Serum proteomic profiling reveals fragments of MYOM3 as potential biomarkers for monitoring the outcome of therapeutic interventions in muscular dystrophies

Jérémy Rouillon, Jérôme Poupiot, Aleksandar Zocevic, Fatima Amor, Thibaut Léger, Camille Garcia, Jean-Michel Camadro, Brenda Wong, Robin Pinilla, Jérémie Cosette, Anna M L Coenen-Stass, Graham Mcclorey, Thomas C Roberts, Matthew J A Wood, Laurent Servais, Bjarne Udd, Thomas Voit, Isabelle Richard, Fedor Svinartchouk, Jérémy Rouillon, Jérôme Poupiot, Aleksandar Zocevic, Fatima Amor, Thibaut Léger, Camille Garcia, Jean-Michel Camadro, Brenda Wong, Robin Pinilla, Jérémie Cosette, Anna M L Coenen-Stass, Graham Mcclorey, Thomas C Roberts, Matthew J A Wood, Laurent Servais, Bjarne Udd, Thomas Voit, Isabelle Richard, Fedor Svinartchouk

Abstract

Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.

© The Author 2015. Published by Oxford University Press.

Figures

Figure 1.
Figure 1.
Western blot analysis of MYOM3 in pools of sera from subgroups of young (G1) and older (G2) DMD patients as well as young (G3) and older (G4) healthy subjects. (A) normal exposure; (B) boosted exposure. For explanation of groups and subgroups see Table 1. Fifty micrograms of serum proteins were loaded in each well.
Figure 2.
Figure 2.
Expression levels of serum MYOM3 fragments (A) and CK (B) in sera from the entire US cohort including 39 young and 17 older DMD patients as well as 29 young and 18 older healthy controls. To measure levels of the MYOM3 fragments, 50 µg of serum proteins were analysed by Western blot, then band intensities were quantified and expressed in arbitrary units (a.u). The CK enzyme activity in serum is expressed in international units per litre (IU/L). (C) Linear regression analysis between serum levels of the MYOM3 fragments and CK for young patients. (D) Linear regression analysis between serum levels of the MYOM3 fragments and CK for older DMD patients. The linearity of the response by Western blot for MYOM3 is demonstrated in Supplementary material, Figure S2.
Figure 3.
Figure 3.
MYOM3 fragments are specifically present in sera from animal models of DMD. (A) Western Blot analysis of serum from GRMD and healthy dogs. GRMD # 1–4: two months old; # 5–6: 18 months old. Healthy # 1–4: two months old; # 5–6: 18 months old dogs. DMD: control serum from DMD patient. (B) Western Blot analysis of serum from 6 months old mdx and WT mice. WT: C57/BL10 strain.
Figure 4.
Figure 4.
Upper panel: Western blot analysis of the MYOM3 fragments in serum from 3 LGMD2D patients (#1 is 35, #2 is 23 and #3 is 24 years old). Serum from two DMD patients (group G1) and three healthy individuals (group G4) were used as controls. Lower panel: Western blot analysis of the MYOM3 fragments in serum from mouse models of different muscular dystrophies at 1 and 6 months of age. WT: C57BL/6J mouse; mdx (model for DMD); KO-Sgcg: model for LGMD2C; KO-Sgca: model for LGMD2D; KO-Dysf: model for LGMD2B; KO-Capn3: model for LGMD2A.
Figure 5.
Figure 5.
Levels of the MYOM3 fragments (A, B) and CK-M (C, D) in serum from healthy (B, D) and mdx (A, C) mice at different ages as estimated by Western blot analysis. Intensity of the bands (in arbitrary units, a.u.) on different gels was normalized by the respective bands of the positive control (50 µg of serum proteins from the same mdx mouse present on each gel). Fifty micrograms of serum proteins were used for the analysis. Age 0 corresponds to newborn mice. Estimation of the CK-M level by Western blot analysis correlated well with the CK activity (Supplementary material, Fig. S3).
Figure 6.
Figure 6.
Levels of the MYOM3 fragments (A, B) and CK-M (C, D) in serum from healthy (B, D) and mdx (A, C) mice at different time after physical exercise estimated by Western blot analysis. Band intensity on different gels was normalized by the respective bands of the positive control (50 µg of serum proteins from the same mdx mouse present on each gel). Fifty micrograms of mouse serum were used for the analysis.
Figure 7.
Figure 7.
Effect of antisense oligonucleotide-mediated exon-skipping therapy in mdx mice on the serum levels of the MYOM3 fragments and CK-M. Twelve 12-week-old male mdx mice were treated with a single 12.5 mg/kg intravenous dose of Pip6a-PMO. Two, 4 and 8 weeks after injections the animals were sacrificed by groups of four mice and quadriceps and blood samples were taken for analysis. Dystrophin restoration in quadriceps muscles was monitored by Western blot analysis (A) and the efficiency of exon skipping by qPCR analysis (B) (See Materials and Methods section for the details). Levels of the MYOM3 fragments (C) and CK-M (D) were measured by Western blot analysis, and then band intensities were quantified and expressed in arbitrary units (a.u). Additional data confirming the robustness of dystrophin quantification are presented in Supplementary material, Figure S4. (E): Raw P-values (Student's t-test) for the comparison of MYOM3 and CK levels between different groups of mice at different time points. The values below the threshold 0.01 are in yellow, and below 0.05 are in pink.
Figure 8.
Figure 8.
Comparison of different assays for the follow-up of the gene therapy treatment in KO-Sgca mice. (A) Histological analyses (upper panel: HPS stain; lower panel: immunodetection of α-sarcoglycan) of gastrocnemius muscles after treatment with increasing doses of rAAV coding for huSgca (1e11, 5e11 and 1e12 vg). (B) Quantitative analysis of α-sarcoglycan positive fibres after the treatments. (C) Restoration of muscular strength (escape test) 83 days after the treatment. (D) Serum CK and (E) MYOM3 fragments levels at different time after the treatment (mean ± SEM). (F) Raw P-values (Student's t-test) for the comparison of MYOM3 and CK levels between different groups of mice at different time points. The values below the threshold 0.01 are in pink, and below 0.05 are in yellow. PBS, 1e11, 5e11 and 1e12: KO-Sgca mice injected with PBS or the respective dose of the vector. WT: C57BL/6J control mice injected with PBS. Levels of the MYOM3 fragments and CK-M were estimated biweekly by Western blot analysis.

References

    1. Ervasti J.M., Ohlendieck K., Kahl S.D., Gaver M.G., Campbell K.P. (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature, 345, 315–319.
    1. Cullen M.J., Mastaglia F.L. (1980) Morphological changes in dystrophic muscle. Br. Med. Bull., 36, 145–152.
    1. Poysky J. (2007) Behavior patterns in Duchenne muscular dystrophy: report on the Parent Project Muscular Dystrophy behavior workshop 8–9 of December 2006, Philadelphia, USA. Neuromuscul. Disord., 17, 986–994.
    1. Melacini P., Fanin M., Duggan D.J., Freda M.P., Berardinelli A., Danieli G.A., Barchitta A., Hoffman E.P., Dalla Volta S., Angelini C. (1999) Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle Nerve, 22, 473–479.
    1. Barresi R., Di Blasi C., Negri T., Brugnoni R., Vitali A., Felisari G., Salandi A., Daniel S., Cornelio F., Morandi L., Mora M. (2000) Disruption of heart sarcoglycan complex and severe cardiomyopathy caused by beta sarcoglycan mutations. J. Med. Genet., 37, 102–107.
    1. Bowles D.E., McPhee S.W., Li C., Gray S.J., Samulski J.J., Camp A.S., Li J., Wang B., Monahan P.E., Rabinowitz J.E. et al. (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol. Ther., 20, 443–455.
    1. Cirak S., Arechavala-Gomeza V., Guglieri M., Feng L., Torelli S., Anthony K., Abbs S., Garralda M.E., Bourke J., Wells D.J. et al. (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet, 378, 595–605.
    1. Goemans N.M., Tulinius M., van den Akker J.T., Burm B.E., Ekhart P.F., Heuvelmans N., Holling T., Janson A.A., Platenburg G.J., Sipkens J.A. et al. (2011) Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med., 364, 1513–1522.
    1. Flanigan K.M., Voit T., Rosales X.Q., Servais L., Kraus J.E., Wardell C., Morgan A., Dorricott S., Nakielny J., Quarcoo N. et al. (2014) Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: results of a double-blind randomized clinical trial. Neuromuscul. Disord., 24, 16–24.
    1. Voit T., Topaloglu H., Straub V., Muntoni F., Deconinck N., Campion G., De Kimpe S.J., Eagle M., Guglieri M., Hood S. et al. (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol., 13, 987–996.
    1. Finkel R.S., Flanigan K.M., Wong B., Bonnemann C., Sampson J., Sweeney H.L., Reha A., Northcutt V.J., Elfring G., Barth J. et al. (2013) Phase 2a study of ataluren-mediated dystrophin production in patients with nonsense mutation Duchenne muscular dystrophy. PloS one, 8, e81302.
    1. Bushby K., Finkel R., Wong B., Barohn R., Campbell C., Comi G.P., Connolly A.M., Day J.W., Flanigan K.M., Goemans N. et al. (2014) Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve, 50, 477–487.
    1. Mendell J.R., Rodino-Klapac L.R., Rosales X.Q., Coley B.D., Galloway G., Lewis S., Malik V., Shilling C., Byrne B.J., Conlon T. et al. (2010) Sustained alpha-sarcoglycan gene expression after gene transfer in limb-girdle muscular dystrophy, type 2D. Ann. Neurol., 68, 629–638.
    1. Herson S., Hentati F., Rigolet A., Behin A., Romero N.B., Leturcq F., Laforet P., Maisonobe T., Amouri R., Haddad H. et al. (2012) A phase I trial of adeno-associated virus serotype 1-gamma-sarcoglycan gene therapy for limb girdle muscular dystrophy type 2C. Brain, 135, 483–492.
    1. Berard C., Payan C., Hodgkinson I., Fermanian J. (2005) A motor function measure for neuromuscular diseases. Construction and validation study. Neuromuscul. Disord., 15, 463–470.
    1. Lue Y.J., Lin R.F., Chen S.S., Lu Y.M. (2009) Measurement of the functional status of patients with different types of muscular dystrophy. Kaohsiung J. Med. Sci., 25, 325–333.
    1. Servais L., Deconinck N., Moraux A., Benali M., Canal A., Van Parys F., Vereecke W., Wittevrongel S., Mayer M., Desguerre I. et al. (2013) Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscul. Disord., 23, 139–148.
    1. Wokke B.H., Bos C., Reijnierse M., van Rijswijk C.S., Eggers H., Webb A., Verschuuren J.J., Kan H.E. (2013) Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J. Magn. Reson. Imaging, 38, 619–624.
    1. Cacchiarelli D., Legnini I., Martone J., Cazzella V., D'Amico A., Bertini E., Bozzoni I. (2011) miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol. Med., 3, 258–265.
    1. Vignier N., Amor F., Fogel P., Duvallet A., Poupiot J., Charrier S., Arock M., Montus M., Nelson I., Richard I. et al. (2013) Distinctive serum miRNA profile in mouse models of striated muscular pathologies. PloS one, 8, e55281.
    1. Roberts T.C., Godfrey C., McClorey G., Vader P., Briggs D., Gardiner C., Aoki Y., Sargent I., Morgan J.E., Wood M.J. (2013) Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res., 41, 9500–9513.
    1. Rouillon J., Zocevic A., Leger T., Garcia C., Camadro J.M., Udd B., Wong B., Servais L., Voit T., Svinartchouk F. (2014) Proteomics profiling of urine reveals specific titin fragments as biomarkers of Duchenne muscular dystrophy. Neuromuscul. Disord., 24, 563–573.
    1. Zatz M., Rapaport D., Vainzof M., Passos-Bueno M.R., Bortolini E.R., Pavanello Rde C., Peres C.A. (1991) Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. J. Neurol. Sci., 102, 190–196.
    1. Gasper M.C., Gilchrist J.M. (2005) Creatine kinase: a review of its use in the diagnosis of muscle disease. Med. Health R. I., 88, 398, 400–394.
    1. Mendell J.R., Shilling C., Leslie N.D., Flanigan K.M., al-Dahhak R., Gastier-Foster J., Kneile K., Dunn D.M., Duval B., Aoyagi A. et al. (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann. Neurol., 71, 304–313.
    1. Meng Z., Veenstra T.D. (2007) Proteomic analysis of serum, plasma, and lymph for the identification of biomarkers. Proteomics Clin. Appl., 1, 747–757.
    1. Moat S.J., Bradley D.M., Salmon R., Clarke A., Hartley L. (2013) Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur. J. Hum. Genet., 21, 1049–1053.
    1. Hathout Y., Marathi R.L., Rayavarapu S., Zhang A., Brown K.J., Seol H., Gordish-Dressman H., Cirak S., Bello L., Nagaraju K. et al. (2014) Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum. Mol. Genet., 23, 6458–6469.
    1. Schoenauer R., Lange S., Hirschy A., Ehler E., Perriard J.C., Agarkova I. (2008) Myomesin 3, a novel structural component of the M-band in striated muscle. J. Mol. Biol., 376, 338–351.
    1. Kornegay J.N., Bogan J.R., Bogan D.J., Childers M.K., Li J., Nghiem P., Detwiler D.A., Larsen C.A., Grange R.W., Bhavaraju-Sanka R.K. et al. (2012) Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm. Genome, 23, 85–108.
    1. Richard I., Roudaut C., Marchand S., Baghdiguian S., Herasse M., Stockholm D., Ono Y., Suel L., Bourg N., Sorimachi H. et al. (2000) Loss of calpain 3 proteolytic activity leads to muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear factor kappaB pathway perturbation in mice. J. Cell Biol., 151, 1583–1590.
    1. Lostal W., Bartoli M., Bourg N., Roudaut C., Bentaib A., Miyake K., Guerchet N., Fougerousse F., McNeil P., Richard I. (2010) Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer. Hum. Mol. Genet., 19, 1897–1907.
    1. Hack A.A., Ly C.T., Jiang F., Clendenin C.J., Sigrist K.S., Wollmann R.L., McNally E.M. (1998) Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J. Cell Biol., 142, 1279–1287.
    1. Duclos F., Straub V., Moore S.A., Venzke D.P., Hrstka R.F., Crosbie R.H., Durbeej M., Lebakken C.S., Ettinger A.J., van der Meulen J. et al. (1998) Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J. Cell Biol., 142, 1461–1471.
    1. Cullen M.J., Jaros E. (1988) Ultrastructure of the skeletal muscle in the X chromosome-linked dystrophic (mdx) mouse. Comparison with Duchenne muscular dystrophy. Acta Neuropathol., 77, 69–81.
    1. McArdle A., Edwards R.H., Jackson M.J. (1994) Time course of changes in plasma membrane permeability in the dystrophin-deficient mdx mouse. Muscle Nerve, 17, 1378–1384.
    1. Wooddell C.I., Zhang G., Griffin J.B., Hegge J.O., Huss T., Wolff J.A. (2010) Use of Evans blue dye to compare limb muscles in exercised young and old mdx mice. Muscle Nerve, 41, 487–499.
    1. Brussee V., Tardif F., Tremblay J.P. (1997) Muscle fibers of mdx mice are more vulnerable to exercise than those of normal mice. Neuromuscul. Disord., 7, 487–492.
    1. Vilquin J.T., Brussee V., Asselin I., Kinoshita I., Gingras M., Tremblay J.P. (1998) Evidence of mdx mouse skeletal muscle fragility in vivo by eccentric running exercise. Muscle Nerve, 21, 567–576.
    1. Webster C., Silberstein L., Hays A.P., Blau H.M. (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell, 52, 503–513.
    1. Yin H., Saleh A.F., Betts C., Camelliti P., Seow Y., Ashraf S., Arzumanov A., Hammond S., Merritt T., Gait M.J. et al. (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol. Ther., 19, 1295–1303.
    1. Betts C., Saleh A.F., Arzumanov A.A., Hammond S.M., Godfrey C., Coursindel T., Gait M.J., Wood M.J. (2012) Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With Improved Cardiac Exon Skipping Activity for DMD Treatment. Mol. Ther. Nucleic Acids, 1, e38.
    1. Jearawiriyapaisarn N., Moulton H.M., Sazani P., Kole R., Willis M.S. (2010) Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers. Cardiovasc. Res., 85, 444–453.
    1. Duguez S., Duddy W., Johnston H., Laine J., Le Bihan M.C., Brown K.J., Bigot A., Hathout Y., Butler-Browne G., Partridge T. (2013) Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell. Mol. Life Sci., 70, 2159–2174.
    1. Mussini E., Cornelio F., Colombo L., De Ponte G., Giudici G., Cotellessa L., Marcucci F. (1984) Increased myofibrillar protein catabolism in duchenne muscular dystrophy measured by 3-methylhistidine excretion in the urine. Muscle Nerve, 7, 388–391.
    1. McKeran R.O., Halliday D., Purkiss P. (1977) Increased myofibrillar protein catabolism in Duchenne muscular dystrophy measured by 3-methylhistidine excretion in the urine. J. Neurol. Neurosurg. Psychiatry, 40, 979–981.
    1. Carlson C.G., Rutter J., Bledsoe C., Singh R., Hoff H., Bruemmer K., Sesti J., Gatti F., Berge J., McCarthy L. (2010) A simple protocol for assessing inter-trial and inter-examiner reliability for two noninvasive measures of limb muscle strength. J. Neurosci. Methods, 186, 226–230.
    1. Kobayashi Y.M., Rader E.P., Crawford R.W., Campbell K.P. (2012) Endpoint measures in the mdx mouse relevant for muscular dystrophy pre-clinical studies. Neuromuscul. Disord., 22, 34–42.
    1. Hathout Y., Marathi R.L., Rayavarapu S., Zhang A., Brown K.J., Seol H., Gordish-Dressman H., Cirak S., Bello L., Nagaraju K. et al. (2014) Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum. Mol. Genet., 23, 6458–6469.
    1. Mendell J.R., Lloyd-Puryear M. (2013) Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve, 48, 21–26.
    1. Turner D.C., Wallimann T., Eppenberger H.M. (1973) A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. Proc. Natl. Acad. Sci. U. S. A., 70, 702–705.
    1. Wallimann T., Moser H., Eppenberger H.M. (1983) Isoenzyme-specific localization of M-line bound creatine kinase in myogenic cells. J. Muscle Res. Cell Motil., 4, 429–441.
    1. Stolz M., Wallimann T. (1998) Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK. J. Cell Sci., 111(Pt 9), 1207–1216.
    1. He B., Tang R.H., Weisleder N., Xiao B., Yuan Z., Cai C., Zhu H., Lin P., Qiao C., Li J. et al. (2012) Enhancing muscle membrane repair by gene delivery of MG53 ameliorates muscular dystrophy and heart failure in delta-Sarcoglycan-deficient hamsters. Mol. Ther., 20, 727–735.
    1. Masters C.J., Reid S., Don M. (1987) Glycolysis--new concepts in an old pathway. Mol. Cell. Biochem., 76, 3–14.
    1. Gizak A., Rakus D., Dzugaj A. (2003) Immunohistochemical localization of human fructose-1,6-bisphosphatase in subcellular structures of myocytes. Histol. Histopathol., 18, 135–142.
    1. Wang Y., Kinzie E., Berger F.G., Lim S.K., Baumann H. (2001) Haptoglobin, an inflammation-inducible plasma protein. Redox Rep., 6, 379–385.
    1. Le Borgne F., Guyot S., Logerot M., Beney L., Gervais P., Demarquoy J. (2012) Exploration of lipid metabolism in relation with plasma membrane properties of Duchenne muscular dystrophy cells: influence of L-carnitine. PloS one, 7, e49346.
    1. Stapleton D.I., Lau X., Flores M., Trieu J., Gehrig S.M., Chee A., Naim T., Lynch G.S., Koopman R. (2014) Dysfunctional muscle and liver glycogen metabolism in mdx dystrophic mice. PloS one, 9, e91514.
    1. Agarkova I., Perriard J.C. (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol., 15, 477–485.
    1. Lange S., Himmel M., Auerbach D., Agarkova I., Hayess K., Furst D.O., Perriard J.C., Ehler E. (2005) Dimerisation of myomesin: implications for the structure of the sarcomeric M-band. J. Mol. Biol., 345, 289–298.
    1. Schoenauer R., Bertoncini P., Machaidze G., Aebi U., Perriard J.C., Hegner M., Agarkova I. (2005) Myomesin is a molecular spring with adaptable elasticity. J. Mol. Biol., 349, 367–379.
    1. Alderton J.M., Steinhardt R.A. (2000) How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc. Med., 10, 268–272.
    1. Cai C., Masumiya H., Weisleder N., Matsuda N., Nishi M., Hwang M., Ko J.K., Lin P., Thornton A., Zhao X. et al. (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat. Cell Biol., 11, 56–64.
    1. Carpenter S., Karpati G. (1979) Duchenne muscular dystrophy: plasma membrane loss initiates muscle cell necrosis unless it is repaired. Brain, 102, 147–161.
    1. Lange S., Xiang F., Yakovenko A., Vihola A., Hackman P., Rostkova E., Kristensen J., Brandmeier B., Franzen G., Hedberg B. et al. (2005) The kinase domain of titin controls muscle gene expression and protein turnover. Science, 308, 1599–1603.
    1. Roberts T.C., Blomberg K.E., McClorey G., El Andaloussi S., Godfrey C., Betts C., Coursindel T., Gait M.J., Smith C.I., Wood M.J. (2012) Expression analysis in multiple muscle groups and serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for therapy. Mol. Ther. Nucleic Acids, 1, e39.
    1. Ayoglu B., Chaouch A., Lochmuller H., Politano L., Bertini E., Spitali P., Hiller M., Niks E.H., Gualandi F., Ponten F. et al. (2014) Affinity proteomics within rare diseases: a BIO-NMD study for blood biomarkers of muscular dystrophies. EMBO Mol. Med., 6, 918–936.
    1. Chapman V.M., Miller D.R., Armstrong D., Caskey C.T. (1989) Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. Proc. Natl. Acad. Sci. U. S. A., 86, 1292–1296.
    1. Laure L., Suel L., Roudaut C., Bourg N., Ouali A., Bartoli M., Richard I., Daniele N. (2009) Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J., 276, 669–684.
    1. Boisgerault F., Gross D.A., Ferrand M., Poupiot J., Darocha S., Richard I., Galy A. (2013) Prolonged gene expression in muscle is achieved without active immune tolerance using microrRNA 142.3p-regulated rAAV gene transfer. Hum. Gene Ther., 24, 393–405.
    1. Smith R.H., Levy J.R., Kotin R.M. (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol. Ther., 17, 1888–1896.
    1. Carlson C.G., Makiejus R.V. (1990) A noninvasive procedure to detect muscle weakness in the mdx mouse. Muscle Nerve, 13, 480–484.
    1. Fougerousse F., Bartoli M., Poupiot J., Arandel L., Durand M., Guerchet N., Gicquel E., Danos O., Richard I. (2007) Phenotypic correction of alpha-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol. Ther., 15, 53–61.

Source: PubMed

3
Abonneren