(13C)-Methacetin breath test provides evidence of subclinical liver dysfunction linked to fat storage but not lifestyle

Emilio Molina-Molina, Harshitha Shanmugam, Agostino Di Ciaula, Ignazio Grattagliano, Domenica Maria Di Palo, Vincenzo O Palmieri, Piero Portincasa, Emilio Molina-Molina, Harshitha Shanmugam, Agostino Di Ciaula, Ignazio Grattagliano, Domenica Maria Di Palo, Vincenzo O Palmieri, Piero Portincasa

Abstract

Background & aims: Non-alcoholic fatty liver disease (NAFLD) is characterised by the presence of hepatic steatosis in the absence of other causes of secondary hepatic fat accumulation, and is usually associated with visceral, metabolically active obesity. However, the subclinical effects of body and liver fat accumulation on liver function are still unclear.

Methods: We used orally administered (13C)-methacetin and breath test to quantify the efficiency of hepatic extraction from portal blood flow and liver microsomal function in 81 participants, in relation to presence/absence of ultrasonographic NAFLD, extent of body fat accumulation, insulin resistance, dietary models, and lifestyle.

Results: NAFLD was present in 23% of participants with normal weight, and prevalence increased with body fat and insulin resistance. Fat accumulation, NAFLD, and insulin resistance were associated with decreased hepatic extraction efficiency, and liver microsomal function was impaired in moderate-to-severe NAFLD. Caloric intake, dietary models, and lifestyles had a minor role in promoting functional changes.

Conclusions: The interplay between body fat accumulation, insulin resistance, and NAFLD is linked with altered hepatic extraction efficiency from blood flow and deranged microsomal function. Non-invasive diagnosis of subclinical alterations of liver function is relevant for primary and secondary prevention measures. Furthermore, the occurrence of NAFLD in lean individuals and the evidence that caloric intake, dietary models, and lifestyle played a minor role require further studies exploring the role of environmental factors in the natural history of these diseases.

Lay summary: Obesity is progressively increasing worldwide and is paralleled by fat accumulation in the liver (non-alcoholic fatty liver disease [NAFLD]), the most common chronic liver disease worldwide. NAFLD can alter liver structure and function, with a variety of consequences ranging from asymptomatic and subclinical alterations to cirrhosis and cancer. (13C)-Methacetin breath test, a non-invasive diagnostic tool, can reveal early subclinical alterations of liver dynamic function in individuals with obesity and in patients with NAFLD.

Keywords: (13C), carbon-13; ALT, alanine aminotransferase; ARFI, acoustic radiation force impulse; AST, aspartate aminotransferase; BT, breath test; Body mass index; DOB, delta over baseline; FLI, fatty liver index; GGT, gamma-glutamyl transferase; HOMA, Homeostatic Model Assessment for Insulin Resistance; HRQoL, health-related quality of life; IDF, International Diabetes Federation; KICA, ketoisocaproic acid; Liver function; MBT, methacetin breath test; MD, Mediterranean diet; MET, metabolic equivalent task; Microsomal function; NAFL, non-alcoholic fatty liver; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; Non-alcoholic fatty liver disease; OR, odds ratio; Portal blood flow; R-ATPIII, Revised National Cholesterol Education Programme-Adult Treatment Panel III; SF-36, 36-Item Short Form Health Survey Questionnaire; US, ultrasonography; cPDR, cumulative per cent dose recovery.

Conflict of interest statement

The authors declare no conflicts of interest that pertain to this work. Please refer to the accompanying ICMJE disclosure forms for further details.

© 2020 The Author(s).

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Results from the breath test analysis after orally administered (13C)-methacetin in participants with different BMI. Results of (13C)-MBT according to body weight, as marker of hepatic extraction efficiency from (A) portal blood flow and (B) liver microsomal function. Prevalence of abnormality is depicted for hepatic extraction from (C) portal blood flow and (D) liver microsomal function. Bars represent means; vertical lines are SEM. Intermittent horizontal lines represent normal cut-off values (abnormal DOB15 <14.5‰; abnormal cPDR30 <8.1%). Significance levels: ∗vs. normal weight (0.0001< p <0.04, ANOVA followed by Fisher's LSD multiple comparison test). cPDR30, cumulative per cent dose recovery after 30 min; DOB15, delta over baseline after 15 min; n.s., not significant.
Fig. 2
Fig. 2
ORs and analysis of variance relating the spectrum of NAFLD at ultrasonography (US score) with DOB15 and cPDR30. (A) and (C) show ORs and 95% CIs relating the spectrum of NAFLD at ultrasonography (US score) with, respectively, DOB15 and cPDR30. Values were calculated by logistic regression models, with DOB15 and cPDR30 as dependent variables and the ultrasonographic score of NAFLD as the independent variable. Models were adjusted according to age and BMI as covariates. (B) and (D) indicate average DOB15 and cPDR30, respectively, in participants grouped according to the extent of NAFLD, as assessed by ultrasonography. Data are expressed as mean ± SE. ∗p <0.01 vs. participants with normal liver at ultrasonography (ANOVA followed by Fisher's least significant difference multiple comparison test). CI, 95% confidence intervals; cPDR30, cumulative per cent dose recovery after 30 min; DOB15, delta over baseline after 15 min; NAFLD, non-alcoholic fatty liver disease; OR, odds ratio.
Fig. 3
Fig. 3
DOB15 results according to the cut-off for normal values. Box and whiskers plots according to cut-off values of DOB15. Boxes report 25th and 75th percentiles with medians at the centre. Whiskers are calculated from the IQRs. Outliers appear as dots outside the whiskers. Normal DOB15 ≥14.5‰; abnormal <14.5‰. Panels show changes of (A) BMI, (B) waist circumference by R-ATPIII and (C) IDF, (D) visceral fat thickness, (E) NAFLD score, (F) fatty liver index, (G) serum ALT, and (H) serum GGT. Differences were tested by Student’s t test for unpaired data. ALT, alanine aminotransferase; DOB15, delta over baseline after 15 min; GGT, gamma-glutamyl transferase; IDF, International Diabetes Federation; NAFLD, non-alcoholic fatty liver disease; R-ATPIII, Revised National Cholesterol Education Programme-Adult Treatment Panel III; US, ultrasonography.

References

    1. Molina-Molina E., Krawczyk M., Stachowska E., Lammert F., Portincasa P. Non-alcoholic fatty liver disease in non-obese individuals: prevalence, pathogenesis and treatment. Clin Res Hepatol Gastroenterol. 2019;43:638–645.
    1. Zhou J., Zhou F., Wang W., Zhang X.J., Ji Y.X., Zhang P. Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology. 2020;71:1851–1864.
    1. Eslam M., Sanyal A.J., George J., International Consensus Panel Collaborators MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014.e1.
    1. Ludwig J., Viggiano T.R., McGill D.B., Oh B.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434–438.
    1. Ghouri Y.A., Mian I., Rowe J.H. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog. 2017;16:1.
    1. Younossi Z.M. Non-alcoholic fatty liver disease—a global public health perspective. J Hepatol. 2019;70:531–544.
    1. Lindenmeyer C.C., McCullough A.J. The natural history of nonalcoholic fatty liver disease—an evolving view. Clin Liver Dis. 2018;22:11–21.
    1. Assimakopoulos K., Karaivazoglou K., Tsermpini E.E., Diamantopoulou G., Triantos C. Quality of life in patients with nonalcoholic fatty liver disease: a systematic review. J Psychosom Res. 2018;112:73–80.
    1. Gunn N.T., Shiffman M.L. The use of liver biopsy in nonalcoholic fatty liver disease: when to biopsy and in whom. Clin Liver Dis. 2018;22:109–119.
    1. Regev A., Berho M., Jeffers L.J., Milikowski C., Molina E.G., Pyrsopoulos N.T. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–2618.
    1. Rousselet M.C., Michalak S., Dupre F., Croue A., Bedossa P., Saint-Andre J.P. Sources of variability in histological scoring of chronic viral hepatitis. Hepatology. 2005;41:257–264.
    1. Neuschwander-Tetri B.A., Clark J.M., Bass N.M., Van Natta M.L., Unalp-Arida A., Tonascia J. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology. 2010;52:913–924.
    1. Gawrieh S., Wilson L.A., Cummings O.W., Clark J.M., Loomba R., Hameed B. Histologic findings of advanced fibrosis and cirrhosis in patients with nonalcoholic fatty liver disease who have normal aminotransferase levels. Am J Gastroenterol. 2019;114:1626–1635.
    1. Sviklane L., Olmane E., Dzerve Z., Kupcs K., Pirags V., Sokolovska J. Fatty liver index and hepatic steatosis index for prediction of non-alcoholic fatty liver disease in type 1 diabetes. J Gastroenterol Hepatol. 2018;33:270–276.
    1. Schwenzer N.F., Springer F., Schraml C., Stefan N., Machann J., Schick F. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol. 2009;51:433–445.
    1. Grattagliano I., Lauterburg B.H., Palasciano G., Portincasa P. 13C-Breath tests for clinical investigation of liver mitochondrial function. Eur J Clin Invest. 2010;40:843–850.
    1. Bonfrate L., Grattagliano I., Palasciano G., Portincasa P. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol Rep (Oxf) 2015;3:12–21.
    1. Merkel C., Bolognesi M., Bellon S., Bianco S., Honisch B., Lampe H. Aminopyrine breath test in the prognostic evaluation of patients with cirrhosis. Gut. 1992;33:836–842.
    1. Festi D., Capodicasa S., Sandri L., Colaiocco-Ferrante L., Staniscia T., Vitacolonna E. Measurement of hepatic functional mass by means of 13C-methacetin and 13C-phenylalanine breath tests in chronic liver disease: comparison with Child-Pugh score and serum bile acid levels. World J Gastroenterol. 2005;11:142–148.
    1. Gorowska-Kowolik K., Chobot A., Kwiecien J. (13)C Methacetin breath test for assessment of microsomal liver function: methodology and clinical application. Gastroenterol Res Pract. 2017;2017:7397840.
    1. Lalazar G., Pappo O., Hershcovici T., Hadjaj T., Shubi M., Ohana H. A continuous 13C methacetin breath test for noninvasive assessment of intrahepatic inflammation and fibrosis in patients with chronic HCV infection and normal ALT. J Viral Hepat. 2008;15:716–728.
    1. Stravitz R.T., Reuben A., Mizrahi M., Lalazar G., Brown K., Gordon S.C. Use of the methacetin breath test to classify the risk of cirrhotic complications and mortality in patients evaluated/listed for liver transplantation. J Hepatol. 2015;63:1345–1351.
    1. Portincasa P., Grattagliano I., Lauterburg B.H., Palmieri V.O., Palasciano G., Stellaard F. Liver breath tests non-invasively predict higher stages of non-alcoholic steatohepatitis. Clin Sci (Lond) 2006;111:135–143.
    1. Fierbinteanu-Braticevici C., Plesca D.A., Tribus L., Panaitescu E., Braticevici B. The role of C-13-methacetin breath test for the non-invasive evaluation of nonalcoholic fatty liver disease. J Gastrointestin Liver Dis. 2013;22:149–156.
    1. Grundy S.M., Cleeman J.I., Daniels S.R., Donato K.A., Eckel R.H., Franklin B.A. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735–2752.
    1. Alberti K.G., Zimmet P., Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366:1059–1062.
    1. Minetto M.A., Motta G., Gorji N.E., Lucini D., Biolo G., Pigozzi F. Reproducibility and validity of the Italian version of the International Physical Activity Questionnaire in obese and diabetic patients. J Endocrinol Invest. 2018;41:343–349.
    1. Mendes M.A., da Silva I., Ramires V., Reichert F., Martins R., Ferreira R. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. PLoS One. 2018;13:e0200701.
    1. Sofi F., Macchi C., Abbate R., Gensini G.F., Casini A. Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014;17:2769–2782.
    1. Marventano S., Mistretta A., Platania A., Galvano F., Grosso G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int J Food Sci Nutr. 2016;67:857–864.
    1. Ware J.E., Jr., Sherbourne C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–483.
    1. Kroenke K., Spitzer R.L., Williams J.B. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–613.
    1. Schneider A., Caspary W.F., Saich R., Dietrich C.F., Sarrazin C., Kuker W. 13C-methacetin breath test shortened: 2-point-measurements after 15 minutes reliably indicate the presence of liver cirrhosis. J Clin Gastroenterol. 2007;41:33–37.
    1. Dinesen L., Caspary W.F., Chapman R.W., Dietrich C.F., Sarrazin C., Braden B. 13C-Methacetin-breath test compared to also noninvasive biochemical blood tests in predicting hepatic fibrosis and cirrhosis in chronic hepatitis C. Dig Liver Dis. 2008;40:743–748.
    1. Braden B., Faust D., Sarrazin U., Zeuzem S., Dietrich C.F., Caspary W.F. 13C-Methacetin breath test as liver function test in patients with chronic hepatitis C virus infection. Aliment Pharmacol Ther. 2005;21:179–185.
    1. Holtmeier J., Leuschner M., Schneider A., Leuschner U., Caspary W.F., Braden B. 13C-Methacetin and 13C-galactose breath tests can assess restricted liver function even in early stages of primary biliary cirrhosis. Scand J Gastroenterol. 2006;41:1336–1341.
    1. Ilan Y. Review article: the assessment of liver function using breath tests. Aliment Pharmacol Ther. 2007;26:1293–1302.
    1. Kasicka-Jonderko A., Loska D., Jonderko K., Kaminska M., Blonska-Fajfrowska B. Interference of acute cigarette smoking with [13C]methacetin breath test. Isotopes Environ Health Stud. 2011;47:34–41.
    1. Hydzik P., Bielanski W., Ponka M., Wojcicki M., Lubikowski J., Pach J. Usefulness of 13C-methacetin breath test in liver function testing in Amanita phalloides poisoning; breast feeding woman case. Clin Toxicol (Phila) 2008;46:1077–1082.
    1. Palmentieri B., de Sio I., La Mura V., Masarone M., Vecchione R., Bruno S. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Dig Liver Dis. 2006;38:485–489.
    1. Bedogni G., Bellentani S., Miglioli L., Masutti F., Passalacqua M., Castiglione A. The fatty liver index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.
    1. Liu H., Fu J., Hong R., Liu L., Li F. Acoustic radiation force impulse elastography for the non-invasive evaluation of hepatic fibrosis in non-alcoholic fatty liver disease patients: a systematic review & meta-analysis. PLoS One. 2015;10:e0127782.
    1. Hegazy M.A., Samy M.A., Tawfik A., Naguib M.M., Ezzat A., Behiry M.E. Abdominal subcutaneous fat thickness and homeostasis model assessment of insulin resistance as simple predictors of nonalcoholic steatohepatitis. Diabetes Metab Syndr Obes. 2019;12:1105–1111.
    1. Hamagawa K., Matsumura Y., Kubo T., Hayato K., Okawa M., Tanioka K. Abdominal visceral fat thickness measured by ultrasonography predicts the presence and severity of coronary artery disease. Ultrasound Med Biol. 2010;36:1769–1775.
    1. Brunetti N.D., Lanzone S., Dellegrottaglie G., Di Giuseppe G., De Gennaro L., Novielli V. The CAPITAL study (CArdiovascular prevention wIth Telecardiology in ApuLia): preliminary results. J Cardiovasc Med. 2016;17:455–461.
    1. O'Neill S., O'Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.
    1. Vecchie A., Dallegri F., Carbone F., Bonaventura A., Liberale L., Portincasa P. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med. 2018;48:6–17.
    1. Moran S., Mina A., Duque X., Ortiz-Olvera N., Rodriguez-Leal G., Alfredo Sierra-Ramirez J. The utility of the (13)C-methacetin breath test in predicting the long-term survival of patients with decompensated cirrhosis. J Breath Res. 2017;11:036011.
    1. Klatt S., Taut C., Mayer D., Adler G., Beckh K. Evaluation of the 13C-methacetin breath test for quantitative liver function testing. Z Gastroenterol. 1997;35:609–614.
    1. Motamed N., Sohrabi M., Ajdarkosh H., Hemmasi G., Maadi M., Sayeedian F.S. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22:3023–3030.
    1. Clemente A.P., Netto B.D., de Carvalho-Ferreira J.P., da Silveira Campos R.M., de Piano Ganen A., Tock L. Waist circumference as a marker for screening nonalcoholic fatty liver disease in obese adolescentsRev Paul Pediatr. 2016;34:47–55.
    1. Pasarin M., Abraldes J.G., Liguori E., Kok B., La Mura V. Intrahepatic vascular changes in non-alcoholic fatty liver disease: potential role of insulin-resistance and endothelial dysfunction. World J Gastroenterol. 2017;23:6777–6787.
    1. Francque S., Laleman W., Verbeke L., Van Steenkiste C., Casteleyn C., Kwanten W. Increased intrahepatic resistance in severe steatosis: endothelial dysfunction, vasoconstrictor overproduction and altered microvascular architecture. Lab Invest. 2012;92:1428–1439.
    1. van der Graaff D., Kwanten W.J., Francque S.M. The potential role of vascular alterations and subsequent impaired liver blood flow and hepatic hypoxia in the pathophysiology of non-alcoholic steatohepatitis. Med Hypotheses. 2019;122:188–197.
    1. Francque S., Verrijken A., Mertens I., Hubens G., Van Marck E., Pelckmans P. Noncirrhotic human nonalcoholic fatty liver disease induces portal hypertension in relation to the histological degree of steatosis. Eur J Gastroenterol Hepatol. 2010;22:1449–1457.
    1. Lefere S., Devisscher L., Geerts A. Angiogenesis in the progression of non-alcoholic fatty liver disease. Acta Gastroenterol Belg. 2020;83:301–307.
    1. Lin Y., Li H., Jin C., Wang H., Jiang B. The diagnostic accuracy of liver fibrosis in non-viral liver diseases using acoustic radiation force impulse elastography: a systematic review and meta-analysis. PLoS One. 2020;15:e0227358.
    1. Varela J.E., Hinojosa M., Nguyen N. Correlations between intra-abdominal pressure and obesity-related co-morbidities. Surg Obes Relat Dis. 2009;5:524–528.
    1. Maximos M., Bril F., Portillo Sanchez P., Lomonaco R., Orsak B., Biernacki D. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology. 2015;61:153–160.
    1. Chen Z., Qin H., Qiu S., Chen G., Chen Y. Correlation of triglyceride to high-density lipoprotein cholesterol ratio with nonalcoholic fatty liver disease among the non-obese Chinese population with normal blood lipid levels: a retrospective cohort research. Lipids Health Dis. 2019;18:162.
    1. Ren X.Y., Shi D., Ding J., Cheng Z.Y., Li H.Y., Li J.S. Total cholesterol to high-density lipoprotein cholesterol ratio is a significant predictor of nonalcoholic fatty liver: Jinchang cohort study. Lipids Health Dis. 2019;18:47.
    1. Tirosh O. Hypoxic signaling and cholesterol lipotoxicity in fatty liver disease progression. Oxid Med Cell Longev. 2018;2018:2548154.
    1. Ho C.M., Ho S.L., Jeng Y.M., Lai Y.S., Chen Y.H., Lu S.C. Accumulation of free cholesterol and oxidized low-density lipoprotein is associated with portal inflammation and fibrosis in nonalcoholic fatty liver disease. J Inflamm (Lond) 2019;16:7.
    1. Gastaldelli A., Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019;1:312–328.
    1. Moosavian S.P., Arab A., Paknahad Z. The effect of a Mediterranean diet on metabolic parameters in patients with non-alcoholic fatty liver disease: a systematic review of randomized controlled trials. Clin Nutr ESPEN. 2020;35:40–46.
    1. Smart N.A., King N., McFarlane J.R., Graham P.L., Dieberg G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: a systematic review and meta-analysis. Br J Sports Med. 2018;52:834–843.
    1. David K., Kowdley K.V., Unalp A., Kanwal F., Brunt E.M., Schwimmer J.B. Quality of life in adults with nonalcoholic fatty liver disease: baseline data from the nonalcoholic steatohepatitis clinical research network. Hepatology. 2009;49:1904–1912.
    1. Kim D., Yoo E.R., Li A.A., Tighe S.P., Cholankeril G., Harrison S.A. Depression is associated with non-alcoholic fatty liver disease among adults in the United States. Aliment Pharmacol Ther. 2019;50:590–598.

Source: PubMed

3
Abonneren