PUREAIR protocol: randomized controlled trial of intensive pulmonary rehabilitation versus standard care in patients undergoing surgical resection for lung cancer

Stefania Fugazzaro, Stefania Costi, Carlotta Mainini, Besa Kopliku, Cristian Rapicetta, Roberto Piro, Roberta Bardelli, Patricia Filipa Sobral Rebelo, Carla Galeone, Giorgio Sgarbi, Filippo Lococo, Massimiliano Paci, Tommaso Ricchetti, Silvio Cavuto, Domenico Franco Merlo, Sara Tenconi, Stefania Fugazzaro, Stefania Costi, Carlotta Mainini, Besa Kopliku, Cristian Rapicetta, Roberto Piro, Roberta Bardelli, Patricia Filipa Sobral Rebelo, Carla Galeone, Giorgio Sgarbi, Filippo Lococo, Massimiliano Paci, Tommaso Ricchetti, Silvio Cavuto, Domenico Franco Merlo, Sara Tenconi

Abstract

Background: Non-small cell lung cancer is the most common type of lung cancer. Surgery is proven to be the most effective treatment in early stages, despite its potential impact on quality of life. Pulmonary rehabilitation, either before or after surgery, is associated with reduced morbidity related symptoms and improved exercise capacity, lung function and quality of life.

Methods: We describe the study protocol for the open-label randomized controlled trial we are conducting on patients affected by primary lung cancer (stages I-II) eligible for surgical treatment. The control group receives standard care consisting in one educational session before surgery and early inpatient postoperative physiotherapy. The treatment group receives, in addition to standard care, intensive rehabilitation involving 14 preoperative sessions (6 outpatient and 8 home-based) and 39 postoperative sessions (15 outpatient and 24 home-based) with aerobic, resistance and respiratory training, as well as scar massage and group bodyweight exercise training. Assessments are performed at baseline, the day before surgery and one month and six months after surgery. The main outcome is the long-term exercise capacity measured with the Six-Minute Walk Test; short-term exercise capacity, lung function, postoperative morbidity, length of hospital stay, quality of life (Short Form 12), mood disturbances (Hospital Anxiety and Depression Scale) and pain (Numeric Rating Scale) are also recorded and analysed. Patient compliance and treatment-related side effects are also collected. Statistical analyses will be performed according to the intention-to-treat approach. T-test for independent samples will be used for continuous variables after assessment of normality of distribution. Chi-square test will be used for categorical variables. Expecting a 10% dropout rate, assuming α of 5% and power of 80%, we planned to enrol 140 patients to demonstrate a statistically significant difference of 25 m at Six-Minute Walk Test.

Discussion: Pulmonary Resection and Intensive Rehabilitation study (PuReAIR) will contribute significantly in investigating the effects of perioperative rehabilitation on exercise capacity, symptoms, lung function and long-term outcomes in surgically treated lung cancer patients. This study protocol will facilitate interpretation of future results and wide application of evidence-based practice.

Trial registration: ClinicalTrials.gov Registry n. NCT02405273 [31.03.2015].

Keywords: Breathing exercises; Exercise therapy; Exercise tolerance; Lung neoplasms; Patient compliance; Patient education; Quality of life; Rehabilitation.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the local Ethical Committee, at Arcispedale Santa Maria Nuova, IRCCS, Viale Umberto I n° 50, Reggio Emilia, on 9 April 2013 [n. 2013/0009390]. Written informed consent is obtained from participants by the operating surgeon during the preoperative consultation.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study Flow diagram. Legend: MDT = Multi-Disciplinary Team; PR = pulmonary rehabilitation; Preop = preoperative; Postop = postoperative

References

    1. Union for International Cancer Control. Non-Small-cell Lung Cancer. 2014 Review of cancer medicines on the WHO list of essential medicines. WHO; 2014. . Accessed 15 Apr 2015.
    1. Crandall K, Maguire R, Campbell A, Kearney N. Exercise intervention for patients surgically treated for non-small cell lung cancer (NSCLC): a systematic review. Surg Oncol. 2014;23(1):17–30. doi: 10.1016/j.suronc.2014.01.001.
    1. Shannon VR. Role of pulmonary rehabilitation in the management of patients with lung cancer. Curr Opin Pulm Med. 2010;16(4):334–339. doi: 10.1097/MCP.0b013e32833a897d.
    1. Kenny PM, King MT, Viney RC, Boyer MJ, Pollicino CA, McLean JM, Fulham MJ, McCaughan BC. Quality of life and survival in the 2 years after surgery for non small-cell lung cancer. J Clin Oncol. 2008;26(2):233–241. doi: 10.1200/JCO.2006.07.7230.
    1. Cavalheri V, Tahirah F, Nonoyama M, Jenkins S, Hill K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst Rev. 2013;7:CD009955.
    1. Loganathan RS, Stover DE, Shi W, Venkatraman E. Prevalence of COPD in women compared to men around the time of diagnosis of primary lung cancer. Chest. 2006;129(5):1305–1312. doi: 10.1378/chest.129.5.1305.
    1. Schroedl C, Kalhan R. Incidence, treatment options, and outcomes of lung cancer in patients with chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2012;18(2):131–137. doi: 10.1097/MCP.0b013e32834f2080.
    1. Divisi D, Di Francesco C, Di Leonardo G, Crisci R. Preoperative pulmonary rehabilitation in patients with lung cancer and chronic obstructive pulmonary disease. Eur J Cardiothorac Surg. 2013;43(2):293–296. doi: 10.1093/ejcts/ezs257.
    1. Brocki BC, Andreasen J, Nielsen LR, Nekrasas V, Gorst-Rasmussen A, Westerdahl E. Short and long-term effects of supervised versus unsupervised exercise training on health-related quality of life and functional outcomes following lung cancer surgery - a randomized controlled trial. Lung Cancer. 2014;83(1):102–108. doi: 10.1016/j.lungcan.2013.10.015.
    1. Nici L. The role of pulmonary rehabilitation in the lung cancer patient. Semin Respir Crit Care Med. 2009;30(6):670–674. doi: 10.1055/s-0029-1242636.
    1. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13–e64. doi: 10.1164/rccm.201309-1634ST.
    1. Scarci M, Solli P, Bedetti B. Enhanced recovery pathway for thoracic surgery in the UK. J Thorac Dis. 2016;8(Suppl 1):S78–S83.
    1. Bobbio A, Chetta A, Ampollini L, Primom GL, Internullo E, Carbognani P, et al. Preoperative pulmonary rehabilitation in patients undergoing lung resection for non-small cell lung cancer. Eur J Cardiothorac Surg. 2008;33(1):95–98. doi: 10.1016/j.ejcts.2007.10.003.
    1. Brunelli A, Charloux A, Bolliger CT, Rocco G, Sculier JP, Varela G, et al. ERS/ESTS clinical guidelines on fitness for radical therapy in lung cancer patients (surgery and chemo-radiotherapy) Eur Respir J. 2009;34(3):17–41. doi: 10.1183/09031936.00184308.
    1. Stefanelli F, Meoli I, Cobuccio R, Curcio C, Amore D, Casazza D, et al. High-intensity training and cardiopulmonary exercise testing in patients with chronic obstructive pulmonary disease and non-small-cell lung cancer undergoing lobectomy. Eur J Cardiothorac Surg. 2013;44(4):e260–e265. doi: 10.1093/ejcts/ezt375.
    1. Jones LW, Liang Y, Pituskin EN, Battaglini CL, Scott JM, Hornsby WE, et al. Effect of exercise training on peak oxygen consumption in patients with cancer: a meta-analysis. Oncologist. 2011;16(1):112–120. doi: 10.1634/theoncologist.2010-0197.
    1. Benzo R, Wigle D, Novotny P, Wetzstein M, Nichols F, Shen RK, et al. Preoperative pulmonary rehabilitation before lung cancer resection: results from two randomized studies. Lung Cancer. 2011;74(3):441–5. doi: 10.1016/j.lungcan.2011.05.011.
    1. Morano MT, Araújo AS, Nascimento FB, da Silva GF, Mesquita R, Pinto JS, et al. Preoperative pulmonary rehabilitation versus chest physical therapy in patients undergoing lung cancer resection: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2013;94(1):53–58. doi: 10.1016/j.apmr.2012.08.206.
    1. Edvardsen E, Skjonsberg OH, Borchsenius F, Anderssen SA. Effect of training on maximal oxygen uptake and muscular strength after lung cancer surgery - a randomized controlled trial. Eur Respir J. 2013;42(Suppl 57):369.
    1. Arbane G, Douiri A, Hart N, Hopkinson NS, Singh S, Speed C, et al. Effect of postoperative physical training on activity after curative surgery for non-small cell lung cancer: a multicentre randomised controlled trial. Physiotherapy. 2014;100(2):100–107. doi: 10.1016/j.physio.2013.12.002.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–1426. doi: 10.1249/MSS.0b013e3181e0c112.
    1. Granger CL, McDonald CF, Berney S, Chao C, Denehy L. Exercise intervention to improve exercise capacity and health related quality of life for patients with non-small cell lung cancer: a systematic review. Lung Cancer. 2011;72(2):139–153. doi: 10.1016/j.lungcan.2011.01.006.
    1. Mainini C, Rebelo PF, Bardelli R, Kopliku B, Tenconi S, Costi S, Tedeschi C, Fugazzaro S. Perioperative physical exercise interventions for patients undergoing lung cancer surgery: what is the evidence? SAGE Open Med. 2016;4:2050312116673855. doi: 10.1177/2050312116673855.
    1. Williams MT, Lewis LK, McKeough Z, Holland AE, Lee A, McNamara R, Phillips A, Wiles L, Knapman L, Wootton S, Milross M, Effing T. Reporting of exercise attendance rates for people with chronic obstructive pulmonary disease: a systematic review. Respirology. 2014;19(1):30–37. doi: 10.1111/resp.12201.
    1. Kuehr L, Wiskemann J, Abel U, Ulrich CM, Hummler S, Thomas M. Exercise in patients with non-small cell lung cancer. Med Sci Sports Exerc. 2014;46(4):656–663. doi: 10.1249/MSS.0000000000000158.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7.
    1. Apolone G, Mosconi P, Quattrociocchi L, Gianicolo EAL, Groth N, Ware JE Jr. Questionario sullo stato di salute SF-12.Versione italiana. Milano: Istituto di Ricerche Farmacologiche Mario Negri; 2005. Accessed 15 Jan 2015.
    1. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, Fainsinger R, Aass N. Kaasa S; European palliative care research collaborative (EPCRC). Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manag. 2011;41(6):1073–1093. doi: 10.1016/j.jpainsymman.2010.08.016.
    1. Arnardóttir RH, Emtner M, Hedenström H, Larsson K, Boman G. Peak exercise capacity estimated from incremental shuttle walking test in patients with COPD: a methodological study. Respir Res. 2006;7:127. doi: 10.1186/1465-9921-7-127.
    1. Storer TW. Exercise in chronic pulmonary disease: resistance exercise prescription. Med Sci Sports Exerc. 2001;33(7 Suppl):S680–S692. doi: 10.1097/00005768-200107001-00006.
    1. Delibera Giunta regionale n. 109, 04/02/2008. Requisiti specifici accreditamento di strutture Pneumologia. Bollettino Ufficiale Regione Emilia-Romagna 2009;37.
    1. Holland AE, Hill CJ, Rasekaba T, Lee A, Naughton MT, McDonald CF. Updating the minimal important difference for six-minute walk distance in patients with chronic obstructive pulmonary disease.Arch Phys Med Rehabil. 2010;91(2):221–5.
    1. McLean SM, Burton M, Bradley L, Littlewood C. Interventions for enhancing adherence with physiotherapy: a systematic review. Man Ther. 2010;15(6):514–521. doi: 10.1016/j.math.2010.05.012.
    1. Singh F, Newton RU, Galvão DA, Spry N, Baker MK. A systematic review of pre-surgical exercise intervention studies with cancer patients. Surg Oncol. 2013;22(2):92–104. doi: 10.1016/j.suronc.2013.01.004.
    1. Agostini P, Naidu B, Cieslik H, Steyn R, Rajesh PB, Bishay E, et al. Effectiveness of incentive spirometry in patients following thoracotomy and lung resection including those at high risk for developing pulmonary complications. Thorax. 2013;68(6):580–585. doi: 10.1136/thoraxjnl-2012-202785.
    1. Cesario A, Ferri L, Galetta D, Pasqua F, Bonassi S, Clini E, et al. Post-operative respiratory rehabilitation after lung resection for non-small cell lung cancer. Lung Cancer. 2007;57(2):175–180. doi: 10.1016/j.lungcan.2007.02.017.
    1. Cavalheri V, Jenkins S, Cecins N, Gain K, Phillips M, Sanders LH, Hill K. Impairments after curative intent treatment for non-small cell lung cancer: a comparison with age and gender-matched healthy controls. Respir Med. 2015;109(10):1332–1339. doi: 10.1016/j.rmed.2015.08.015.
    1. Maguire R, Papadopoulou C, Kotronoulas G, Simpson MF, McPhelim J, Irvine L. A systematic review of supportive care needs of people living with lung cancer. Eur J Oncol Nurs. 2013;17(4):449–464. doi: 10.1016/j.ejon.2012.10.013.
    1. Toosi K, Velez-Cubian FO, Glover J, Ng EP, Moodie CC, Garrett JR, Fontaine JP, Toloza EM. Upstaging and survival after robotic-assisted thoracoscopic lobectomy for non-small cell lung cancer. Surgery. 2016;160(5):1211–1218. doi: 10.1016/j.surg.2016.08.003.
    1. National NCCN. Comprehensive cancer network. Non–small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:504–535. doi: 10.6004/jnccn.2017.0050.
    1. Lim C, Sung M, Shepherd FA, Nouriany N, Sawczak M, Paul T, Perera-Low N, Foster A, Zawisza D, Feld R, Liu G, Leighl NB. Patients with advanced non-small cell lung cancer: are research biopsies a barrier to participation in clinical trials? J Thorac Oncol. 2016;11(1):79–84. doi: 10.1016/j.jtho.2015.09.006.
    1. Picorelli AM, Pereira LS, Pereira DS, Felício D, Sherrington C. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J Physiother. 2014;60(3):151–156. doi: 10.1016/j.jphys.2014.06.012.

Source: PubMed

3
Abonneren