Peginterferon beta-1a improves MRI measures and increases the proportion of patients with no evidence of disease activity in relapsing-remitting multiple sclerosis: 2-year results from the ADVANCE randomized controlled trial

Douglas L Arnold, Peter A Calabresi, Bernd C Kieseier, Shifang Liu, Xiaojun You, Damian Fiore, Serena Hung, Douglas L Arnold, Peter A Calabresi, Bernd C Kieseier, Shifang Liu, Xiaojun You, Damian Fiore, Serena Hung

Abstract

Background: Subcutaneous peginterferon beta-1a has previously been shown to reduce the number of T2-hyperintense and gadolinium-enhancing (Gd+) lesions over 2 years in patients with relapsing-remitting multiple sclerosis (RRMS), and to reduce T1-hypointense lesion formation and the proportion of patients showing evidence of disease activity, based on both clinical and radiological measures, compared with placebo over 1 year of treatment. The objectives of the current analyses were to evaluate T1 lesions and other magnetic resonance imaging (MRI) measures, including whole brain volume and magnetization transfer ratio (MTR) of normal appearing brain tissue (NABT), and the proportions of patients with no evidence of disease activity (NEDA), over 2 years.

Methods: Patients enrolled in the ADVANCE study received continuous peginterferon beta-1a every 2 or 4 weeks for 2 years, or delayed treatment (placebo in Year 1; peginterferon beta-1a every 2 or 4 weeks in Year 2). MRI scans were performed at baseline and Weeks 24, 48, and 96. Proportions of patients with NEDA were calculated based on radiological criteria (absence of Gd + and new/newly-enlarging T2 lesions) and clinical criteria (no relapse or confirmed disability progression) separately and overall.

Results: Peginterferon beta-1a every 2 weeks significantly reduced the number and volume of T1-hypointense lesions compared with delayed treatment over 2 years. Changes in whole brain volume and MTR of NABT were suggestive of pseudoatrophy during the first 6 months of peginterferon beta-1a treatment, which subsequently began to resolve. Significantly more patients in the peginterferon beta-1a every 2 weeks group compared with the delayed treatment group met MRI-NEDA criteria (41% vs 21%; odds ratio [OR] 2.56; p < 0.0001), clinical-NEDA criteria (71% vs 57%; OR 1.90; p < 0.0001) and achieved overall-NEDA (37% vs 16%; OR 3.09; p < 0.0001).

Conclusion: Peginterferon beta-1a provides significant improvements in MRI measures and offers patients a good chance of remaining free from evidence of MRI, clinical and overall disease activity over a sustained 2-year period.

Trial registration: ClinicalTrials.gov: NCT00906399 ; Registered on: May 20, 2009.

Keywords: Clinical trial; Interferon; Magnetic resonance imaging; Multiple sclerosis; NEDA; No evidence of disease activity; Peginterferon beta-1a; Pegylation; Phase 3; Relapse-remitting multiple sclerosis.

Figures

Fig. 1
Fig. 1
MRI lesions at Week 96: a new T1 hypointense lesions; b new-active lesions Gd+, gadolinium-enhancing lesions. MRI analysis population (ITT population dosed in Year 2 with at least 1 MRI result). a P values based on multiple logit regression, adjusted for baseline number of T1 lesions. b P values based on negative binomial regression, adjusted for baseline number of Gd + lesions
Fig. 2
Fig. 2
Percentage reduction in whole brain volume from baseline, and from Week 24 (inset). ITT population dosed in Year 2. *p < 0.05; †p < 0.01; ‡p < 0.001 vs delayed treatment (Wilcoxon rank-sum test)
Fig. 3
Fig. 3
Percentage reduction in MTR of NABT. MTR, magnetization transfer ratio; NABT, normal appearing brain tissue. ITT population dosed in Year 2. *p < 0.05 vs delayed treatment (Wilcoxon rank-sum test)
Fig. 4
Fig. 4
Proportions of patients with NEDA over 2 years (baseline to Week 96): a LOCF analysis; b observed dataa. MRI, magnetic resonance imaging; NEDA, no evidence of disease activity; OR, odds ratio. aSensitivity analysis excluding patients with missing MRI data
Fig. 5
Fig. 5
Proportions of patients with NEDA in Year 2 (Week 48–96). MRI, magnetic resonance imaging; NEDA, no evidence of disease activity; OR, odds ratio. LOCF analysis (includes patients who did not have all measurements, but had no evidence of disease activity on any of the available measurements). ITT population dosed in Year 2

References

    1. Jain A, Jain SK. PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst. 2008;25(5):403–47. doi: 10.1615/CritRevTherDrugCarrierSyst.v25.i5.10.
    1. Kieseier BC, Calabresi PA. PEGylation of interferon-beta-1a: a promising strategy in multiple sclerosis. CNS Drugs. 2012;26(3):205–14. doi: 10.2165/11596970-000000000-00000.
    1. Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S, et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52(6):798–808. doi: 10.1177/0091270011407068.
    1. Baker DP, Pepinsky RB, Brickelmaier M, Gronke RS, Hu X, Olivier K, et al. PEGylated interferon beta-1a: meeting an unmet medical need in the treatment of relapsing multiple sclerosis. J Interferon Cytokine Res. 2010;30(10):777–85. doi: 10.1089/jir.2010.0092.
    1. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65. doi: 10.1016/S1474-4422(14)70068-7.
    1. Kieseier BC, Arnold DL, Balcer LJ, Boyko AA, Pelletier J, Liu S, et al. Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. Mult Scler. 2015;21(8):1025–35. doi: 10.1177/1352458514557986.
    1. Lublin FD. Disease activity free status in MS. Mult Scler Relat Disord. 2012;1(1):6–7. doi: 10.1016/j.msard.2011.08.001.
    1. Stangel M, Penner IK, Kallmann BA, Lukas C, Kieseier BC. Towards the implementation of 'no evidence of disease activity' in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord. 2015;8(1):3–13. doi: 10.1177/1756285614560733.
    1. Havrdova E, Galetta S, Hutchinson M, Stefoski D, Bates D, Polman CH, et al. Effect of natalizumab on clinical and radiological disease activity in multiple sclerosis: a retrospective analysis of the Natalizumab Safety and Efficacy in Relapsing-Remitting Multiple Sclerosis (AFFIRM) study. Lancet Neurol. 2009;8(3):254–60. doi: 10.1016/S1474-4422(09)70021-3.
    1. Giovannoni G, Cook S, Rammohan K, Rieckmann P, Sorensen PS, Vermersch P, et al. Sustained disease-activity-free status in patients with relapsing-remitting multiple sclerosis treated with cladribine tablets in the CLARITY study: a post-hoc and subgroup analysis. Lancet Neurol. 2011;10(4):329–37. doi: 10.1016/S1474-4422(11)70023-0.
    1. Lindsey JW, Scott TF, Lynch SG, Cofield SS, Nelson F, Conwit R, et al. The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: Design and baseline characteristics. Mult Scler Relat Disord. 2012;1(2):81–6. doi: 10.1016/j.msard.2012.01.006.
    1. Kappos L, Radue EW, O'Connor P, Amato M, Zhang-Auberson LX, Tang DJ. Fingolimod treatment increases the proportion of patients who are free from disease activity in multiple sclerosis: results from a Phase 3, Placebo- Controlled Study (FREEDOMS) Neurology. 2011;76(Suppl 4):A563.
    1. Arnold DL, Calabresi PA, Kieseier BC, Sheikh SI, Deykin A, Zhu Y, et al. Effect of peginterferon beta-1a on MRI measures and achieving no evidence of disease activity: results from a randomized controlled trial in relapsing-remitting multiple sclerosis. BMC Neurol. 2014;14:240. doi: 10.1186/s12883-014-0240-x.
    1. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol. 2005;58(6):840–6. doi: 10.1002/ana.20703.
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11):1444–52. doi: 10.1212/WNL.33.11.1444.
    1. De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014;28(2):147–56. doi: 10.1007/s40263-014-0140-z.
    1. Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015;72(2):152–8. doi: 10.1001/jamaneurol.2014.3537.
    1. Freedman M OCP, Wolinsky J, et al. Teriflunomide increases the proportion of patients free from disease activity in the TEMSO phase III study. Neurology. 2012; 78 (Meeting Abstracts 1). PD5.007.
    1. Havrdova EGR, Fox RJ, Kappos L, Phillips JT, Zhang A, Kurukulasuriya N, Sheikh S, Viglietta V, Dawson K, Giovannoni G. BG-12 (dimethyl fumarate) treatment for relapsing-remitting multiple sclerosis (RRMS) increases the proportion of patients free of measured clinical and neuroradiologic disease activity in the phase 3 studies. Neurology. 2013;80(Meeting Abstracts 1):07–106.
    1. Nixon R, Bergvall N, Tomic D, Sfikas N, Cutter G, Giovannoni G. No evidence of disease activity: indirect comparisons of oral therapies for the treatment of relapsing-remitting multiple sclerosis. Adv Ther. 2014;31(11):1134–54. doi: 10.1007/s12325-014-0167-z.
    1. Havrdova E, Galetta S, Stefoski D, Comi G. Freedom from disease activity in multiple sclerosis. Neurology. 2010;74(Suppl 3):S3–7. doi: 10.1212/WNL.0b013e3181dbb51c.
    1. Jacobsen C, Hagemeier J, Myhr KM, Nyland H, Lode K, Bergsland N, et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2014;85(10):1109–15. doi: 10.1136/jnnp-2013-306906.
    1. Elliott CMJ, Cadavid D, Richert N, Duda P, Fisher E, Narayanan S, Collins DL, Arbel T, Arnold DL. Inter-rater variability of new T2 determination in the clinic has implications for MS diagnosis and monitoring. 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) Lyon: Mult Scler; 2012.

Source: PubMed

3
Abonneren