Predictive and Prognostic Role of PD-L1 in Urothelial Carcinoma Patients with Anti-PD-1/PD-L1 Therapy: A Systematic Review and Meta-Analysis

Haoran Liu, Tao Ye, Xiaoqi Yang, Peng Lv, Xiaoliang Wu, Hui Zhou, Hongyan Lu, Kun Tang, Zhangqun Ye, Haoran Liu, Tao Ye, Xiaoqi Yang, Peng Lv, Xiaoliang Wu, Hui Zhou, Hongyan Lu, Kun Tang, Zhangqun Ye

Abstract

Recently, checkpoint inhibition of the PD-1/PD-L1 axis has been shown to be therapeutically relevant in urothelial carcinoma (UC). To evaluate the predictive and prognostic value of PD-L1 on response and survival in UC patients after cystectomy, chemotherapy, or anti-PD-1/PD-L1 therapy, a systematic review of PubMed, Embase, Web of Science, and the Cochrane Library was performed. A total of 2154 patients from 14 published studies were included. In all UC patients after cystectomy, tumour cell (TC) PD-L1 expression was not associated with the OS or PFS. For the subset of patients with organ-confined disease, TC PD-L1 expression significantly predicted OS after cystectomy (P = 0.0004). There was no significant evidence of an association between TC PD-L1 status and ORR or OS for UC patients treated with platinum-based chemotherapy. For UC patients treated with anti-PD-1/PD-L1 therapy, TC PD-L1 expression ≥ 5% could predict the response (P = 0.005), but not for the 1% cut-off (P ≥ 0.05). As for PD-L1 expression in tumour-inflating immune cells (TIICs), both subsets with IC2/3 vs. IC0/1 and IC1/2/3 vs. IC0 were associated with ORR to anti-PD-1/PD-L1 therapy. In the TIIC subset, IC2/3 vs. IC0/1 of PD-L1 was associated with higher CR (P = 0.002), PR (P = 0.04), and PD (P = 0.007). Further, higher TIIC PD-L1 status benefited from longer PFS (P < 0.001), but was not associated with OS in UC patients with anti-PD-1/PD-L1 therapy. Our study suggested that TIIC PD-L1 expression with 5% cut-off was valuable as a predictive and prognostic biomarker for ORR and PFS in UC patients with anti-PD-1/PD-L1 therapy.

Conflict of interest statement

The authors have declared no competing interests.

Copyright © 2020 Haoran Liu et al.

Figures

Figure 1
Figure 1
Flow diagram for study selection.
Figure 2
Figure 2
Forest plots of tumour cell PD-L1 expression predicted (a) OS, (b) CSS, and (c) DFS for all UC patients after cystectomy. PD-L1: programmed death-ligand 1; +/-: positive/negative; OS: overall survival; CSS: cancer-specific survival; DFS: disease-free survival; CI: confidence interval.
Figure 3
Figure 3
Forest plots of tumour cell PD-L1 expression for predicting (a) OS, (b) CSS, and (c) DFS for patients with organ-confined tumours after cystectomy. PD-L1: programmed death-ligand 1; +/-: positive/negative; OS: overall survival; CSS: cancer-specific survival; DFS: disease-free survival; CI: confidence interval; IV: inverse variance; SE: standard error.
Figure 4
Figure 4
Forest plots of tumour cell PD-L1 status for predicting the (a) response and (b) prognosis to platinum-based chemotherapy in UC patients. PD-L1: programmed death-ligand 1; +/-: positive/negative; ORR: objective response rate; OS: overall survival; CI: confidence interval; M-H: Mantel-Hansel; SD: standard deviation.
Figure 5
Figure 5
Forest plots of (a) immune cell and (b) tumour cell PD-L1 status with cut-off values of 5% and 1% in predicting the response to anti-PD-1/PD-L1 immunotherapy. PD-L1: programmed death-ligand 1; ORR: objective response rate; IC: immune cell; CI: confidence interval; M-H: Mantel-Hansel; SD: standard deviation.
Figure 6
Figure 6
Forest plots of tumour cell PD-L1 status with cut-off values of 5% and 1% in predicting the (a) CR, (b) PR, (c) SD, and (d) PD to anti-PD-1/PD-L1 immunotherapy. PD-L1: programmed death-ligand 1; CR: completed response; PR: partial response; SD: stable disease; PD: progressive disease; CI: confidence interval; M-H: Mantel-Hansel; SD: standard deviation.
Figure 7
Figure 7
Forest plots of immune cell PD-L1 status with cut-off values of 5% and 1% in predicting the (a) CR, (b) PR, (c) SD, and (d) PD to anti-PD-1/PD-L1 immunotherapy. PD-L1: programmed death-ligand 1; IC: immune cell; CR: completed response; PR: partial response; SD: stable disease; PD: progressive disease; CI: confidence interval; M-H: Mantel-Hansel; SD: standard deviation.
Figure 8
Figure 8
Forest plots of immune cell PD-L1 status with cut-off values of 5% and 1% in predicting the (a) PFS and (b) OS for UC patients with anti-PD-1/PD-L1 immunotherapy. PD-L1: programmed death-ligand 1; IC: immune cell; PFS: progression-free survival; OS: overall survival; CI: confidence interval; IV: inverse variance; SD: standard deviation.

References

    1. Alfred Witjes J., Lebret T., Compérat E. M., et al. Updated 2016 EAU guidelines on muscle-invasive and metastatic bladder cancer. European Urology. 2017;71(3):462–475. doi: 10.1016/j.eururo.2016.06.020.
    1. Tang K., Li H., Xia D., et al. Laparoscopic versus open radical cystectomy in bladder cancer: a systematic review and meta-analysis of comparative studies. PloS One. 2014;9(5, article e95667) doi: 10.1371/journal.pone.0095667.
    1. Bellmunt J., Mullane S. A., Werner L., et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Annals of Oncology. 2015;26(4):812–817. doi: 10.1093/annonc/mdv009.
    1. Boorjian S. A., Sheinin Y., Crispen P. L., et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clinical Cancer Research. 2008;14(15):4800–4808. doi: 10.1158/1078-0432.CCR-08-0731.
    1. Grossman H. B., Natale R. B., Tangen C. M., et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. The New England Journal of Medicine. 2003;349(9):859–866. doi: 10.1056/NEJMoa022148.
    1. Tsao M.-S., Le Teuff G., Shepherd F. A., et al. PD-L1 protein expression assessed by immunohistochemistry is neither prognostic nor predictive of benefit from adjuvant chemotherapy in resected non-small cell lung cancer. Annals of Oncology. 2017;28(4):882–889. doi: 10.1093/annonc/mdx003.
    1. Bellmunt J., de Wit R., Vaughn D. J., et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. The New England Journal of Medicine. 2017;376(11):1015–1026. doi: 10.1056/NEJMoa1613683.
    1. Herbst R. S., Soria J. C., Kowanetz M., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567. doi: 10.1038/nature14011.
    1. Iwai Y., Ishida M., Tanaka Y., Okazaki T., Honjo T., Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(19):12293–12297. doi: 10.1073/pnas.192461099.
    1. Ansell S. M., Lesokhin A. M., Borrello I., et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. The New England Journal of Medicine. 2015;372(4):311–319. doi: 10.1056/NEJMoa1411087.
    1. Brahmer J., Reckamp K. L., Baas P., et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. The New England Journal of Medicine. 2015;373(2):123–135. doi: 10.1056/NEJMoa1504627.
    1. Robert C., Long G. V., Brady B., et al. Nivolumab in previously untreated melanoma without BRAF Mutation. The New England Journal of Medicine. 2015;372(4):320–330. doi: 10.1056/NEJMoa1412082.
    1. Balar A. V., Galsky M. D., Rosenberg J. E., et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. The Lancet. 2017;389(10064):67–76. doi: 10.1016/S0140-6736(16)32455-2.
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G., PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery. 2010;8(5):336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Borenstein M., Hedges L. V., Higgins J. P., Rothstein H. R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods. 2010;1(2):97–111. doi: 10.1002/jrsm.12.
    1. Nakanishi J., Wada Y., Matsumoto K., Azuma M., Kikuchi K., Ueda S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunology, Immunotherapy. 2007;56(8):1173–1182. doi: 10.1007/s00262-006-0266-z.
    1. Massard C., Gordon M. S., Sharma S., et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. Journal of Clinical Oncology. 2016;34(26):3119–3125. doi: 10.1200/JCO.2016.67.9761.
    1. Wang Y., Zhuang Q., Zhou S., Hu Z., Lan R. Costimulatory molecule B7-H1 on the immune escape of bladder cancer and its clinical significance. Journal of Huazhong University of Science and Technology [Medical Sciences] 2009;29(1):77–79. doi: 10.1007/s11596-009-0116-2.
    1. Xylinas E., Robinson B. D., Kluth L. A., et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. European Journal of Surgical Oncology. 2014;40(1):121–127. doi: 10.1016/j.ejso.2013.08.023.
    1. Erlmeier F., Seitz A. K., Hatzichristodoulou G., et al. The role of PD-L1 expression and intratumoral lymphocytes in response to perioperative chemotherapy for urothelial carcinoma. Bladder Cancer. 2016;2(4):425–432. doi: 10.3233/BLC-160067.
    1. Baras A. S., Drake C., Liu J. J., et al. The ratio of CD8 to Treg tumor-infiltrating lymphocytes is associated with response to cisplatin-based neoadjuvant chemotherapy in patients with muscle invasive urothelial carcinoma of the bladder. Oncoimmunology. 2016;5(5, article e1134412) doi: 10.1080/2162402X.2015.1134412.
    1. Patel M. R., Ellerton J., Infante J. R., et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN solid tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. The Lancet Oncology. 2018;19(1):51–64. doi: 10.1016/S1470-2045(17)30900-2.
    1. Plimack E. R., Bellmunt J., Gupta S., et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. The Lancet Oncology. 2017;18(2):212–220. doi: 10.1016/S1470-2045(17)30007-4.
    1. Powles T., Eder J. P., Fine G. D., et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–562. doi: 10.1038/nature13904.
    1. Sharma P., Callahan M. K., Bono P., et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. The Lancet Oncology. 2016;17(11):1590–1598. doi: 10.1016/S1470-2045(16)30496-X.
    1. Sharma P., Retz M., Siefker-Radtke A., et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. The Lancet Oncology. 2017;18(3):312–322. doi: 10.1016/S1470-2045(17)30065-7.
    1. Petrylak D. P., Powles T., Bellmunt J., et al. Atezolizumab (MPDL3280A) monotherapy for patients with metastatic urothelial cancer: long-term outcomes from a phase 1 study. JAMA Oncology. 2018;4(4):537–544. doi: 10.1001/jamaoncol.2017.5440.
    1. Rosenberg J. E., Hoffman-Censits J., Powles T., et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. The Lancet. 2016;387(10031):1909–1920. doi: 10.1016/S0140-6736(16)00561-4.
    1. Carosella E. D., Ploussard G., LeMaoult J., Desgrandchamps F. A systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. European Urology. 2015;68(2):267–279. doi: 10.1016/j.eururo.2015.02.032.
    1. Dong H., Strome S. E., Salomao D. R., et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine. 2002;8(8):793–800. doi: 10.1038/nm730.
    1. Calderaro J., Rousseau B., Amaddeo G., et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology. 2016;64(6):2038–2046. doi: 10.1002/hep.28710.
    1. Danilova L., Wang H., Sunshine J., et al. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(48):E7769–E7777. doi: 10.1073/pnas.1607836113.
    1. Masugi Y., Nishihara R., Yang J., et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66(8):1463–1473. doi: 10.1136/gutjnl-2016-311421.
    1. Wu P., Wu D., Li L., Chai Y., Huang J. PD-L1 and survival in solid tumors: a meta-analysis. PloS One. 2015;10(6, article e0131403) doi: 10.1371/journal.pone.0131403.
    1. Wang Y. U., Liu A. N., Zhao S. H. Association between B7-H1 expression and bladder cancer: a meta-analysis. Genetics and Molecular Research. 2015;14(1):1277–1286. doi: 10.4238/2015.February.13.6.
    1. von der Maase H., Hansen S. W., Roberts J. T., et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. Journal of Clinical Oncology. 2000;18(17):3068–3077. doi: 10.1200/JCO.2000.18.17.3068.
    1. Groenendijk F. H., de Jong J., Fransen van de Putte E. E., et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. European Urology. 2016;69(3):384–388. doi: 10.1016/j.eururo.2015.01.014.
    1. Plimack E. R., Dunbrack R. L., Brennan T. A., et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. European Urology. 2015;68(6):959–967. doi: 10.1016/j.eururo.2015.07.009.
    1. Stadler W. M., Lerner S. P., Groshen S., et al. Phase III study of molecularly targeted adjuvant therapy in locally advanced urothelial cancer of the bladder based on p53 status. Journal of Clinical Oncology. 2011;29(25):3443–3449. doi: 10.1200/JCO.2010.34.4028.
    1. Bellmunt J., Powles T., Vogelzang N. J. A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now. Cancer Treatment Reviews. 2017;54:58–67. doi: 10.1016/j.ctrv.2017.01.007.
    1. Bald T., Landsberg J., Lopez-Ramos D., et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discovery. 2014;4(6):674–687. doi: 10.1158/-13-0458.

Source: PubMed

3
Abonneren