Comparative analysis of curative effect of bone marrow mesenchymal stem cell and bone marrow mononuclear cell transplantation for spastic cerebral palsy

Xuebin Liu, Xiaojun Fu, Guanghui Dai, Xiaodong Wang, Zan Zhang, Hongbin Cheng, Pei Zheng, Yihua An, Xuebin Liu, Xiaojun Fu, Guanghui Dai, Xiaodong Wang, Zan Zhang, Hongbin Cheng, Pei Zheng, Yihua An

Abstract

Background: Bone marrow mesenchymal stem cells (BMMSCs) and bone marrow mononuclear cells (BMMNCs) are both used to treat spastic cerebral palsy. However, the differences in therapeutic effect remain unknown.

Methods: A total of 105 patients with spastic cerebral palsy were enrolled and randomly assigned to three groups: the BMMSC group, the BMMNC group and the control group. Patients in both transplantation groups received four intrathecal cell injections. Patients in the control group received Bobath therapy. The gross motor function measure (GMFM) and the fine motor function measure (FMFM) were used to evaluate the therapeutic efficacy before transplantation and 3, 6, and 12 months after transplantation.

Results: Three months after cell transplantation, scores in the A dimension of GMFM and the A and C dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). Six months after cell transplantation, scores in the A, B dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are higher than those of the BMMNC and the control groups (P < 0.05). Twelve months after cell transplantation, scores in the A, B, and C dimensions of GMFM and the A, B, C, D, and E dimensions of FMFM scores in the BMMSC group are all higher than those of the BMMNC and the control groups (P < 0.05). No obvious adverse effects were investigated during follow-up.

Conclusions: BMMSC transplantation for the treatment of cerebral palsy is safe and feasible, and can improve gross motor and fine motor function significantly. In addition, compared with BMMNC, the motor function of children improved significantly in terms of gross motor and fine motor functions.

Keywords: Bone marrow mesenchymal stem cells; Bone marrow mononuclear cells; Spastic cerebral palsy.

Figures

Fig. 1
Fig. 1
Experimental design

References

    1. Shevell MI, Majnemer A, Morin I. Etiologic yield of spastic cerebral palsy: a contemporary case series. Pediatr Neurol. 2003;28(5):352–359. doi: 10.1016/S0887-8994(03)00006-7.
    1. Paneth N, Hong T, Korzeniewski S. The descriptive epidemiology of spastic cerebral palsy. Clin Perinatol. 2006;33(2):251–267. doi: 10.1016/j.clp.2006.03.011.
    1. Holt RL, Mikati MA. Care for child development: basic science rationale and effects of interventions. Pediatr Neurol. 2011;44(4):239–253. doi: 10.1016/j.pediatrneurol.2010.11.009.
    1. Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J, Paranjape A, Shetty A, Bhagwanani K, Biju H, et al. A clinical study of autologous bone marrow mononuclear cells for spastic cerebral palsy patients: a new frontier. Stem Cells Int. 2015;2015:905874. doi: 10.1155/2015/905874.
    1. Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB, Zhang J, Zhang WY, Wu JY, Xu Y. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovasc Res. 2013;10(1):11–20. doi: 10.2174/156720213804805936.
    1. Shroff G, Gupta A, Barthakur JK. Therapeutic potential of human embryonic stem cell transplantation in patients with spastic cerebral palsy. J Transl Med. 2014;12:318. doi: 10.1186/s12967-014-0318-7.
    1. Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:73–79. doi: 10.1016/j.brainres.2013.08.016.
    1. Tan H, Kang X, Lu S, Liu L. The therapeutic effects of bone marrow mesenchymal stem cells after optic nerve damage in the adult rat. Clin Interv Aging. 2015;10:487–490.
    1. Wang X, Cheng H, Hua R, Yang J, Dai G, Zhang Z, Wang R, Qin C, An Y. Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with spastic cerebral palsy: a preliminary clinical study. Cytotherapy. 2013;15(12):1549–1562. doi: 10.1016/j.jcyt.2013.06.001.
    1. Li M, Yu A, Zhang F, Dai G, Cheng H, Wang X, An Y. Treatment of one case of spastic cerebral palsy combined with posterior visual pathway injury using autologous bone marrow mesenchymal stem cells. J Transl Med. 2012;10:100. doi: 10.1186/1479-5876-10-100.
    1. Wang X, Hu H, Hua R, Yang J, Zheng P, Niu X, Cheng H, Dai G, Liu X, Zhang Z, et al. Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with spastic cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy. 2015;17(2):224–231. doi: 10.1016/j.jcyt.2014.09.010.
    1. Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013;1532:76–84. doi: 10.1016/j.brainres.2013.08.001.
    1. Knox V, Evans AL. Evaluation of the functional effects of a course of Bobath therapy in children with spastic cerebral palsy: a preliminary study. Dev Med Child Neurol. 2002;44(7):447–460. doi: 10.1111/j.1469-8749.2002.tb00306.x.
    1. Chen G, Wang Y, Xu Z, Fang F, Xu R, Hu X, Fan L, Liu H. Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with spastic cerebral palsy. J Transl Med. 2013;11:21. doi: 10.1186/1479-5876-11-21.
    1. Chen M, Li X, Zhang X, He X, Lai L, Liu Y, Zhu G, Li W, Li H, Fang Q, et al. The inhibitory effect of mesenchymal stem cell on blood-brain barrier disruption following intracerebral hemorrhage in rats: contribution of TSG-6. J Neuroinflamm. 2015;12:61. doi: 10.1186/s12974-015-0284-x.
    1. Dharmasaroja P. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci. 2009;16(1):12–20. doi: 10.1016/j.jocn.2008.05.006.
    1. Zeng X, Qiu XC, Ma YH, Duan JJ, Chen YF, Gu HY, Wang JM, Ling EA, Wu JL, Wu W, et al. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials. 2015;53:184–201. doi: 10.1016/j.biomaterials.2015.02.073.
    1. Suto N, Mieda T, Iizuka A, Nakamura K, Hirai H. Morphological and functional attenuation of degeneration of peripheral neurons by mesenchymal stem cell-conditioned medium in spinocerebellar ataxia type 1-knock-in mice. CNS Neurosci Ther. 2016;22(8):670–676. doi: 10.1111/cns.12560.
    1. Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, Li W, Xu Y. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res. 2011;1402:122–131. doi: 10.1016/j.brainres.2011.05.055.
    1. Feng M, Lu A, Gao H, Qian C, Zhang J, Lin T, Zhao Y. Safety of allogeneic umbilical cord blood stem cells therapy in patients with severe spastic cerebral palsy: a retrospective study. Stem Cells Int. 2015;2015:325652. doi: 10.1155/2015/325652.
    1. Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, et al. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int. 2013;2013:312501. doi: 10.1155/2013/312501.
    1. Bae KS, Park JB, Kim HS, Kim DS, Park DJ, Kang SJ. Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med J. 2011;52(3):401–412. doi: 10.3349/ymj.2011.52.3.401.
    1. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol. 1998;176(1):57–66. doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>;2-7.
    1. Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE. 2012;7(4):e35685. doi: 10.1371/journal.pone.0035685.
    1. Alvarez P, Carrillo E, Velez C, Hita-Contreras F, Martinez-Amat A, Rodriguez-Serrano F, Boulaiz H, Ortiz R, Melguizo C, Prados J, et al. Regulatory systems in bone marrow for hematopoietic stem/progenitor cells mobilization and homing. BioMed Res Int. 2013;2013:312656. doi: 10.1155/2013/312656.
    1. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–1822. doi: 10.1182/blood-2004-04-1559.
    1. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–1219. doi: 10.1161/CIRCRESAHA.108.176826.
    1. Liang X, Ding Y, Zhang Y, Tse HF, Lian Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transpl. 2014;23(9):1045–1059. doi: 10.3727/096368913X667709.
    1. Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64. doi: 10.1016/j.expneurol.2005.10.029.
    1. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36. doi: 10.1016/j.diabres.2010.12.010.
    1. Mazo M, Gavira JJ, Abizanda G, Moreno C, Ecay M, Soriano M, Aranda P, Collantes M, Alegria E, Merino J, et al. Transplantation of mesenchymal stem cells exerts a greater long-term effect than bone marrow mononuclear cells in a chronic myocardial infarction model in rat. Cell Transpl. 2010;19(3):313–328. doi: 10.3727/096368909X480323.

Source: PubMed

3
Abonneren