NPPV) failure, especially in chronic respiratory patients with community-acquired-pneumonia (CAP) and impaired consciousness. We postulated that in such a clinical scenario, when intubation and conventional mechanical ventilation (CMV) are strongly recommended, the suction of secretions with fiberoptic bronchoscopy (FBO) may increase the chance of NPPV success. The objective of this pilot study was, firstly, to verify the safety and effectiveness of early FBO during NPPV and, secondly, to compare the hospital outcomes of this strategy versus a CMV-based strategy in patients with decompensated chronic obstructive pulmonary disease (COPD) due to CAP who are not appropriate candidates for NPPV because of inefficient mucous clearance and hypercapnic encephalopathy (HE).

Methods: This is a 12-month prospective matched case-control study performed in one respiratory semi-intensive care unit (RSICU) with expertise in NPPV and in one intensive care unit (ICU). Fifteen acutely decompensated COPD patients with copious secretion retention and HE due to CAP undergoing NPPV in RSICU, and 15 controls (matched for arterial blood gases, acute physiology and chronic health evaluation score III, Kelly-Matthay scale, pneumonia extension and severity) receiving CMV in the ICU were studied.

Results: Two hours of NPPV significantly improved arterial blood gases, Kelly and cough efficiency scores without FBO-related complications. NPPV avoided intubation in 12/15 patients (80%). Improvement in arterial blood gases was similar in the two groups, except for a greater PaO2/fraction of inspired oxygen ratio with CMV. The rates of overall and septic complications, and of tracheostomy were lower in the NPPV group (20%, 20%, and 0%) versus the CMV group (80%, 60%, and 40%; P < 0.05). Hospital mortality, duration of hospitalisation and duration of ventilation were similar in the two groups.

Conclusions: In patients with decompensated COPD due to CAP who are candidates for CMV because of HE and inability to clear copious secretions, NPPV with early therapeutic FBO performed by an experienced team is a feasible, safe and effective alternative strategy.

Figures

Figure 1
Figure 1
Fiberoptic bronchoscopy. (a) The fiberoptic bronchoscopy (FBO)-noninvasive positive pressure ventilation (NPPV) procedure. (b) The trans-nasally introduction of the bronchoscope. F = fiberoptic bronchoscope; H = heated humidifier; M = mask; T = T-adapter; V = ventilator.
Figure 2
Figure 2
(a) Changes of Kelly--Matthay and (b) cough efficiency score after two hours of noninvasive ventilation (NPPV). Values are expressed as mean (standard deviation). * P < 0.005 vs. baseline.
Figure 3
Figure 3
Trend of mean values of arterial blood gases. Values shown for before (pre-MV), after two hours (2 h-MV) and at the end of mechanical ventilation (end-MV) in the noninvasive positive pressure ventilation (NPPV) (Rectangles; pre-MV: n.15; 2 h-MV: n.15; end-MV: n.11) and the conventional mechanical ventilation (CMV) group (circles; pre-MV: n.15; 2 h-MV: n.15; end-MV: n.8). Dashed lines depicted the individuals values of pH, partial pressure of arterial oxygen (PaO2)/fraction of inspired oxygen (FiO2), partial pressure of arterial carbon dioxide (PaCO2) of NPPV-treated patients. * P < 0.05 between the groups.

References

    1. Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting: where are we? Eur Respir J. 2008;31:874–886. doi: 10.1183/09031936.00143507.
    1. Nava S, Hill N. Non-invasive ventilation in acute respiratory failure. Lancet. 2009;374:250–259. doi: 10.1016/S0140-6736(09)60496-7.
    1. Soo Hoo GW, Santiago S, Williams AJ. Nasal mechanical ventilation for hypercapnic respiratory failure in chronic obstructive pulmonary disease: determinants of success and failure. Crit Care Med. 1994;22:1253–1261. doi: 10.1097/00003246-199408000-00009.
    1. Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L. SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med. 2001;163:874–880.
    1. Bellone A, Spagnolatti L, Massobrio M, Bellei E, Vinciguerra R, Barbieri A, Iori E, Bendinelli S, Nava S. Short term effect of expiration under positive pressure in patients with acute exacerbation of chronic obstructive pulmonary disease and mild acidosis requiring non-invasive positive pressure ventilation. Intensive Care Med. 2002;28:581–585. doi: 10.1007/s00134-002-1210-0.
    1. Vargas F, Bui HN, Boyer A, Salmi LR, Gbikpi-Benissan G, Guenard H, Gruson D, Hilbert G. Intrapulmonary percussive ventilation in acute exacerbations of COPD patients with mild respiratory acidosis: a randomized controlled trial [ISRCTN17802078] Crit Care. 2005;9:R382–389. doi: 10.1186/cc3724.
    1. Antonaglia V, Lucangelo U, Zin WA, Peratoner A, De Simoni L, Capitanio G, Pascotto S, Gullo A. Intrapulmonary percussive ventilation improves the outcome of patients with acute exacerbation of chronic obstructive pulmonary disease using a helmet. Crit Care Med. 2006;34:2940–2945.
    1. Diaz GG, Alcaraz AC, Talavera JC, Pérez PJ, Rodriguez AE, Cordoba FG, Hill NS. Noninvasive positive-pressure ventilation to treat hypercapnic coma secondary to respiratory failure. Chest. 2005;127:952–960. doi: 10.1378/chest.127.3.952.
    1. Scala R, Naldi M, Archinucci I, Coniglio G, Nava S. Noninvasive positive pressure ventilation in patients with acute exacerbations of COPD and varying levels of consciousness. Chest. 2005;128:1657–1666. doi: 10.1378/chest.128.3.1657.
    1. Scala R, Nava S, Conti G, Antonelli M, Naldi M, Archinucci I, Coniglio G, Hill NS. Noninvasive versus conventional ventilation to treat hypercapnic encephalopathy in COPD. Intensive Care Med. 2007;33:2101–2108. doi: 10.1007/s00134-007-0837-2.
    1. Confalonieri M, Potena A, Carbone G, Porta RD, Tolley EA, Meduri GU. Acute respiratory failure in patients with severe community-acquired pneumonia. A prospective randomized evaluation of noninvasive ventilation. Am J Respir Crit Care Med. 1999;160:1585–1591.
    1. Antonelli M, Conti G, Riccioni L, Meduri GU. Noninvasive positive-pressure ventilation via face mask during bronchoscopy with BAL in high-risk hypoxemic patients. Chest. 1996;110:724–728. doi: 10.1378/chest.110.3.724.
    1. Maitre B, Jaber S, Maggiore SM, Bergot E, Richard JC, Bakthiari H, Housset B, Boussignac G, Brochard L. Continuous positive airway pressure during fiberoptic bronchoscopy in hypoxemic patients. A randomized double-blind study using a new device. Am J Respir Crit Care Med. 2000;162:1063–1067.
    1. Antonelli M, Conti G, Rocco M, Arcangeli A, Cavaliere F, Proietti R, Meduri GU. Noninvasive positive-pressure ventilation vs. conventional oxygen supplementation in hypoxemic patients undergoing diagnostic bronchoscopy. Chest. 2002;121:1149–1154. doi: 10.1378/chest.121.4.1149.
    1. Da Conceiçao M, Genco G, Favier JC, Bidallier I, Pitti R. Fiberoptic bronchoscopy during NPPV in patients with chronic obstructive lung disease with hypoxemia and hypercapnia. Ann Fr Anesth Reanim. 2000;19:231–236.
    1. Antonelli M, Pennisi MA, Conti G, Bello G, Maggiore SM, Michetti V, Cavaliere F, Proietti R. Fiberoptic bronchoscopy during noninvasive positive pressure ventilation delivered by helmet. Intensive Care Med. 2003;29:126–129.
    1. Heunks LM, de Bruin CJ, Hoeven JG van der, Heijden HF van der. Non-invasive mechanical ventilation for diagnostic bronchoscopy using a new face mask: an observational feasibility study. Intensive Care Med. 2010;36:143–147. doi: 10.1007/s00134-009-1662-6.
    1. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS. GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001;163:1256–1276.
    1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, Torres A, Whitney CG. Infectious Diseases Society of America; American Thoracic Society. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27–S72. doi: 10.1086/511159.
    1. Kelly BJ, Matthay MA. Prevalence and severity of neurologic dysfunction in critically ill patients. Influence on need for continued mechanical ventilation. Chest. 1993;104:1818–1824. doi: 10.1378/chest.104.6.1818.
    1. Hall GJ, Gandevia B. Relationship of the loose cough sign to daily sputum volume. Observer variation in its detection. Br J Prev Soc Med. 1971;25:109–113.
    1. Meduri GU, Chastre J. The standardization of bronchoscopic techniques for ventilator-associated pneumonia. Chest. 1992;102:557S–564S. doi: 10.1378/chest.102.5_Supplement_1.557S.
    1. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, Sirio CA, Murphy DJ, Lotring T, Damiano A, Harrell FE. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100:1619–1636. doi: 10.1378/chest.100.6.1619.
    1. Conti G, Antonelli M, Navalesi P, Rocco M, Bufi M, Spadetta G, Meduri GU. Noninvasive vs. conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomized trial. Intensive Care Med. 2002;28:1701–1707. doi: 10.1007/s00134-002-1478-0.
    1. Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–1251. doi: 10.1016/0895-4356(94)90129-5.
    1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874. doi: 10.1097/00003246-199206000-00025.
    1. Squadrone E, Frigerio P, Fogliati C, Gregoretti C, Conti G, Antonelli M, Costa R, Baiardi P, Navalesi P. Noninvasive vs invasive ventilation in COPD patients with severe acute respiratory failure deemed to require ventilatory assistance. Intensive Care Med. 2004;30:1303–1310. doi: 10.1007/s00134-004-2320-7.
    1. Bertolini G, Confalonieri M, Rossi C, Rossi G, Simini B, Gorini M, Corrado A. GiViTI (Gruppo italiano per la Valutazione degli interventi in Terapia Intensiva) Group; Aipo (Associazione Italiana Pneumologi Ospedalieri) Group. Costs of the COPD. Differences between intensive care unit and respiratory intermediate care unit. Respir Med. 2005;99:894–900. doi: 10.1016/j.rmed.2004.11.014.
    1. Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–1992. doi: 10.1056/NEJM200006223422507.
    1. Hess DR. Airway clearance: physiology, pharmacology, techniques, and practice. Respir Care. 2007;52:1392–1396.
    1. Hess DR. Noninvasive positive-pressure ventilation and ventilator-associated pneumonia. Respir Care. 2005;50:924–929.
    1. Manali E, Papadopoulos A, Tsiodras S, Polychronopoulos V, Giamarellou H, Kanellakopoulou K. The impact on community acquired pneumonia empirical therapy of diagnostic bronchoscopic techniques. Scand J Infect Dis. 2008;40:286–292. doi: 10.1080/00365540701663373.
    1. Rasmussen TR, Korsgaard J, Møller JK, Sommer T, Kilian M. Quantitative culture of bronchoalveolar lavage fluid in community-acquired lower respiratory tract infections. Respir Med. 2001;95:885–890. doi: 10.1053/rmed.2001.1160.
    1. Jiménez P, Saldías F, Meneses M, Silva ME, Wilson MG, Otth L. Diagnostic fiberoptic bronchoscopy in patients with community-acquired pneumonia. Comparison between bronchoalveolar lavage and telescoping plugged catheter cultures. Chest. 1993;103:1023–1027. doi: 10.1378/chest.103.4.1023.
    1. Restrepo MI, Mortensen EM, Pugh JA, Anzueto A. COPD is associated with increased mortality in patients with community-acquired pneumonia. Eur Respir J. 2006;28:346–351. doi: 10.1183/09031936.06.00131905.
    1. Rello J, Rodriguez A, Torres A, Roig J, Sole-Violan J, Garnacho-Montero J, de la Torre MV, Sirvent JM, Bodi M. Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur Respir J. 2006;27:1210–1216. doi: 10.1183/09031936.06.00139305.
    1. Carlucci A, Delmastro M, Rubini F, Fracchia C, Nava S. Changes in the practice of non-invasive ventilation in treating COPD patients over 8 years. Intensive Care Med. 2003;29:419–425.

Source: PubMed

3
Abonneren