Major microbiota dysbiosis in severe obesity: fate after bariatric surgery

Judith Aron-Wisnewsky, Edi Prifti, Eugeni Belda, Farid Ichou, Brandon D Kayser, Maria Carlota Dao, Eric O Verger, Lyamine Hedjazi, Jean-Luc Bouillot, Jean-Marc Chevallier, Nicolas Pons, Emmanuelle Le Chatelier, Florence Levenez, Stanislav Dusko Ehrlich, Joel Dore, Jean-Daniel Zucker, Karine Clément, Judith Aron-Wisnewsky, Edi Prifti, Eugeni Belda, Farid Ichou, Brandon D Kayser, Maria Carlota Dao, Eric O Verger, Lyamine Hedjazi, Jean-Luc Bouillot, Jean-Marc Chevallier, Nicolas Pons, Emmanuelle Le Chatelier, Florence Levenez, Stanislav Dusko Ehrlich, Joel Dore, Jean-Daniel Zucker, Karine Clément

Abstract

Objectives: Decreased gut microbial gene richness (MGR) and compositional changes are associated with adverse metabolism in overweight or moderate obesity, but lack characterisation in severe obesity. Bariatric surgery (BS) improves metabolism and inflammation in severe obesity and is associated with gut microbiota modifications. Here, we characterised severe obesity-associated dysbiosis (ie, MGR, microbiota composition and functional characteristics) and assessed whether BS would rescue these changes.

Design: Sixty-one severely obese subjects, candidates for adjustable gastric banding (AGB, n=20) or Roux-en-Y-gastric bypass (RYGB, n=41), were enrolled. Twenty-four subjects were followed at 1, 3 and 12 months post-BS. Gut microbiota and serum metabolome were analysed using shotgun metagenomics and liquid chromatography mass spectrometry (LC-MS). Confirmation groups were included.

Results: Low gene richness (LGC) was present in 75% of patients and correlated with increased trunk-fat mass and comorbidities (type 2 diabetes, hypertension and severity). Seventy-eight metagenomic species were altered with LGC, among which 50% were associated with adverse body composition and metabolic phenotypes. Nine serum metabolites (including glutarate, 3-methoxyphenylacetic acid and L-histidine) and functional modules containing protein families involved in their metabolism were strongly associated with low MGR. BS increased MGR 1 year postsurgery, but most RYGB patients remained with low MGR 1 year post-BS, despite greater metabolic improvement than AGB patients.

Conclusions: We identified major gut microbiota alterations in severe obesity, which include decreased MGR and related functional pathways linked with metabolic deteriorations. The lack of full rescue post-BS calls for additional strategies to improve the gut microbiota ecosystem and microbiome-host interactions in severe obesity.

Trial registration number: NCT01454232.

Keywords: gastric surgery; intestinal bacteria; intestinal tract; obesity; obesity surgery.

Conflict of interest statement

Competing interests: None declared.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2019. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

Figures

Figure 1:. Microbial gene richness (MGR) in…
Figure 1:. Microbial gene richness (MGR) in severe obesity:
A: Study flow-chart: baseline (MB or MB+MO) and MB follow-up cohorts. Two independent confirmation cohorts (EROIC and ATOX) were used for data confirmation, B: Microbial gene Richness (MGR) bimodal distribution in MB baseline cohort. C: Baseline MGR in AGB and RYGB patients, including four enterotype characteristics in each surgery groups.
Figure 2:. Links between MGR and bio-clinical…
Figure 2:. Links between MGR and bio-clinical characteristics in MO+MB subjects:
(A) MGR relationships with anthropometric parameters (B) MGR relation with metabolic comorbidities (hypertension and hypertension treatments and diabetes), N=non-diabetes, IG =glucose intolerance, D=diabetes, (C) MGR relation with OGTT-derived glucose-tolerance parameters (AUC area under the curve of glucose after OGTT with 75g glucose, and Stumvoll index), Adiponectin and adipocyte volume. Pearson correlations are performed (p=p-value, q=FDR and r2; Statistics include linear models (lm), Pearson and Spearman correlations, t-test and Kruskal-Wallis when appropriate.
Figure 3:. MGR-associated MGS at baseline
Figure 3:. MGR-associated MGS at baseline
A: Heatmap of Spearman pairwise correlation coefficients between MGR-associated-MGS abundance and metabolic variables (body composition and corpulence and metabolic traits), and MGR-associated serum metabolites B: Venn diagram of metabolic parameters associated with MGR-related MGS. C: Heatmap of Spearman pairwise correlation coefficients between metabolic phenotypes and targeted serum metabolites. P-value significance denoted by (*) and FDR significance by (#).
Figure 4:. Microbial composition post-bariatric surgery
Figure 4:. Microbial composition post-bariatric surgery
A: Mean changes in MGR in RYGB and AGB from baseline to Month 1 (M1) Month 3 (M3) and Month 12 (M12) B: Evolution of richness and enterotype composition of 24 patients with kinetics follow-up at M1, M 3 (M3) and M12 C: MGR with enterotype distribution at month 12 in AGB (N=10) and RYGB (N=14) patients with kinetics follow-up, D: richness evolution confirmed in another independent RYGB (ATOX) cohort followed at 5 years (*) significance between AGB and RYGB and (*) significance between baseline and T12M
Figure 5:. Significant MGS change post bariatric…
Figure 5:. Significant MGS change post bariatric surgery:
A: 12 MGS significantly differ between baseline and T12M post both surgeries. Brown: RYBG (11 MGS); beige: AGB (2 MGS; 1 is common to RYGB-MGS); (*) significant p-value (in brown for RYGB and beige for AGB between T0 and T12) B: Heatmap of Spearman pairwise correlation coefficients between MGS delta and improvement in clinical outcomes. (*) significant p-value and (#) significant FDR.

References

    1. Kopelman PG. Obesity as a medical problem. Nature 2000;404:635–43. doi:10.1038/35007508
    1. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008;57:1470–81. doi:10.2337/db07-1403
    1. Dao MC, Clément K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur J Intern Med Published Online First: 27 October 2017. doi:10.1016/j.ejim.2017.10.005
    1. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541–6. doi:10.1038/nature12506
    1. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature 2013;500:585–8. doi:10.1038/nature12480
    1. Blüher M Are metabolically healthy obese individuals really healthy? Eur J Endocrinol Eur Fed Endocr Soc 2014;171:R209–219. doi:10.1530/EJE-14-0540
    1. Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obes Surg 2017;27:2279–89. doi:10.1007/s11695-017-2666-x
    1. Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA J Am Med Assoc 2012;307:56–65. doi:10.1001/jama.2011.1914
    1. Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery. Nat Rev Gastroenterol Hepatol 2012;9:590–8. doi:10.1038/nrgastro.2012.161
    1. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med 2016;8:67. doi:10.1186/s13073-016-0312-1
    1. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab 2015;22:228–38. doi:10.1016/j.cmet.2015.07.009
    1. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017;23:859–68. doi:10.1038/nm.4358
    1. Furet J-P, Kong L-C, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 2010;59:3049–57. doi:10.2337/db10-0253
    1. Aron-Wisnewsky J, Verger EO, Bounaix C, et al. Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding. PloS One 2016;11:e0149588. doi:10.1371/journal.pone.0149588
    1. Kayser BD, Lhomme M, Dao MC, et al. Serum lipidomics reveals early differential effects of gastric bypass compared to banding on phospholipids and sphingolipids independent of differences in weight loss. Int J Obes 2005. Published Online First: 10 March 2017. doi:10.1038/ijo.2017.63
    1. Verger EO, Aron-Wisnewsky J, Dao MC, et al. Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up. Obes Surg Published Online First: 24 July 2015. doi:10.1007/s11695-015-1803-7
    1. Stumvoll M, Mitrakou A, Pimenta W, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000;23:295–301.
    1. Thomas V, Clark J, Doré J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol Published Online First: 8 September 2015. doi:10.2217/fmb.15.87
    1. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999;65:4799–807.
    1. Godon JJ, Zumstein E, Dabert P, et al. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 1997;63:2802–13.
    1. Nielsen HB, Almeida M, Juncker AS, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014;32:822–8. doi:10.1038/nbt.2939
    1. Boudah S, Olivier M-F, Aros-Calt S, et al. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014;966:34–47. doi:10.1016/j.jchromb.2014.04.025
    1. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes, 2015: a patient-centred approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 2015;58:429–42. doi:10.1007/s00125-014-3460-0
    1. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PloS One 2012;7:e30126. doi:10.1371/journal.pone.0030126
    1. Vandeputte D, Kathagen G, D’hoe K, et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017;551:507–11. doi:10.1038/nature24460
    1. Revelles O, Espinosa-Urgel M, Fuhrer T, et al. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 2005;187:7500–10. doi:10.1128/JB.187.21.7500-7510.2005
    1. Perfetti R, Campbell RJ, Titus J, et al. Catabolism of pipecolate to glutamate in Pseudomonas putida. J Biol Chem 1972;247:4089–95.
    1. Puzziferri N, Roshek TB, Mayo HG, et al. Long-term follow-up after bariatric surgery: a systematic review. JAMA 2014;312:934–42. doi:10.1001/jama.2014.10706
    1. Ahima RS, Lazar MA. Physiology. The health risk of obesity--better metrics imperative. Science 2013;341:856–8. doi:10.1126/science.1241244
    1. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut Published Online First: 22 June 2015. doi:10.1136/gutjnl-2014-308778
    1. Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017;23:850–8. doi:10.1038/nm.4345
    1. Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528:262–6. doi:10.1038/nature15766
    1. Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Science 2016;352:560–4. doi:10.1126/science.aad3503
    1. Nguyen NQ, Debreceni TL, Burgess JE, et al. Impact of gastric emptying and small intestinal transit on blood glucose, intestinal hormones, glucose absorption in the morbidly obese. Int J Obes 2005. Published Online First: 30 January 2018. doi:10.1038/s41366-018-0012-6
    1. Carswell KA, Vincent RP, Belgaumkar AP, et al. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg 2014;24:796–805. doi:10.1007/s11695-013-1166-x
    1. Adam B, Koldehoff M, Ditschkowski M, et al. Endoscopic and Histological Findings Are Predicted by Fecal Calprotectin in Acute Intestinal Graft-Versus-Host-Disease. Dig Dis Sci 2016;61:2019–26. doi:10.1007/s10620-016-4112-7
    1. Monteiro-Sepulveda M, Touch S, Mendes-Sá C, et al. Jejunal T Cell Inflammation in Human Obesity Correlates with Decreased Enterocyte Insulin Signaling. Cell Metab 2015;22:113–24. doi:10.1016/j.cmet.2015.05.020
    1. Vandeputte D, Falony G, Vieira-Silva S, et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016;65:57–62. doi:10.1136/gutjnl-2015-309618
    1. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016;535:376–81. doi:10.1038/nature18646
    1. Dewulf EM, Cani PD, Claus SP, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013;62:1112–21. doi:10.1136/gutjnl-2012-303304
    1. Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 1999;67:2969–74.
    1. Dicksved J, Halfvarson J, Rosenquist M, et al. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J 2008;2:716–27. doi:10.1038/ismej.2008.37
    1. Gersemann M, Becker S, Nuding S, et al. Olfactomedin-4 is a glycoprotein secreted into mucus in active IBD. J Crohns Colitis 2012;6:425–34. doi:10.1016/j.crohns.2011.09.013
    1. Di Luccia B, Crescenzo R, Mazzoli A, et al. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PloS One 2015;10:e0134893. doi:10.1371/journal.pone.0134893
    1. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008;105:16731–6. doi:10.1073/pnas.0804812105
    1. Gao K, Xu A, Krul C, et al. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J Nutr 2006;136:52–7.
    1. Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am J Clin Nutr 2015;102:1313–22. doi:10.3945/ajcn.115.110536
    1. Aggarwal S, Ahuja V, Paul J. Attenuated GABAergic Signaling in Intestinal Epithelium Contributes to Pathogenesis of Ulcerative Colitis. Dig Dis Sci Published Online First: 30 June 2017. doi:10.1007/s10620-017-4662-3
    1. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 2014;5:e00889. doi:10.1128/mBio.00889-14
    1. Kong L-C, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr 2013;98:16–24. doi:10.3945/ajcn.113.058743
    1. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 2009;106:2365–70. doi:10.1073/pnas.0812600106
    1. Liou AP, Paziuk M, Luevano J-M, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013;5:178ra41. doi:10.1126/scitranslmed.3005687
    1. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014;509:183–8. doi:10.1038/nature13135
    1. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2013;13:514–22. doi:10.1038/tpj.2012.43
    1. Randazzo A, Kornreich A, Lissoir B. A Clostridium hathewayi isolate in blood culture of a patient with an acute appendicitis. Anaerobe 2015;35:44–7. doi:10.1016/j.anaerobe.2015.07.003
    1. Zhang Q, Wu Y, Wang J, et al. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Sci Rep 2016;6:27572. doi:10.1038/srep27572
    1. Narath SH, Mautner SI, Svehlikova E, et al. An Untargeted Metabolomics Approach to Characterize Short-Term and Long-Term Metabolic Changes after Bariatric Surgery. PloS One 2016;11:e0161425. doi:10.1371/journal.pone.0161425
    1. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009;9:311–26. doi:10.1016/j.cmet.2009.02.002
    1. Floegel A, Stefan N, Yu Z, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 2013;62:639–48. doi:10.2337/db12-0495
    1. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5. doi:10.1038/nature25973
    1. Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab 2017;26:611–619.e6. doi:10.1016/j.cmet.2017.09.008

Source: PubMed

3
Abonneren