Maintenance Negative Pressure Ventilation Improves Survival in COPD Patients with Exercise Desaturation

Hung-Yu Huang, Chun-Yu Lo, Lan-Yan Yang, Fu-Tsai Chung, Te-Fang Sheng, Horng-Chyuan Lin, Chang-Wei Lin, Yu-Chen Huang, Chee-Jen Chang, Kian Fan Chung, Chun-Hua Wang, Hung-Yu Huang, Chun-Yu Lo, Lan-Yan Yang, Fu-Tsai Chung, Te-Fang Sheng, Horng-Chyuan Lin, Chang-Wei Lin, Yu-Chen Huang, Chee-Jen Chang, Kian Fan Chung, Chun-Hua Wang

Abstract

Negative pressure ventilation (NPV), when used as an adjuvant to pulmonary rehabilitation, improves lung function, increases exercise capacity, and reduces exacerbations. The aim of this study was to determine whether maintenance NPV improves long-term clinical outcomes and reduces mortality in patients with chronic obstructive pulmonary disease (COPD). Between 2003 and 2009, 341 patients were treated for COPD either with or without hospital-based NPV. We measured forced expiratory volume in one second (FEV1), 6-min walking distance (6MWD), and oxygen saturation by pulse oximetry (SpO2) during a 6-min walk test (6MWT) every 3-6 months. Desaturation (D) during the 6MWT was defined as a reduction in SpO2 of ≥10% from baseline. The NPV group had a better survival outcome than the Non-NPV group. The 8-year survival probabilities for the NPV and Non-NPV groups were 60% and 20%, respectively (p < 0.01). Baseline desaturation was a significant risk factor for death, and the risk of death increased with desaturation severity (SpO2 80~89: hazard ratios (HR) 2.7, 95% confidence interval (CI) 1.4-5.3; SpO2 < 80: HR 3.1, 95% CI 1.3-7.4). The NPV group had a slower decline in lung function and 6MWD. The NPV + D and Non-NPV+D had a threefold and fourfold increase in the risks of all-cause mortality compared with the NPV-ND, respectively. Maintenance non-invasive NPV reduced long-term mortality in COPD patients. The desaturating COPD patients had an increased mortality risk compared with non-desaturating COPD patients.

Keywords: 6-min walk test; chronic obstructive pulmonary disease; desaturation; maintenance negative pressure ventilation; mortality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study flowchart. Abbreviations: COPD: chronic obstructive pulmonary disease; PR: pulmonary rehabilitation; 6MWT: 6-min walk test.
Figure 2
Figure 2
Kaplan–Meier survival curves for the effect of maintenance negative pressure ventilation (NPV) on 8-year all-cause mortality of the cohort: (a) unadjusted, (b) after adjustment for sex, age, body mass index, smoking, Charlson comorbidity score, forced expiratory volume in the first second at baseline, exacerbations rate, and 6-min walk distance. Significance was determined by using the log-rank test. Abbreviations: D: desaturation, ND: non- desaturation.
Figure 3
Figure 3
Kaplan–Meier survival curves for the effect of maintenance negative pressure ventilation (NPV) and desaturation on the 8-year all-cause mortality of the cohort. Abbreviations: D: desaturation, ND: non-desaturation. The p-value is indicated.
Figure 4
Figure 4
The frequency of emergency room (ER) visits and hospitalization rates is indicated as times per year. The p value is indicated. * p < 0.05, ** p < 0.01, *** p < 0.001.
Figure 5
Figure 5
Modeled forced expiratory volume in one second (FEV1) over time in volume of FEV1 (mL) (a) and in predicted value of FEV1 (pred.%) (b). Abbreviations: D: desaturation, ND: non-desaturation.
Figure 6
Figure 6
Modeled 6-min walk distance (meter, M) (a) and distance-saturation product (M %) (b) over time.

References

    1. Beckett E.L., Stevens R.L., Jarnicki A.G., Kim R.Y., Hanish I., Hansbro N.G., Deane A., Keely S., Horvat J.C., Yang M., et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J. Allergy Clin. Immunol. 2013;131:752–762. doi: 10.1016/j.jaci.2012.11.053.
    1. ATS committee on proficiency standards for clinical pulmonary function laboratories ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002;166:111–117. doi: 10.1164/ajrccm.166.1.at1102.
    1. Takigawa N., Tada A., Soda R., Date H., Yamashita M., Endo S., Takahashi S., Kawata N., Shibayama T., Hamada N., et al. Distance and oxygen desaturation in 6-min walk test predict prognosis in COPD patients. Respir. Med. 2007;101:561–567. doi: 10.1016/j.rmed.2006.06.017.
    1. Casanova C., Cote C., Marin J.M., Pinto-Plata V., de Torres J.P., Aguirre-Jaíme A., Vassaux C., Celli B.R. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest. 2008;134:746–752. doi: 10.1378/chest.08-0520.
    1. Golpe R., Perez-de-Llano L.A., Mendez-Marote L., Veres-Racamonde A. Prognostic value of walk distance, work, oxygen saturation, and dyspnea during 6-min walk test in COPD patients. Respir. Care. 2013;58:1329–1334. doi: 10.4187/respcare.02290.
    1. Waatevik M., Johannessen A., Gomez Real F., Aanerud M., Hardie J.A., Bakke P.S., Lind Eagan T.M. Oxygen desaturation in 6-min walk test is a risk factor for adverse outcomes in COPD. Eur. Respir. J. 2016;48:82–91. doi: 10.1183/13993003.00975-2015.
    1. Kent B.D., Mitchell P.D., McNicholas W.T. Hypoxemia in patients with COPD: Cause, effects, and disease progression. Int. J. Chron. Obstr. Pulm. Dis. 2011;6:199–208.
    1. Van Meerhaeghe A., Sergysels R. Control of breathing during exercise in patients with chronic airflow limitation with or without hypercapnia. Chest. 1983;84:565–570. doi: 10.1378/chest.84.5.565.
    1. Lacasse Y., Lecours R., Pelletier C., Bégin R., Maltais F. Randomised trial of ambulatory oxygen in oxygen-dependent COPD. Eur. Respir. J. 2005;25:1032–1038. doi: 10.1183/09031936.05.00113504.
    1. Gorini M., Corrado A., Villella G., Ginanni R., Augustynen A., Tozzi D. Physiologic effects of negative pressure ventilation in acute exacerbation of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001;163:1614–1618. doi: 10.1164/ajrccm.163.7.2012079.
    1. Gorini M., Villella G., Ginanni R., Augustynen A., Tozzi D., Corrado A. Effect of assist negative pressure ventilation by microprocessor based iron lung on breathing effort. Thorax. 2002;57:258–262. doi: 10.1136/thorax.57.3.258.
    1. Ho S.C., Lin H.C., Kuo H.P., Chen L.F., Sheng T.F., Jao W.C., Wang C.H., Lee K.Y. Exercise training with negative pressure ventilation improves exercise capacity in patients with severe restrictive lung disease: A prospective controlled study. Respir. Res. 2013;14:22. doi: 10.1186/1465-9921-14-22.
    1. Huang H.Y., Chou P.C., Joa W.C., Chen L.F., Sheng T.F., Lin H.C., Yang L.Y., Pan Y.B., Chung F.T., Wang C.H., et al. Pulmonary rehabilitation coupled with negative pressure ventilation decreases decline in lung function, hospitalizations, and medical cost in COPD: A 5-year study. Medicine (Baltimore) 2016;95:e5119. doi: 10.1097/MD.0000000000005119.
    1. Martinez F.J., Foster G., Curtis J.L., Criner G., Weinmann G., Fishman A., DeCamp M.M., Benditt J., Sciurba F., Make B., et al. Predictors of mortality in patients with emphysema and severe airflow obstruction. Am. J. Respir. Crit. Care Med. 2006;173:1326–1334. doi: 10.1164/rccm.200510-1677OC.
    1. Hjalmarsen A., Brenn T., Jongsma Risberg M., Meisler Antonsen K., Kristiansen Benum E., Aaseboe U. Retrospective survival in elderly COPD patients receiving pulmonary rehabilitation; a study including maintenance rehabilitation. BMC Res. Notes. 2014;7:210. doi: 10.1186/1756-0500-7-210.
    1. Connor M.C., O’Shea F.D., O’Driscoll M.F., Concannon D., McDonnell T.J. Efficacy of pulmonary rehabilitation in an Irish population. Ir. Med. J. 2001;94:46–48.
    1. Gerardi D.A., Lovett L., Benoit-Connors M.L., Reardon J.Z., ZuWallack R.L. Variables related to increased mortality following out-patient pulmonary rehabilitation. Eur. Respir. J. 1996;9:431–435. doi: 10.1183/09031936.96.09030431.
    1. Hakamy A., Bolton C.E., McKeever T.M. The effect of pulmonary rehabilitation on mortality, balance, and risk of fall in stable patients with chronic obstructive pulmonary disease. Chron. Respir. Dis. 2017;14:54–62. doi: 10.1177/1479972316661925.
    1. Pauwells R.A., Buist S., Calverley P.M.A., Jenkins C.R., Hurd S.S., The GOLD Scientific Committee (NHLBI-WHO workshop summary) Global strategy for the diagnosis, management, and prevention of chronic obstructive disease. Am. J. Respir. Crit. Care. Med. 2001;163:1256–1276. doi: 10.1164/ajrccm.163.5.2101039.
    1. Witek T.J., Jr., Mahler D.A. Minimal important difference of the transition dyspnoea index in a multinational clinical trial. Eur. Respir. J. 2003;21:267–272. doi: 10.1183/09031936.03.00068503a.
    1. Lu T.H., Lee M.C., Chou M.C. Accuracy of cause-of-death coding in Taiwan: Types of miscoding and effects on mortality statistics. Int. J. Epidemiol. 2000;29:336–343. doi: 10.1093/ije/29.2.336.
    1. Lu T.H., Shau W.Y., Shih T.P., Lee M.C., Chou M.C., Lin C.K. Factors associated with errors in death certificate completion. A national study in Taiwan. J. Clin. Epidemiol. 2001;54:232–238. doi: 10.1016/S0895-4356(00)00299-7.
    1. Balcells E., Anto J.M., Gea J., Gomez F.P., Rodriguez E., Marin A., Ferrer A., de Batlle J., Farrero E., Benet M., et al. Characteristics of patients admitted for the first time for COPD exacerbation. Respir. Med. 2009;103:1293–1302. doi: 10.1016/j.rmed.2009.04.001.
    1. Diaz O., Begin P., Torrealba B., Jover E., Lisboa C. Effects of noninvasive ventilation on lung hyperinflation in stable hypercapnic COPD. Eur. Respir. J. 2002;20:1490–1498. doi: 10.1183/09031936.02.00034402.
    1. Diaz O., Begin P., Andresen M., Jover E., Lisboa C. Physiological and clinical effects of diurnal noninvasive ventilation in hypercapnic COPD. Eur. Respir. J. 2005;26:1016–1023. doi: 10.1183/09031936.05.00033905.
    1. Kohnlein T., Windisch W., Kohler D., Drabik A., Geiseler J., Hartl S., Karg O., Laier-Groeneveld G., Nava S., Schonhofer B., et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: A prospective, multicentre, randomised, controlled clinical trial. Lancet Respir. Med. 2014;2:698–705. doi: 10.1016/S2213-2600(14)70153-5.
    1. Budweiser S., Heinemann F., Fischer W., Dobroschke J., Pfeifer M. Long-term reduction of hyperinflation in stable COPD by non-invasive nocturnal home ventilation. Respir. Med. 2005;99:976–984. doi: 10.1016/j.rmed.2005.02.007.
    1. Bowen J.B., Votto J.J., Thrall R.S., Haggerty M.C., Stockdale-Woolley R., Bandyopadhyay T., ZuWallack R.L. Functional status and survival following pulmonary rehabilitation. Chest. 2000;118:697–703. doi: 10.1378/chest.118.3.697.
    1. Ries A.L., Kaplan R.M., Limberg T.M., Prewitt L.M. Effects of pulmonary rehabilitation on physiologic and psychosocial outcomes in patients with chronic obstructive pulmonary disease. Ann. Intern. Med. 1995;122:823–832. doi: 10.7326/0003-4819-122-11-199506010-00003.
    1. Barbera J.A., Ramirez J., Roca J., Wagner P.D., Sanchez-Lloret J., Rodriguez-Roisin R. Lung structure and gas exchange in mild chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1990;141:895–901. doi: 10.1164/ajrccm/141.4_Pt_1.895.
    1. Thompson A.A., Dickinson R.S., Murphy F., Thomson J.P., Marriott H.M., Tavares A., Willson J., Williams L., Lewis A., Mirchandani A., et al. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism. Sci. Immunol. 2017;2:eaal2861. doi: 10.1126/sciimmunol.aal2861.
    1. Fitzpatrick S.F., Tambuwala M.M., Bruning U., Schaible B., Scholz C.C., Byrne A., O’Connor A., Gallagher W.M., Lenihan C.R., Garvey J.F., et al. An intact canonical NF-kappaB pathway is required for inflammatory gene expression in response to hypoxia. J. Immunol. 2011;186:1091–1096. doi: 10.4049/jimmunol.1002256.
    1. Vogelmeier C.F., Criner G.J., Martinez F.J., Anzueto A., Barnes P.J., Bourbeau J., Celli B.R., Chen R., Decramer M., Fabbri L.M., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 2017;195:557–582. doi: 10.1164/rccm.201701-0218PP.
    1. Pitta F., Troosters T., Probst V.S., Langer D., Decramer M., Gosselink R. Are patients with COPD more active after pulmonary rehabilitation? Chest. 2008;134:273–280. doi: 10.1378/chest.07-2655.
    1. Camillo C.A., Langer D., Osadnik C.R., Pancini L., Demeyer H., Burtin C., Gosselink R., Decramer M., Janssens W., Troosters T. Survival after pulmonary rehabilitation in patients with COPD: Impact of functional exercise capacity and its changes. Int. J. Chron. Obstr. Pulm. Dis. 2016;11:2671–2679. doi: 10.2147/COPD.S113450.
    1. Wedzicha J.A., Banerji D., Chapman K.R., Vestbo J., Roche N., Ayers R.T., Thach C., Fogel R., Patalano F., Vogelmeier C.F., et al. Indacaterol-Glycopyrronium versus Salmeterol-Fluticasone for COPD. N. Engl. J. Med. 2016;374:2222–2234. doi: 10.1056/NEJMoa1516385.
    1. Liu W.T., Wang C.H., Lin H.C., Lin S.M., Lee K.Y., Lo Y.L., Hung S.H., Chang Y.M., Chung K.F., Kuo H.P. Efficacy of a cell phone-based exercise programme for COPD. Eur. Respir. J. 2008;32:651–659. doi: 10.1183/09031936.00104407.
    1. Hsieh M.H., Fang Y.F., Chung F.T., Lee C.S., Chang Y.C., Liu Y.Z., Wu C.H., Lin H.C. Distance-saturation product of the 6-min walk test predicts mortality of patients with non-cystic fibrosis bronchiectasis. J. Thorac. Dis. 2017;9:3168–3176. doi: 10.21037/jtd.2017.08.53.
    1. Lettieri C.J., Nathan S.D., Browning R.F., Barnett S.D., Ahmad S., Shorr A.F. The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis. Respir. Med. 2006;100:1734–1741. doi: 10.1016/j.rmed.2006.02.004.

Source: PubMed

3
Abonneren