Biomarkers for Predicting Clinical Outcomes of Chemoradiation-Based Bladder Preservation Therapy for Muscle-Invasive Bladder Cancer

Fumitaka Koga, Kosuke Takemura, Hiroshi Fukushima, Fumitaka Koga, Kosuke Takemura, Hiroshi Fukushima

Abstract

Chemoradiation-based bladder preservation therapy (BPT) is currently a curative option for non-metastatic muscle-invasive bladder cancer (MIBC) patients at favorable risk or an alternative to radical cystectomy (RC) for those who are unfit for RC. In BPT, only patients who achieve complete response (CR) after chemoradiation have a favorable prognosis and quality of life with a preserved functional bladder. Thus, predicting CR and favorable prognosis is important for optimal patient selection for BPT. We reviewed biomarkers for predicting the clinical outcomes of chemoradiation-based BPT. The biomarkers studied were categorized into those related to apoptosis, cell proliferation, receptor tyrosine kinases, DNA damage response genes, hypoxia, molecular subtype, and others. Among these biomarkers, the Ki-67 labeling index (Ki-67 LI) and meiotic recombination 11 may be used for selecting BPT or RC. Ki-67 LI and erythroblastic leukemia viral oncogene homolog 2 (erbB2) may be used for predicting both the chemoradiation response and the prognosis of patients on BPT. Concurrent use of trastuzumab and a combination of carbogen and nicotinamide can overcome chemoradiation resistance conferred by erbB2 overexpression and tumor hypoxia. Further studies are needed to confirm the practical utility of these biomarkers for progress on biomarker-directed personalized management of MIBC patients.

Keywords: biomarker; bladder neoplasm; bladder preservation; chemoradiation; prognosis; urothelial carcinoma.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Biomarkers that may be used for predicting and improving the chemoradiation response. Biomarkers in bold letter are also associated with favorable prognosis on bladder preservation therapy. Overexpression of erbB2 is associated with unfavorable chemoradiation response, which can be overcome by trastuzumab. ADC, apparent diffusion coefficient value on diffusion-weighted magnetic resonance imaging; erbB2, erythroblastic leukemia viral oncogene homolog 2; ERCC1, excision repair cross-complementing group 1; Hsp60, heat shock protein 60; Uro subtype, urobasal subtype in the Lund University subtyping model;↑, high value;↓, low value.
Figure 2
Figure 2
Biomarkers that may be used for predicting and improving prognosis on bladder preservation therapy. Biomarkers in bold letter are also associated with favorable chemoradiation response. Biomarkers in dark shadow are associated with unfavorable clinical outcomes, which can be overcome by CON. BPT, bladder preservation therapy; CON, carbogen and nicotinamide; CRP, C-reactive protein; DDR, DNA damage response; EGFR, epidermal growth factor receptor; erbB2, erythroblastic leukemia viral oncogene homolog 2; HIF-1α, hypoxia-inducible factor-1α; MRE11, meiotic recombination 11; NRP2, neutropilin 2; VEGF, vascular endothelial growth factor;↑, increased expression;↓, decreased expression or low value.

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442.
    1. Chang S.S., Bochner B.H., Chou R., Dreicer R., Kamat A.M., Lerner S.P., Lotan Y., Meeks J.J., Michalski J.M., Morgan T.M., et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017;198:552–559. doi: 10.1016/j.juro.2017.04.086.
    1. Novara G., Catto J.W., Wilson T., Annerstedt M., Chan K., Murphy D.G., Motttrie A., Peabody J.O., Skinner E.C., Wiklund P.N., et al. Systematic review and cumulative analysis of perioperative outcomes and complications after robot-assisted radical cystectomy. Eur. Urol. 2015;67:376–401. doi: 10.1016/j.eururo.2014.12.007.
    1. Gilbert S.M., Wood D.P., Dunn R.L., Weizer A.Z., Lee C.T., Montie J.E., Wei J.T. Measuring health-related quality of life outcomes in bladder cancer patients using the Bladder Cancer Index (BCI) Cancer. 2007;109:1756–1762. doi: 10.1002/cncr.22556.
    1. Koga F., Kihara K. Selective bladder preservation with curative intent for muscle-invasive bladder cancer: A contemporary review. Int. J. Urol. 2012;19:388–401. doi: 10.1111/j.1442-2042.2012.02974.x.
    1. Giacalone N.J., Shipley W.U., Clayman R.H., Niemierko A., Drumm M., Heney N.M., Michaelson M.D., Lee R.J., Saylor P.J., Wszolek M.F., et al. Long-term Outcomes After Bladder-preserving Tri-modality Therapy for Patients with Muscle-invasive Bladder Cancer: An Updated Analysis of the Massachusetts General Hospital Experience. Eur. Urol. 2017;71:952–960. doi: 10.1016/j.eururo.2016.12.020.
    1. Ploussard G., Daneshmand S., Efstathiou J.A., Herr H.W., James N.D., Rodel C.M., Shariat S.F., Shipley W.U., Sternberg C.N., Thalmann G.N., et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: A systematic review. Eur. Urol. 2014;66:120–137. doi: 10.1016/j.eururo.2014.02.038.
    1. Rodel C., Grabenbauer G.G., Kuhn R., Papadopoulos T., Dunst J., Meyer M., Schrott K.M., Sauer R. Combined-modality treatment and selective organ preservation in invasive bladder cancer: Long-term results. J. Clin. Oncol. 2002;20:3061–3071. doi: 10.1200/JCO.2002.11.027.
    1. Koga F., Numao N., Saito K., Masuda H., Fujii Y., Kawakami S., Kihara K. Sensitivity to chemoradiation predicts development of metastasis in muscle-invasive bladder cancer patients. Urol. Oncol. 2013;31:1270–1275. doi: 10.1016/j.urolonc.2012.01.014.
    1. Coppin C.M., Gospodarowicz M.K., James K., Tannock I.F., Zee B., Carson J., Pater J., Sullivan L.D. Improved local control of invasive bladder cancer by concurrent cisplatin and preoperative or definitive radiation. The National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 1996;14:2901–2907. doi: 10.1200/JCO.1996.14.11.2901.
    1. James N.D., Hussain S.A., Hall E., Jenkins P., Tremlett J., Rawlings C., Crundwell M., Sizer B., Sreenivasan T., Hendron C., et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N. Engl. J. Med. 2012;366:1477–1488. doi: 10.1056/NEJMoa1106106.
    1. Choudhury A., Swindell R., Logue J.P., Elliott P.A., Livsey J.E., Wise M., Symonds P., Wylie J.P., Ramani V., Sangar V., et al. Phase II study of conformal hypofractionated radiotherapy with concurrent gemcitabine in muscle-invasive bladder cancer. J. Clin. Oncol. 2011;29:733–738. doi: 10.1200/JCO.2010.31.5721.
    1. Muller A.C., Diestelhorst A., Kuhnt T., Kuhn R., Fornara P., Scholz H.J., Dunst J., Zietman A.L. Organ-sparing treatment of advanced bladder cancer: Paclitaxel as a radiosensitizer. Strahlenther. Onkol. 2007;183:177–183. doi: 10.1007/s00066-007-1651-z.
    1. Iwai A., Koga F., Fujii Y., Masuda H., Saito K., Numao N., Sakura M., Kawakami S., Kihara K. Perioperative complications of radical cystectomy after induction chemoradiotherapy in bladder-sparing protocol against muscle-invasive bladder cancer: A single institutional retrospective comparative study with primary radical cystectomy. Jpn. J. Clin. Oncol. 2011;41:1373–1379. doi: 10.1093/jjco/hyr150.
    1. Koga F., Kihara K., Yoshida S., Yokoyama M., Saito K., Masuda H., Fujii Y., Kawakami S. Selective bladder-sparing protocol consisting of induction low-dose chemoradiotherapy plus partial cystectomy with pelvic lymph node dissection against muscle-invasive bladder cancer: Oncological outcomes of the initial 46 patients. BJU Int. 2012;109:860–866. doi: 10.1111/j.1464-410X.2011.10425.x.
    1. Koga F., Yoshida S., Kawakami S., Kageyama Y., Yokoyama M., Saito K., Fujii Y., Kobayashi T., Kihara K. Low-dose chemoradiotherapy followed by partial or radical cystectomy against muscle-invasive bladder cancer: An intent-to-treat survival analysis. Urology. 2008;72:384–388. doi: 10.1016/j.urology.2008.03.017.
    1. Azuma H., Inamoto T., Takahara K., Nomi H., Hirano H., Ibuki N., Uehara H., Komura K., Minami K., Uchimoto T., et al. Novel bladder preservation therapy with Osaka Medical College regimen. J. Urol. 2015;193:443–450. doi: 10.1016/j.juro.2014.08.094.
    1. Cahn D.B., Handorf E.A., Ghiraldi E.M., Ristau B.T., Geynisman D.M., Churilla T.M., Horwitz E.M., Sobczak M.L., Chen D.Y.T., Viterbo R., et al. Contemporary use trends and survival outcomes in patients undergoing radical cystectomy or bladder-preservation therapy for muscle-invasive bladder cancer. Cancer. 2017;123:4337–4345. doi: 10.1002/cncr.30900.
    1. Ritch C.R., Balise R., Prakash N.S., Alonzo D., Almengo K., Alameddine M., Venkatramani V., Punnen S., Parekh D.J., Gonzalgo M.L. Propensity matched comparative analysis of survival following chemoradiation or radical cystectomy for muscle-invasive bladder cancer. BJU Int. 2018;121:745–751. doi: 10.1111/bju.14109.
    1. Kulkarni G.S., Hermanns T., Wei Y., Bhindi B., Satkunasivam R., Athanasopoulos P., Bostrom P.J., Kuk C., Li K., Templeton A.J., et al. Propensity Score Analysis of Radical Cystectomy Versus Bladder-Sparing Trimodal Therapy in the Setting of a Multidisciplinary Bladder Cancer Clinic. J. Clin. Oncol. 2017;35:2299–2305. doi: 10.1200/JCO.2016.69.2327.
    1. Coen J.J., Paly J.J., Niemierko A., Kaufman D.S., Heney N.M., Spiegel D.Y., Efstathiou J.A., Zietman A.L., Shipley W.U. Nomograms predicting response to therapy and outcomes after bladder-preserving trimodality therapy for muscle-invasive bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013;86:311–316. doi: 10.1016/j.ijrobp.2013.01.020.
    1. Rodel C., Grabenbauer G.G., Rodel F., Birkenhake S., Kuhn R., Martus P., Zorcher T., Fursich D., Papadopoulos T., Dunst J., et al. Apoptosis, p53, bcl-2, and Ki-67 in invasive bladder carcinoma: Possible predictors for response to radiochemotherapy and successful bladder preservation. Int. J. Radiat. Oncol. Biol. Phys. 2000;46:1213–1221. doi: 10.1016/S0360-3016(99)00544-1.
    1. Matsumoto H., Wada T., Fukunaga K., Yoshihiro S., Matsuyama H., Naito K. Bax to Bcl-2 ratio and Ki-67 index are useful predictors of neoadjuvant chemoradiation therapy in bladder cancer. Jpn. J. Clin. Oncol. 2004;34:124–130. doi: 10.1093/jjco/hyh026.
    1. Tanabe K., Yoshida S., Koga F., Inoue M., Kobayashi S., Ishioka J., Tamura T., Sugawara E., Saito K., Akashi T., et al. High Ki-67 Expression Predicts Favorable Survival in Muscle-Invasive Bladder Cancer Patients Treated with Chemoradiation-Based Bladder-Sparing Protocol. Clin. Genitourin. Cancer. 2015;13:e243-51. doi: 10.1016/j.clgc.2015.03.002.
    1. Yoshida S., Koga F., Kobayashi S., Ishii C., Tanaka H., Tanaka H., Komai Y., Saito K., Masuda H., Fujii Y., et al. Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012;83:e21-7. doi: 10.1016/j.ijrobp.2011.11.065.
    1. Chakravarti A., Winter K., Wu C.L., Kaufman D., Hammond E., Parliament M., Tester W., Hagan M., Grignon D., Heney N., et al. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: A report from the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2005;62:309–317.
    1. Inoue M., Koga F., Yoshida S., Tamura T., Fujii Y., Ito E., Kihara K. Significance of ERBB2 overexpression in therapeutic resistance and cancer-specific survival in muscle-invasive bladder cancer patients treated with chemoradiation-based selective bladder-sparing approach. Int. J. Radiat. Oncol. Biol. Phys. 2014;90:303–311. doi: 10.1016/j.ijrobp.2014.05.043.
    1. Michaelson M.D., Hu C., Pham H.T., Dahl D.M., Lee-Wu C., Swanson G.P., Vuky J., Lee R.J., Souhami L., Chang B., et al. A Phase 1/2 Trial of a Combination of Paclitaxel and Trastuzumab With Daily Irradiation or Paclitaxel Alone with Daily Irradiation After Transurethral Surgery for Noncystectomy Candidates With Muscle-Invasive Bladder Cancer (Trial NRG Oncology RTOG 0524) Int. J. Radiat. Oncol. Biol. Phys. 2017;97:995–1001. doi: 10.1016/j.ijrobp.2016.12.018.
    1. Kawashima A., Nakayama M., Kakuta Y., Abe T., Hatano K., Mukai M., Nagahara A., Nakai Y., Oka D., Takayama H., et al. Excision repair cross-complementing group 1 may predict the efficacy of chemoradiation therapy for muscle-invasive bladder cancer. Clin. Cancer Res. 2011;17:2561–2569. doi: 10.1158/1078-0432.CCR-10-1963.
    1. Tanaka H., Yoshida S., Koga F., Toda K., Yoshimura R., Nakajima Y., Sugawara E., Akashi T., Waseda Y., Inoue M., et al. Impact of Immunohistochemistry-Based Subtypes in Muscle-Invasive Bladder Cancer on Response to Chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2018 doi: 10.1016/j.ijrobp.2018.06.030.
    1. Urushibara M., Kageyama Y., Akashi T., Otsuka Y., Takizawa T., Koike M., Kihara K. HSP60 may predict good pathological response to neoadjuvant chemoradiotherapy in bladder cancer. Jpn. J. Clin. Oncol. 2007;37:56–61. doi: 10.1093/jjco/hyl121.
    1. Lautenschlaeger T., George A., Klimowicz A.C., Efstathiou J.A., Wu C.L., Sandler H., Shipley W.U., Tester W.J., Hagan M.P., Magliocco A.M., et al. Bladder preservation therapy for muscle-invading bladder cancers on Radiation Therapy Oncology Group trials 8802, 8903, 9506, and 9706: Vascular endothelial growth factor B overexpression predicts for increased distant metastasis and shorter survival. Oncologist. 2013;18:685–686. doi: 10.1634/theoncologist.2012-0461.
    1. Keck B., Wach S., Taubert H., Zeiler S., Ott O.J., Kunath F., Hartmann A., Bertz S., Weiss C., Honscheid P., et al. Neuropilin-2 and its ligand VEGF-C predict treatment response after transurethral resection and radiochemotherapy in bladder cancer patients. Int. J. Cancer. 2015;136:443–451. doi: 10.1002/ijc.28987.
    1. Choudhury A., Nelson L.D., Teo M.T., Chilka S., Bhattarai S., Johnston C.F., Elliott F., Lowery J., Taylor C.F., Churchman M., et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 2010;70:7017–7026. doi: 10.1158/0008-5472.CAN-10-1202.
    1. Sakano S., Ogawa S., Yamamoto Y., Nishijima J., Miyachika Y., Matsumoto H., Hara T., Matsuyama H. ERCC1 and XRCC1 expression predicts survival in bladder cancer patients receiving combined trimodality therapy. Mol. Clin. Oncol. 2013;1:403–410. doi: 10.3892/mco.2013.85.
    1. Desai N.B., Scott S.N., Zabor E.C., Cha E.K., Hreiki J., Sfakianos J.P., Ramirez R., Bagrodia A., Rosenberg J.E., Bajorin D.F., et al. Genomic characterization of response to chemoradiation in urothelial bladder cancer. Cancer. 2016;122:3715–3723. doi: 10.1002/cncr.30219.
    1. Eustace A., Irlam J.J., Taylor J., Denley H., Agrawal S., Choudhury A., Ryder D., Ord J.J., Harris A.L., Rojas A.M., et al. Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother. Oncol. 2013;108:40–47. doi: 10.1016/j.radonc.2013.05.017.
    1. Hunter B.A., Eustace A., Irlam J.J., Valentine H.R., Denley H., Oguejiofor K.K., Swindell R., Hoskin P.J., Choudhury A., West C.M. Expression of hypoxia-inducible factor-1alpha predicts benefit from hypoxia modification in invasive bladder cancer. Br. J. Cancer. 2014;111:437–443. doi: 10.1038/bjc.2014.315.
    1. Yoshida S., Saito K., Koga F., Yokoyama M., Kageyama Y., Masuda H., Kobayashi T., Kawakami S., Kihara K. C-reactive protein level predicts prognosis in patients with muscle-invasive bladder cancer treated with chemoradiotherapy. BJU Int. 2008;101:978–981. doi: 10.1111/j.1464-410X.2007.07408.x.
    1. Joseph N., Dovedi S.J., Thompson C., Lyons J., Kennedy J., Elliott T., West C.M., Choudhury A. Pre-treatment lymphocytopaenia is an adverse prognostic biomarker in muscle-invasive and advanced bladder cancer. Ann. Oncol. 2016;27:294–299. doi: 10.1093/annonc/mdv546.
    1. Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006;13:1351–1359. doi: 10.1038/sj.cdd.4401987.
    1. Margulis V., Lotan Y., Karakiewicz P.I., Fradet Y., Ashfaq R., Capitanio U., Montorsi F., Bastian P.J., Nielsen M.E., Muller S.C., et al. Multi-institutional validation of the predictive value of Ki-67 labeling index in patients with urinary bladder cancer. J. Natl. Cancer Inst. 2009;101:114–119. doi: 10.1093/jnci/djn451.
    1. Koh D.M., Collins D.J. Diffusion-weighted MRI in the body: Applications and challenges in oncology. AJR Am. J. Roentgenol. 2007;188:1622–1635. doi: 10.2214/AJR.06.1403.
    1. Mitsudomi T., Yatabe Y. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010;277:301–308. doi: 10.1111/j.1742-4658.2009.07448.x.
    1. Harris A.L. Hypoxia—A key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002;2:38–47. doi: 10.1038/nrc704.
    1. Thompson L.H. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography. Mutat. Res. 2012;751:158–246. doi: 10.1016/j.mrrev.2012.06.002.
    1. Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: Two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 2008;9:958–970. doi: 10.1038/nrm2549.
    1. Iyer G., Balar A.V., Milowsky M.I., Bochner B.H., Dalbagni G., Donat S.M., Herr H.W., Huang W.C., Taneja S.S., Woods M., et al. Multicenter Prospective Phase II Trial of Neoadjuvant Dose-Dense Gemcitabine Plus Cisplatin in Patients with Muscle-Invasive Bladder Cancer. J. Clin. Oncol. 2018;36:1949–1956. doi: 10.1200/JCO.2017.75.0158.
    1. Plimack E.R., Dunbrack R.L., Brennan T.A., Andrake M.D., Zhou Y., Serebriiskii I.G., Slifker M., Alpaugh K., Dulaimi E., Palma N., et al. Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer. Eur. Urol. 2015;68:959–967. doi: 10.1016/j.eururo.2015.07.009.
    1. Teo M.Y., Bambury R.M., Zabor E.C., Jordan E., Al-Ahmadie H., Boyd M.E., Bouvier N., Mullane S.A., Cha E.K., Roper N., et al. DNA Damage Response and Repair Gene Alterations Are Associated with Improved Survival in Patients with Platinum-Treated Advanced Urothelial Carcinoma. Clin. Cancer Res. 2017;23:3610–3618. doi: 10.1158/1078-0432.CCR-16-2520.
    1. Hoskin P.J., Rojas A.M., Bentzen S.M., Saunders M.I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 2010;28:4912–4918. doi: 10.1200/JCO.2010.28.4950.
    1. Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–322. doi: 10.1038/nature12965.
    1. Choi W., Porten S., Kim S., Willis D., Plimack E.R., Hoffman-Censits J., Roth B., Cheng T., Tran M., Lee I.L., et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–165. doi: 10.1016/j.ccr.2014.01.009.
    1. Sjodahl G., Lovgren K., Lauss M., Patschan O., Gudjonsson S., Chebil G., Aine M., Eriksson P., Mansson W., Lindgren D., et al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 2013;183:681–691. doi: 10.1016/j.ajpath.2013.05.013.
    1. Bellmunt J., de Wit R., Vaughn D.J., Fradet Y., Lee J.L., Fong L., Vogelzang N.J., Climent M.A., Petrylak D.P., Choueiri T.K., et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017;376:1015–1026. doi: 10.1056/NEJMoa1613683.

Source: PubMed

3
Abonneren