Clinical applications of resting state functional connectivity

Michael D Fox, Michael Greicius, Michael D Fox, Michael Greicius

Abstract

During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

Keywords: brain; fMRI; fcMRI; intrinsic activity; neurological disease; psychiatric disease; spontaneous activity.

Figures

Figure 1
Figure 1
Resting state functional connectivity reveals correlations and anticorrelations with the default mode network. Correlations between a seed region in the posterior cingulate/precuneus (PCC) and all other voxels in the brain for a single subject during resting fixation. Both correlations (positive values) and anticorrelations (negative values) are shown, thresholded at R = 0.3. The time course for a single run is shown for the seed region (PCC, yellow), a region positively correlated with this seed region in the medial prefrontal cortex (MPF, orange), and a region negatively correlated with the seed region in the intraparietal sulcus (IPS, blue). Reproduced with permission from (Fox et al., 2005).
Figure 2
Figure 2
Signal to noise features of spontaneous and task evoked activity. (A) fMRI time course from the left somatomotor cortex (LMC) during a single run when the subject pressed the button once with his right hand. Due to poor signal to noise, it is impossible to identify the task-related activity. (B) Comparison of the LMC with the right somatomotor cortex (RMC) shows that much of the noise is ongoing spontaneous activity correlated within the somatomotor system. (C) After subtracting the RMC from the LMC, the task-related modulation from the individual button press is evident (orange arrow). The LMC and RMC regions of interest are displayed for convenience on the inset map. Data taken from (Fox et al., 2006b).
Figure 3
Figure 3
Moving towards resting state abnormalities as a diagnostic marker in Alzheimers: Using parameters derived from resting state functional connectivity and choosing an appropriate threshold one can show good segregation between patients with Alzheimers disease (AD) and healthy elderly (A). Instead of picking just one threshold, receiver operating characteristic (ROC) curves can show the sensitivity and specificity at several different thresholds (B,C). Below each figure are the sensitivity and specificity values obtained by choosing the ideal threshold to segregate the populations in each study. Adapted with permission from (Li et al., ; Greicius et al., ; Supekar et al., 2008).
Figure 4
Figure 4
Resting state fcMRI in pre-operative brain mapping: (A) Structural MRI scan showing a mass in the right frontal cortex. Green circle represents the location of ipsilateral hand response to intra-operative cortical stimulation. (B) Task-related mapping showing activity within the sensorimotor network but also small responses in parietal cortex that are seemingly unrelated to motor function or sensation. (C) Resting-state correlation mapping showing that the sensorimotor network is largely unaffected by the tumor anterior to the central sulcus. Seed region is shown (blue circle). All images are displayed left-on-left. Adapted with permission from (Zhang et al., 2009a).

References

    1. Abdi H. (2007). “Bonferroni and Šidák corrections for multiple comparisons,” in Encyclopedia of Measurement and Statistics, ed. Salkind N. J. (Thousand Oaks, CA: Sage; ).
    1. Adcock J. E., Wise R. G., Oxbury J. M., Oxbury S. M., Matthews P. M. (2003). Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18, 423–43810.1016/S1053-8119(02)00013-7
    1. Allen G., Barnard H., McColl R., Hester A. L., Fields J. A., Weiner M. F., Ringe W. K., Lipton A. M., Brooker M., McDonald E., Rubin C. D., Cullum C. M. (2007). Reduced hippocampal functional connectivity in Alzheimer disease. Arch. Neurol. 64, 1482–148710.1001/archneur.64.10.1482
    1. Ames A. I. (2000). CNS energy metabolism as related to function. Brain Res. Rev. 34, 42–6810.1016/S0165-0173(00)00038-2
    1. Anand A., Li Y., Wang Y., Lowe M. J., Dzemidzic M. (2009). Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res. 171, 189–19810.1016/j.pscychresns.2008.03.012
    1. Anand A., Li Y., Wang Y., Wu J., Gao S., Bukhari L., Mathews V. P., Kalnin A., Lowe M. J. (2005a). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biol. Psychiatry 57, 1079–108810.1016/j.biopsych.2005.02.021
    1. Anand A., Li Y., Wang Y., Wu J., Gao S., Bukhari L., Mathews V. P., Kalnin A., Lowe M. J. (2005b). Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology 30, 1334–1344
    1. Andrews-Hanna J. R., Snyder A. Z., Vincent J. L., Lustig C., Head D., Raichle M. E., Buckner R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron 56, 924–93510.1016/j.neuron.2007.10.038
    1. Arfanakis K., Cordes D., Haughton V. M., Moritz C. H., Quigley M. A., Meyerand M. E. (2000). Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Magn. Reson. Imaging 18, 921–93010.1016/S0730-725X(00)00190-9
    1. Attwell D., Laughlin S. B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–114510.1097/00004647-200110000-00001
    1. Bartels A., Zeki S. (2004). The chronoarchitecture of the human brain – natural viewing conditions reveal a time-based anatomy of the brain. Neuroimage 22, 419–43310.1016/j.neuroimage.2004.01.007
    1. Beckmann C. F., DeLuca M., Devlin J. T., Smith S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360, 1001–101310.1098/rstb.2005.1634
    1. Bettus G., Guedj E., Joyeux F., Confort-Gouny S., Soulier E., Laguitton V., Cozzone P. J., Chauvel P., Ranjeva J. P., Bartolomei F., Guye M. (2009). Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum. Brain Mapp. 30, 1580–159110.1002/hbm.20625
    1. Binder J. R., Swanson S. J., Hammeke T. A., Morris G. L., Mueller W. M., Fischer M., Benbadis S., Frost J. A., Rao S. M., Haughton V. M. (1996). Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46, 978–984
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536–154810.1016/j.neuroimage.2006.02.048
    1. Biswal B., Yetkin F., Haughton V., Hyde J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–54110.1002/mrm.1910340409
    1. Biswal B. B., Mennes M., Zuo X. N., Gohel S., Kelly C., Smith S. M., Beckmann C. F., Adelstein J. S., Buckner R. L., Colcombe S., Dogonowski A. M., Ernst M., Fair D., Hampson M., Hoptman M. J., Hyde J. S., Kiviniemi V. J., Kotter R., Li S. J., Lin C. P., Lowe M. J., Mackay C., Madden D. J., Madsen K. H., Margulies D. S., Mayberg H. S., McMahon K., Monk C. S., Mostofsky S. H., Nagel B. J., Pekar J. J., Peltier S. J., Petersen S. E., Riedl V., Rombouts S. A., Rypma B., Schlaggar B. L., Schmidt S., Seidler R. D., Siegle G. J., Sorg C., Teng G. J., Veijola J., Villringer A., Walter M., Wang L., Weng X. C., Whitfield-Gabrieli S., Williamson P., Windischberger C., Zang Y. F., Zhang H. Y., Castellanos F. X., Milham M. P. (2010). Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 4734–473910.1073/pnas.0911855107
    1. Bluhm R., Williamson P., Lanius R., Theberge J., Densmore M., Bartha R., Neufeld R., Osuch E. (2009a). Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin. Neurosci. 63, 754–76110.1111/j.1440-1819.2009.02030.x
    1. Bluhm R. L., Miller J., Lanius R. A., Osuch E. A., Boksman K., Neufeld R. W., Theberge J., Schaefer B., Williamson P. C. (2009b). Retrosplenial cortex connectivity in schizophrenia. Psychiatry Res. 174, 17–2310.1016/j.pscychresns.2009.03.010
    1. Bluhm R. L., Williamson P. C., Osuch E. A., Frewen P. A., Stevens T. K., Boksman K., Neufeld R. W., Theberge J., Lanius R. A. (2009c). Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J. Psychiatry Neurosci. 34, 187–194
    1. Bluhm R. L., Miller J., Lanius R. A., Osuch E. A., Boksman K., Neufeld R., Theberge J., Schaefer B., Williamson P. (2007). Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr. Bull. 33, 1004–101210.1093/schbul/sbm052
    1. Boly M., Tshibanda L., Vanhaudenhuyse A., Noirhomme Q., Schnakers C., Ledoux D., Boveroux P., Garweg C., Lambermont B., Phillips C., Luxen A., Moonen G., Bassetti C., Maquet P., Laureys S. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 30, 2393–240010.1002/hbm.20672
    1. Cao Q., Zang Y., Sun L., Sui M., Long X., Zou Q., Wang Y. (2006). Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 17, 1033–103610.1097/01.wnr.0000224769.92454.5d
    1. Castellanos F. X., Margulies D. S., Kelly C., Uddin L. Q., Ghaffari M., Kirsch A., Shaw D., Shehzad Z., Di Martino A., Biswal B., Sonuga-Barke E. J., Rotrosen J., Adler L. A., Milham M. P. (2008). Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry 63, 332–33710.1016/j.biopsych.2007.06.025
    1. Cauda F., D'Agata F., Sacco K., Duca S., Cocito D., Paolasso I., Isoardo G., Geminiani G. (2009a). Altered resting state attentional networks in diabetic neuropathic pain. J. Neurol. Neurosurg. Psychiatry [Epub ahead of print].
    1. Cauda F., Micon B. M., Sacco K., Duca S., D'Agata F., Geminiani G., Canavero S. (2009b). Disrupted intrinsic functional connectivity in the vegetative state. J. Neurol. Neurosurg. Psychiatr. 80, 429–43110.1136/jnnp.2007.142349
    1. Cauda F., Sacco K., D'Agata F., Duca S., Cocito D., Geminiani G., Migliorati F., Isoardo G. (2009c). Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci. 10, 138.10.1186/1471-2202-10-138
    1. Cauda F., Sacco K., Duca S., Cocito D., D'Agata F., Geminiani G. C., Canavero S. (2009d). Altered resting state in diabetic neuropathic pain. PLoS ONE 4, e4542.10.1371/journal.pone.0004542
    1. Chang C., Cunningham J. P., Glover G. H. (2009). Influence of heart rate on the BOLD signal: the cardiac response function. Neuroimage 44, 857–86910.1016/j.neuroimage.2008.09.029
    1. Chang C., Glover G. H. (2009). Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47, 1448–145910.1016/j.neuroimage.2009.05.012
    1. Chang C., Glover G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50, 81–9810.1016/j.neuroimage.2009.12.011
    1. Cherkassky V. L., Kana R. K., Keller T. A., Just M. A. (2006). Functional connectivity in a baseline resting-state network in autism. Neuroreport 17, 1687–169010.1097/01.wnr.0000239956.45448.4c
    1. Church J. A., Fair D. A., Dosenbach N. U., Cohen A. L., Miezin F. M., Petersen S. E., Schlaggar B. L. (2009). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132, 225–23810.1093/brain/awn223
    1. Cordes D., Haughton V. M., Arfanakis K., Wendt G. J., Turski P. A., Moritz C. H., Quigley M. A., Meyerand M. E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. Am. J. Neuroradiol. 21, 1636–1644
    1. Cordes D., Haughton V. M., Arfanakis K., Wendt G. J., Turski P. A., Moritz C. H., Quigley M. A., Meyerand M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in ‘resting-state’ data. Am. J. Neuroradiol. 22, 1326–1333
    1. Damoiseaux J. S., Beckmann C. F., Arigita E. J., Barkhof F., Scheltens P., Stam C. J., Smith S. M., Rombouts S. A. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cereb. Cortex 18, 1856–186410.1093/cercor/bhm207
    1. De Luca M., Beckmann C. F., De Stefano N., Matthews P. M., Smith S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–136710.1016/j.neuroimage.2005.08.035
    1. De Luca M., Smith S. M., De Stefano N., Federico A., Matthews P. M. (2005). Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Exp. Brain Res. 167, 587–59410.1007/s00221-005-0059-1
    1. Deshpande G., LaConte S., Peltier S., Hu X. (2006). Tissue specificity of nonlinear dynamics in baseline fMRI. Magn. Reson. Med. 55, 626–63210.1002/mrm.20817
    1. Dosenbach N. U., Fair D. A., Miezin F. M., Cohen A. L., Wenger K. K., Dosenbach R. A. T., Fox M. D., Snyder A. Z., Vincent J. L., Raichle M. E., Schlagger B. L., Petersen S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. U.S.A. 104, 11073–1107810.1073/pnas.0704320104
    1. Etkin A., Prater K. E., Schatzberg A. F., Menon V., Greicius M. D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch. Gen. Psychiatry 66, 1361–137210.1001/archgenpsychiatry.2009.104
    1. Fair D. A., Schlaggar B. L., Cohen A. L., Miezin F. M., Dosenbach N. U., Wenger K. K., Fox M. D., Snyder A. Z., Raichle M. E., Petersen S. E. (2007). A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35, 396–40510.1016/j.neuroimage.2006.11.051
    1. Fox M. D., Corbetta M., Snyder A. Z., Vincent J. L., Raichle M. E. (2006a). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U.S.A. 103, 10046–1005110.1073/pnas.0604187103
    1. Fox M. D., Snyder A. Z., Zacks J. M., Raichle M. E. (2006b). Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses. Nat. Neurosci. 9, 23–2510.1038/nn1616
    1. Fox M. D., Marcus D. M., Snyder A. Z., Raichle M. E. (2007a). “BrainSCAPE: an online spontnaeous correlation analysis processing environment for fMRI BOLD data,” in Organization for Human Brain Mapping Annual Meeting, Chicago, IL.
    1. Fox M. D., Snyder A. Z., Vincent J. L., Raichle M. E. (2007b). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56, 171–18410.1016/j.neuron.2007.08.023
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–71110.1038/nrn2201
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–967810.1073/pnas.0504136102
    1. Fox M. D., Zhang D., Snyder A. Z., Raichle M. E. (2009). The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–328310.1152/jn.90777.2008
    1. Fransson P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–2910.1002/hbm.20113
    1. Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. J. (1993). Functional connectivity: the principal component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14
    1. Fukunaga M., Horovitz S. G., Van Gelderen P., de Zwart J. A., Jansma J. M., Ikonomidou V. N., Chu R., Deckers R. H. R., Leopold D. A., Duyn J. H. (2006). Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and light sleep. Magn. Reson. Imaging 24, 979–99210.1016/j.mri.2006.04.018
    1. Glover G. H., Li T. Q., Ress D. (2000). Image-based method for retrospective correction of physiological motion artifacts in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–16710.1002/1522-2594(200007)44:1<162::AID-MRM23>;2-E
    1. Greicius M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21, 424–43010.1097/WCO.0b013e328306f2c5
    1. Greicius M. D., Barad M., Ueno T., Mackey S. C. (2008a). “Chronic pain remodels the brain's salience network: a resting-state fMRI study,” in 14th International Meeting of the Organization for Human Brain Mapping Melbourne, Australia
    1. Greicius M. D., Kiviniemi V., Tervonen O., Vainionpaa V., Alahuhta S., Reiss A. L., Menon V. (2008b). Persistent default-mode network connectivity during light sedation. Hum. Brain Mapp. 29, 839–84710.1002/hbm.20537
    1. Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., Reiss A. L., Schatzberg A. F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–43710.1016/j.biopsych.2006.09.020
    1. Greicius M. D., Krasnow B., Reiss A. L., Menon V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–25810.1073/pnas.0135058100
    1. Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101, 4637–464210.1073/pnas.0308627101
    1. Haberg A., Kvistad K. A., Unsgard G., Haraldseth O. (2004). Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 54, 902–914; discussion 914–905.
    1. Hampson M., Driesen N. R., Skudlarski P., Gore J. C., Constable R. T. (2006). Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–1334310.1523/JNEUROSCI.3408-06.2006
    1. Hampson M., Peterson B. S., Skudlarski P., Gatenby J. C., Gore J. C. (2002). Detection of functional connectivity using temporal correlations in MR images. Hum. Brain Mapp. 15, 247–26210.1002/hbm.10022
    1. Haynes J. D., Rees G. (2006). Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–53410.1038/nrn1931
    1. He B. J., Snyder A. Z., Vincent J. L., Epstein A., Shulman G. L., Corbetta M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53, 905–91810.1016/j.neuron.2007.02.013
    1. He B. J., Snyder A. Z., Zempel J. M., Smyth M. D., Raichle M. E. (2008). Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl. Acad. Sci. U.S.A. 105, 16039–1604410.1073/pnas.0807010105
    1. Hedden T., Van Dijk K. R., Becker J. A., Mehta A., Sperling R. A., Johnson K. A., Buckner R. L. (2009). Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J. Neurosci. 29, 12686–1269410.1523/JNEUROSCI.3189-09.2009
    1. Horovitz S. G., Fukunaga M., de Zwart J. A., Van Gelderen P., Fulton S. C., Balkin T. J., Duyn J. H. (2006). “The default-mode network connectivity during awake and early sleep: a simultaneous EEG-BOLD-fMRI study,” in Organization for Human Brain Mapping Annual Meeting, Florence, Italy686 M-PM.
    1. Horwitz B. (2003). The elusive concept of brain connectivity. Neuroimage 19, 466–47010.1016/S1053-8119(03)00112-5
    1. Jafri M. J., Pearlson G. D., Stevens M., Calhoun V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage 39, 1666–168110.1016/j.neuroimage.2007.11.001
    1. Kennedy D. P., Courchesne E. (2008). The intrinsic functional organization of the brain is altered in autism. Neuroimage 39, 1877–188510.1016/j.neuroimage.2007.10.052
    1. Kiviniemi V., Kantola J. H., Jauhiainen J., Hyvarinen A., Tervonen O. (2003). Independent component analysis of nondeterministic fMRI signal sources. Neuroimage 19, 253–26010.1016/S1053-8119(03)00097-1
    1. Kokkonen S. M., Nikkinen J., Remes J., Kantola J., Starck T., Haapea M., Tuominen J., Tervonen O., Kiviniemi V. (2009). Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn. Reson. Imaging 27, 733–74010.1016/j.mri.2008.11.002
    1. Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., Kleinschmidt A. (2003). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. U.S.A. 100, 11053–1105810.1073/pnas.1831638100
    1. Lee C. C., Ward H. A., Sharbrough F. W., Meyer F. B., Marsh W. R., Raffel C., So E. L., Cascino G. D., Shin C., Xu Y., Riederer S. J., Jack C. R., Jr. (1999). Assessment of functional MR imaging in neurosurgical planning. AJNR Am. J. Neuroradiol. 20, 1511–1519
    1. Lemieux L. (2004). Electroencephalography-correlated functional MR imaging studies of epileptic activity. Neuroimaging Clin. N. Am. 14, 487–50610.1016/j.nic.2004.04.009
    1. Lennie P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–49710.1016/S0960-9822(03)00135-0
    1. Li S. J., Li Z., Wu G., Zhang M. J., Franczak M., Antuono P. G. (2002). Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology 225, 253–25910.1148/radiol.2251011301
    1. Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H., Hao Y. (2006). Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17, 209–21310.1097/01.wnr.0000198434.06518.b8
    1. Liu H., Buckner R. L., Talukdar T., Tanaka N., Madsen J. R., Stufflebeam S. M. (2009). Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity. J. Neurosurg. 111, 746–75410.3171/2008.10.JNS08846
    1. Liu H., Liu Z., Liang M., Hao Y., Tan L., Kuang F., Yanhong Y., Xu L., Jiang T. (2006). Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport 17, 19–2210.1097/01.wnr.0000195666.22714.35
    1. Liu Y., Liang M., Zhou Y., He Y., Hao Y., Song M., Yu C., Liu H., Liu Z., Jiang T. (2008). Disrupted small-world networks in schizophrenia. Brain 131(Pt 4), 945–96110.1093/brain/awn018
    1. Liu Y., Yu C., Liang M., Li J., Tian L., Zhou Y., Qin W., Li K., Jiang T. (2007). Whole brain functional connectivity in the early blind. Brain 130(Pt 8), 2085–209610.1093/brain/awm121
    1. Logothetis N. K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 23, 3963–3971
    1. Lowe M. J., Mock B. J., Sorenson J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7, 119–13210.1006/nimg.1997.0315
    1. Lowe M. J., Phillips M. D., Lurito J. T., Mattson D. L., Dzemidzic M., Mathews V. P. (2002). Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity – initial results. Radiology 224, 184–19210.1148/radiol.2241011005
    1. Lui S., Ouyang L., Chen Q., Huang X., Tang H., Chen H., Zhou D., Kemp G. J., Gong Q. (2008). Differential interictal activity of the precuneus/posterior cingulate cortex revealed by resting state functional MRI at 3T in generalized vs. partial seizure. J. Magn. Reson. Imaging 27, 1214–122010.1002/jmri.21370
    1. Lund T. E., Madsen K. H., Sidaros K., Luo W., Nichols T. E. (2006). Non-white noise in fMRI: does modeling have an impact? Neuroimage 29, 54–6610.1016/j.neuroimage.2005.07.005
    1. Macey P. M., Macey K. E., Kumar R., Harper R. M. (2004). A method for the removal of global effects from fMRI time series. Neuroimage 22, 360–36610.1016/j.neuroimage.2003.12.042
    1. Matthews P. M., Honey G. D., Bullmore E. T. (2006). Applications of fMRI in translational medicine and clinical practice. Nat. Rev. Neurosci. 7, 732–74410.1038/nrn1929
    1. Mohammadi B., Kollewe K., Samii A., Krampfl K., Dengler R., Munte T. F. (2009). Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp. Neurol. 217, 147–15310.1016/j.expneurol.2009.01.025
    1. Monk C. S., Peltier S. J., Wiggins J. L., Weng S. J., Carrasco M., Risi S., Lord C. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. Neuroimage 47, 764–77210.1016/j.neuroimage.2009.04.069
    1. Murphy K., Birn R. M., Handwerker D. A., Jones T. B., Bandettini P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–90510.1016/j.neuroimage.2008.09.036
    1. Norman K. A., Polyn S. M., Detre G. J., Haxby J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. (Regul. Ed.) 10, 424–430
    1. Peltier S. J., Kerssens C., Hamann S. B., Sebel P. S., Byas-Smith M., Hu X. (2005). Functional connectivity changes with concentration of sevoflurane anaesthesia. Neuroreport 16, 285–28810.1097/00001756-200502280-00017
    1. Pujol J., Conesa G., Deus J., Lopez-Obarrio L., Isamat F., Capdevila A. (1998). Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J. Neurosurg. 88, 863–86910.3171/jns.1998.88.5.0863
    1. Raichle M. E. (2000). “A brief history of human functional brain mapping,” in Brain Mapping The Systems, eds Toga A. W., Mazziotta J. C. (San Diego: Academic Press; ), 33–75
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–68210.1073/pnas.98.2.676
    1. Raichle M. E., Mintun M. A. (2006). Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–47610.1146/annurev.neuro.29.051605.112819
    1. Rogers B. P., Morgan V. L., Newton A. T., Gore J. C. (2007). Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 25, 1347–135710.1016/j.mri.2007.03.007
    1. Rombouts S. A. R. B., Stam C. J., Kuijer J. P. A., Scheltens P., Barkhof F. (2003). Identifying confounds to increase specificity during a “no task condition”. Evidence for hippocampal connectivity using fMRI. Neuroimage 20, 1236–124510.1016/S1053-8119(03)00386-0
    1. Salvador R., Martinez A., Pomarol-Clotet E., Sarro S., Suckling J., Bullmore E. (2007). Frequency based mutual information measures between clusters of brain regions in functional magnetic resonance imaging. Neuroimage 35, 83–8810.1016/j.neuroimage.2006.12.001
    1. Seeley W. W., Allman J. M., Carlin D. A., Crawford R. K., Macedo M. N., Greicius M. D., Dearmond S. J., Miller B. L. (2007a). Divergent social functioning in behavioral variant frontotemporal dementia and Alzheimer disease: reciprocal networks and neuronal evolution. Alzheimer Dis. Assoc. Disord. 21, S50–5710.1097/WAD.0b013e31815c0f14
    1. Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., Reiss A. L., Greicius M. D. (2007b). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–235610.1523/JNEUROSCI.5587-06.2007
    1. Seeley W. W., Crawford R. K., Miller B. L., Greicius M. D. (2008). “Cortical neurodegeneration syndromes target human structural-functional covariance networks,” in 14th International Meeting of the Organization for Human Brain Mapping Melbourne, Australia
    1. Sheline Y. I., Raichle M. E., Snyder A. Z., Morris J. C., Head D., Wang S., Mintun M. A. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 67, 584–58710.1016/j.biopsych.2009.08.024
    1. Shimony J. S., Zhang D., Johnston J. M., Fox M. D., Roy A., Leuthardt E. C. (2009). Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Acad. Radiol. 16, 578–58310.1016/j.acra.2009.02.001
    1. Shmuel A., Leopold D. A. (2008). Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 29, 751–76110.1002/hbm.20580
    1. Shulman R. G., Rothman D. L., Behar K. L., Hyder F. (2004). Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–49510.1016/j.tins.2004.06.005
    1. Sorg C., Riedl V., Muhlau M., Calhoun V. D., Eichele T., Laer L., Drzezga A., Forstl H., Kurz A., Zimmer C., Wohlschlager A. M. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 104, 18760–1876510.1073/pnas.0708803104
    1. Supekar K., Menon V., Rubin D., Musen M., Greicius M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput. Biol. 4, e1000100.10.1371/journal.pcbi.1000100
    1. Tian L., Jiang T., Wang Y., Zang Y., He Y., Liang M., Sui M., Cao Q., Hu S., Peng M., Zhuo Y. (2006). Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci. Lett. 400, 39–4310.1016/j.neulet.2006.02.022
    1. Vanhaudenhuyse A., Noirhomme Q., Tshibanda L. J., Bruno M. A., Boveroux P., Schnakers C., Soddu A., Perlbarg V., Ledoux D., Brichant J. F., Moonen G., Maquet P., Greicius M. D., Laureys S., Boly M. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133(Pt 1), 161–17110.1093/brain/awp313
    1. Vincent J. L., Patel G. H., Fox M. D., Snyder A. Z., Baker J. T., Van Essen D. C., Zempel J. M., Snyder L. H., Corbetta M., Raichle M. E. (2007). Intrinsic functional architecture in the anesthetized monkey brain. Nature 447, 83–8610.1038/nature05758
    1. Vincent J. L., Snyder A. Z., Fox M. D., Shannon B. J., Andrews J. R., Raichle M. E., Buckner R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal mnemonic network. J. Neurophysiol. 96, 3517–353110.1152/jn.00048.2006
    1. Vlieger E. J., Majoie C. B., Leenstra S., Den Heeten G. J. (2004). Functional magnetic resonance imaging for neurosurgical planning in neurooncology. Eur. Radiol. 14, 1143–115310.1007/s00330-004-2328-y
    1. Waites A. B., Briellman R. S., Saling M. M., Abbott D. F., Jackson G. D. (2006). Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann. Neurol. 59, 335–34310.1002/ana.20733
    1. Wang K., Jiang T., Liang M., Wang L., Tian L., Zhang X., Li K., Liu Z. (2006a). Discriminative analysis of early Alzheimer's disease based on two intrinsically anti-correlated networks with resting-state fMRI. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 9, 340–347
    1. Wang L., Zang Y., He Y., Liang M., Zhang X., Tian L., Wu T., Jiang T., Li K. (2006b). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 31, 496–50410.1016/j.neuroimage.2005.12.033
    1. Wang K., Liang M., Wang L., Tian L., Zhang X., Li K., Jiang T. (2007). Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum. Brain Mapp. 28, 967–97810.1002/hbm.20324
    1. Wang L., Zhu C., He Y., Zang Y., Cao Q., Zhang H., Zhong Q., Wang Y. (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 30, 638–64910.1002/hbm.20530
    1. Weissenbacher A., Kasess C., Gerstl F., Lanzenberger R., Moser E., Windischberger C. (2009). Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47, 1408–141610.1016/j.neuroimage.2009.05.005
    1. Weng S. J., Wiggins J. L., Peltier S. J., Carrasco M., Risi S., Lord C., Monk C. S. (2010). Alterations of resting state functional connectivity in the default network in adolescents with autism spectrum disorders. Brain Res. 1313, 202–21410.1016/j.brainres.2009.11.057
    1. White B. R., Snyder A. Z., Cohen A. L., Petersen S. E., Raichle M. E., Schlaggar B. L., Culver J. P. (2009). Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. Neuroimage 47, 148–15610.1016/j.neuroimage.2009.03.058
    1. Whitfield-Gabrieli S., Thermenos H. W., Milanovic S., Tsuang M. T., Faraone S. V., McCarley R. W., Shenton M. E., Green A. I., Nieto-Castanon A., LaViolette P., Wojcik J., Gabrieli J. D., Seidman L. J. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 106, 1279–128410.1073/pnas.0809141106
    1. Wise R. J. S., Ide K., Poulin M. J., Tracey I. (2004). Resting state fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–166410.1016/j.neuroimage.2003.11.025
    1. Yu C., Liu Y., Li J., Zhou Y., Wang K., Tian L., Qin W., Jiang T., Li K. (2008). Altered functional connectivity of primary visual cortex in early blindness. Hum. Brain Mapp. 29, 533–54310.1002/hbm.20420
    1. Zang Y. F., He Y., Zhu C. Z., Cao Q. J., Sui M. Q., Liang M., Tian L. X., Jiang T. Z., Wang Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–9110.1016/j.braindev.2006.07.002
    1. Zarahn E., Aguirre G. K., D'Esposito M. (1997). Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5, 179–19710.1006/nimg.1997.0263
    1. Zhang D., Johnston J. M., Fox M. D., Leuthardt E. C., Grubb R. L., Chicoine M. R., Smyth M. D., Snyder A. Z., Raichle M. E., Shimony J. S. (2009a). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery 65, 226–23610.1227/
    1. Zhang Z., Lu G., Zhong Y., Tan Q., Liao W., Chen Z., Shi J., Liu Y. (2009b). Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J. Neurol. 256, 1705–171310.1007/s00415-009-5187-2
    1. Zhang Z., Lu G., Zhong Y., Tan Q., Yang Z., Liao W., Chen Z., Shi J., Liu Y. (2009c). Impaired attention network in temporal lobe epilepsy: a resting FMRI study. Neurosci. Lett. 458, 97–10110.1016/j.neulet.2009.04.040
    1. Zhang D., Raichle M. E. (2010). Disease and the brain's dark energy. Nat. Rev. Neurol. 6, 15–2810.1038/nrneurol.2009.198
    1. Zhang D., Snyder A. Z., Fox M. D., Sansbury M. W., Shimony J. S., Raichle M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 100, 1740–174810.1152/jn.90463.2008
    1. Zhou Y., Liang M., Jiang T., Tian L., Liu Y., Liu Z., Liu H., Kuang F. (2007). Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci. Lett. 417, 297–30210.1016/j.neulet.2007.02.081
    1. Zhu C. Z., Zang Y. F., Cao Q. J., Yan C. G., He Y., Jiang T. Z., Sui M. Q., Wang Y. F. (2008). Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. Neuroimage 40, 110–12010.1016/j.neuroimage.2007.11.029
    1. Zhu C. Z., Zang Y. F., Liang M., Tian L. X., He Y., Li X. B., Sui M. Q., Wang Y. F., Jiang T. Z. (2005). Discriminative analysis of brain function at resting-state for attention-deficit/hyperactivity disorder. Med. Image Comput. Comput. Assist. Interv. Int. Conf. Med. Image Comput. Comput. Assist. Interv. 8, 468–475
    1. Zuo X. N., Kelly C., Adelstein J. S., Klein D. F., Castellanos F. X., Milham M. P. (2009). Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49, 2163–217710.1016/j.neuroimage.2009.10.080

Source: PubMed

3
Abonneren