Dynamics of toxigenic Clostridium perfringens colonisation in a cohort of prematurely born neonatal infants

Alexander G Shaw, Emma Cornwell, Kathleen Sim, Hannah Thrower, Hannah Scott, Joseph C S Brown, Ronald A Dixon, J Simon Kroll, Alexander G Shaw, Emma Cornwell, Kathleen Sim, Hannah Thrower, Hannah Scott, Joseph C S Brown, Ronald A Dixon, J Simon Kroll

Abstract

Background: Clostridium perfringens forms part of the human gut microbiota and has been associated with life-threatening necrotising enterocolitis (NEC) in premature infants. Whether specific toxigenic strains are responsible is unknown, as is the extent of diversity of strains in healthy premature babies. We investigated the C. perfringens carrier status of premature infants in the neonatal intensive care unit, factors influence this status, and the toxic potential of the strains.

Methods: C. perfringens was isolated by culture from faecal samples from 333 infants and their toxin gene profiles analysed by PCR. A survival analysis was used to identify factors affecting probability of carriage. Competitive growth experiments were used to explore the results of the survival analysis.

Results: 29.4% of infants were colonized with C. perfringens before they left hospital. Three factors were inversely associated with probability of carriage: increased duration of maternal milk feeds, CPAP oxygen treatment and antibiotic treatment. C. perfringens grew poorly in breast milk and was significantly outperformed by Bifidobacterium infantis, whether grown together or separately. Toxin gene screening revealed that infants carried isolates positive for collagenase, perfringolysin O, beta 2, beta, becA/B, netB and enterotoxin toxin genes, yet none were observed to be associated with the development of NEC.

Conclusions: Approximately a third of preterm infants are colonised 3 weeks after birth with toxin gene-carrying C. perfringens. We speculate that increased maternal breast milk, oxygen and antibiotic treatment creates an environment in the gut hostile to growth of C. perfringens. Whilst potentially toxigenic C. perfringens isolates were frequent, no toxin type was associated with NEC.

Trial registration: clinicaltrials.gov NCT01102738, registered 13th April 2010.

Keywords: Breast milk; Clostridium perfringens; Necrotising enterocolitis; Toxins.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Kaplan-Meier plot of probability of colonisation by C.perfringens over time. Data from our cohort of 333 infants. Dashed lines indicate the Hall-Wellner 95% confidence bands
Fig. 2
Fig. 2
Kaplan-Meier plots for each of the four significant factors in the multivariate model. X axis shows the infant day of life. Y axis shows the probability of colonisation for an infant when stratified according to quartiles (1st – 4th) of varying clinical factors: a) Days of CPAP oxygen, b) Days of maternal milk feeds (excluding breast feeds), c) Days of breast feeding and d) Days of antibiotics usage. Colour codes for the quartiles are shown in the top right of each subplot
Fig. 3
Fig. 3
Kaplan-Meier plots showing combinations of the four significant factors when split into low or high categories. For ease of comparability, ‘All variables low’ (median value for all four variables) are shown on each chart
Fig. 4
Fig. 4
C. perfringens and B. infantis growth in rich media and breast milk. Each bacterium was grown in each medium separately (monoculture) or together (co-culture). Experiments were performed in triplicate with three technical replicates (all replicas shown). BM = Breast milk, with three different donations being used in the experiments (a, b and c)
Fig. 5
Fig. 5
C. perfringens toxin genes found in infants that developed NEC compared to control infants. Percentages were calculated out of the total number of control infants (n = 91) and infants that developed NEC Bell stage 2 (confirmed) or 3 (severe) (n = 5). Two infants who developed NEC Bell stage 1 (suspected) could not be categorised as cases or controls so were not included. A toxin gene was scored as present if it was found in any C. perfringens isolate found in an infant’s faecal samples during the course of either their whole time on the neonatal unit or up to the last sample prior to NEC development. The table shows the counts within the two groups and the relative percentages for toxin occurrence

References

    1. Stevens DL, Aldape MJ, Bryant AE. Life-threatening clostridial infections. Anaerobe. 2012;18(2):254–259. doi: 10.1016/j.anaerobe.2011.11.001.
    1. Centers for Disease Control and Prevention. Food Safety Homepage, Foodborne Illness A-Z, Clostridium perfringens. . Accessed Nov 2017.
    1. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. 2011;364(3):255–264. doi: 10.1056/NEJMra1005408.
    1. Blakey JL, Lubitz L, Campbell NT, Gillam GL, Bishop RF, Barnes GL. Enteric colonization in sporadic neonatal necrotizing enterocolitis. J Pediatr Gastroenterol Nutr. 1985;4(4):591–595. doi: 10.1097/00005176-198508000-00017.
    1. Dittmar E, Beyer P, Fischer D, Schäfer V, Schoepe H, Bauer K, et al. Necrotizing enterocolitis of the neonate with Clostridium perfringens: diagnosis, clinical course, and role of alpha toxin. Eur J Pediatr. 2008;167(8):891–895. doi: 10.1007/s00431-007-0614-9.
    1. Heida FH, van Zoonen AG, Hulscher JB, te Kiefte BJ, Wessels R, Kooi EM, et al. A necrotizing Enterocolitis-associated gut microbiota is present in the meconium: results of a prospective study. Clin Infec Dis : Official Publication Infec Dis Soc Am. 2016;62(7):863–870. doi: 10.1093/cid/ciw016.
    1. Sim K, Shaw AG, Randell P, Cox MJ, McClure ZE, Li M-S, et al. Dysbiosis anticipating necrotizing Enterocolitis in very premature infants. Clin Infec Dis: Official Publication Infec Dis Soc Am. 2015;60(3):389–397. doi: 10.1093/cid/ciu822.
    1. Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E, et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2016;387(10031):1928–1936. doi: 10.1016/S0140-6736(16)00081-7.
    1. Dobbler PT, Procianoy RS, Mai V, Silveira RC, Corso AL, Rojas BS, et al. Low microbial diversity and abnormal microbial succession is associated with necrotizing Enterocolitis in preterm infants. Front Microbiol. 2017;8:2243. doi: 10.3389/fmicb.2017.02243.
    1. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut. 2007;56:661–667. doi: 10.1136/gut.2006.100164.
    1. Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108(4):516–520. doi: 10.1067/mai.2001.118130.
    1. Martirosian G, Ekiel A, Aptekorz M, Wiechula B, Kazek B, Jankowska-Steifer E, et al. Fecal lactoferrin and Clostridium spp. in stools of autistic children. Anaerobe. 2011;17(1):43–45. doi: 10.1016/j.anaerobe.2010.12.003.
    1. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl 1):S6–s16. doi: 10.1086/341914.
    1. Blakey JL, Lubitz L, Barnes GL, Bishop RF, Campbell NT, Gillam GL. Development of gut colonisation in pre-term neonates. J Med Microbiol. 1982;15(4):519–529. doi: 10.1099/00222615-15-4-519.
    1. Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, Hernández-Barranco A, et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol. 2012;79(3):763–772. doi: 10.1111/j.1574-6941.2011.01261.x.
    1. Ferraris L, Butel MJ, Campeotto F, Vodovar M, Rozé JC, Aires J. Clostridia in premature Neonates' gut: incidence, antibiotic susceptibility, and perinatal determinants influencing colonization. PLoS One. 2012;7(1):e30594. doi: 10.1371/journal.pone.0030594.
    1. Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect. 2018;7(1):141. doi: 10.1038/s41426-018-0144-8.
    1. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014;9(3):361–377. doi: 10.2217/fmb.13.168.
    1. van Asten AJAM, van der Wiel CW, Nikolaou G, Houwers DJ, Gröne A. A multiplex PCR for toxin typing of Clostridium perfringens isolates. Vet Microbiol. 2009;136(3):411–412. doi: 10.1016/j.vetmic.2008.11.024.
    1. Public Health England. UK standards for microbiology investigations: processing of faeces for Clostridium difficile.: Available at: ; 2014. Accessed Nov 2017.
    1. Excellence NIfCaH. Donor milk banks: service operation. In: NICE Guidance CgC, editor.: Available at 2010. Accessed Nov 2017.
    1. Kotsanas D, Carson JA, Awad MM, Lyras D, Rood JI, Jenkin GA, et al. Novel use of Tryptose sulfite Cycloserine egg yolk agar for isolation of Clostridium perfringens during an outbreak of necrotizing Enterocolitis in a neonatal unit. J Clin Microbiol. 2010;48(11):4263–4265. doi: 10.1128/JCM.01724-10.
    1. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105(48):18964–18969. doi: 10.1073/pnas.0809584105.
    1. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human Milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58(9):5334–5340. doi: 10.1021/jf9044205.
    1. Rockova S, Rada V, Marsik P, Vlkova E, Bunesova V, Sklenar J, et al. Growth of bifidobacteria and clostridia on human and cow milk saccharides. Anaerobe. 2011;17(5):223–225. doi: 10.1016/j.anaerobe.2011.07.009.
    1. Rotimi VO, Olowe SA, Ahmed I. The development of bacterial flora of premature neonates. J Hyg. 1985;94(3):309–318. doi: 10.1017/S0022172400061532.
    1. Stark PL, Lee A. The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. J Med Microbiol. 1982;15(2):189–203. doi: 10.1099/00222615-15-2-189.
    1. Benno Y, Sawada K, Mitsuoka T. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol. 1984;28(9):975–986. doi: 10.1111/j.1348-0421.1984.tb00754.x.
    1. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology (Reading, England) 2011;157(Pt 5):1385–1392. doi: 10.1099/mic.0.042143-0.
    1. Fitzstevens John L., Smith Kelsey C., Hagadorn James I., Caimano Melissa J., Matson Adam P., Brownell Elizabeth A. Systematic Review of the Human Milk Microbiota. Nutrition in Clinical Practice. 2016;32(3):354–364. doi: 10.1177/0884533616670150.
    1. Yu ZT, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, et al. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology. 2013;23(2):169–177. doi: 10.1093/glycob/cws138.
    1. Rolfe RD, Hentges DJ, Campbell BJ, Barrett JT. Factors related to the oxygen tolerance of anaerobic bacteria. Appl Environ Microbiol. 1978;36(2):306–313. doi: 10.1128/AEM.36.2.306-313.1978.
    1. Hutt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M. Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero- and uropathogens. J Appl Microbiol. 2006;100(6):1324–1332. doi: 10.1111/j.1365-2672.2006.02857.x.
    1. Martinez FA, Balciunas EM, Converti A, Cotter PD, de Souza Oliveira RP. Bacteriocin production by Bifidobacterium spp. Rev Biotechnol Adv. 2013;31(4):482–488. doi: 10.1016/j.biotechadv.2013.01.010.
    1. Butel MJ, Roland N, Hibert A, Popot F, Favre A, Tessedre AC, et al. Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. J Med Microbiol. 1998;47(5):391–399. doi: 10.1099/00222615-47-5-391.
    1. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–547. doi: 10.1038/nature09646.
    1. Nagpal R, Tsuji H, Takahashi T, Nomoto K, Kawashima K, Nagata S, et al. Gut dysbiosis following C-section instigates higher colonisation of toxigenic Clostridium perfringens in infants. Benefic Microbes. 2017;8(3):353–365. doi: 10.3920/BM2016.0216.
    1. Peila Chiara, Moro Guido, Bertino Enrico, Cavallarin Laura, Giribaldi Marzia, Giuliani Francesca, Cresi Francesco, Coscia Alessandra. The Effect of Holder Pasteurization on Nutrients and Biologically-Active Components in Donor Human Milk: A Review. Nutrients. 2016;8(8):477. doi: 10.3390/nu8080477.
    1. Zheng W, Zhao W, Wu M, Song X, Caro F, Sun X, et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature. 2020;577(7791):543–548. doi: 10.1038/s41586-019-1898-4.
    1. Kiu R, Caim S, Alexander S, Pachori P, Hall LJ. Probing genomic aspects of the multi-host pathogen Clostridium perfringens reveals significant Pangenome diversity, and a diverse Array of virulence factors. Front Microbiol. 2017;8:2485. doi: 10.3389/fmicb.2017.02485.
    1. Rose G, Shaw AG, Sim K, Wooldridge DJ, Li MS, Gharbia S, et al. Antibiotic resistance potential of the healthy preterm infant gut microbiome. PeerJ. 2017;5:e2928. doi: 10.7717/peerj.2928.
    1. Arboleya S, Sánchez B, Milani C, Duranti S, Solís G, Fernández N, et al. Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. J Pediatr. 2015;166(3):538–544. doi: 10.1016/j.jpeds.2014.09.041.
    1. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165(1):23–29. doi: 10.1016/j.jpeds.2014.01.010.
    1. Kuppala VS, Meinzen-Derr J, Morrow AL, Schibler KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr. 2011;159(5):720–725. doi: 10.1016/j.jpeds.2011.05.033.
    1. Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sanchez PJ, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66. doi: 10.1542/peds.2007-3423.
    1. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–521. doi: 10.1542/peds.2005-2824.
    1. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25. doi: 10.1097/00005176-199901000-00007.
    1. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev. 2010;86(Suppl 1):13–15. doi: 10.1016/j.earlhumdev.2010.01.004.
    1. Katayama S, Dupuy B, Garnier T, Cole ST. Rapid expansion of the physical and genetic map of the chromosome of Clostridium perfringens CPN50. J Bacteriol. 1995;177(19):5680–5685. doi: 10.1128/JB.177.19.5680-5685.1995.
    1. Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA. Association of beta2 toxin production with Clostridium perfringens type a human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Mol Microbiol. 2005;56(3):747–762. doi: 10.1111/j.1365-2958.2005.04573.x.
    1. Lakshminarayanan B, Harris HM, Coakley M, O'Sullivan O, Stanton C, Pruteanu M, et al. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol. 2013;62(Pt 3):457–466. doi: 10.1099/jmm.0.052258-0.

Source: PubMed

3
Abonneren