Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers

S H Chan, B Perussia, J W Gupta, M Kobayashi, M Pospísil, H A Young, S F Wolf, D Young, S C Clark, G Trinchieri, S H Chan, B Perussia, J W Gupta, M Kobayashi, M Pospísil, H A Young, S F Wolf, D Young, S C Clark, G Trinchieri

Abstract

We previously reported that natural killer cell stimulatory factor (NKSF), a heterodimeric lymphokine purified from the conditioned medium of human B lymphoblastoid cell lines, induces interferon gamma (IFN-gamma) production from resting peripheral blood lymphocytes (PBL) and synergizes with interleukin 2 in this activity. In this study, we show that human NKSF induces IFN-gamma production from both resting and activated human PBL and from freshly isolated murine splenocytes. Human T and NK cells produce IFN-gamma in response to NKSF, but resting PBL require the presence of nonadherent human histocompatibility leukocyte antigens DR+ (HLA-DR+) accessory cells to respond to NKSF. The mechanism(s) by which NKSF induces IFN-gamma production results in accumulation of IFN-gamma mRNA, is insensitive to cyclosporin A, and synergizes with those mediated by phytohemagglutinin, phorbol diesters, anti-CD3 antibodies, and allogeneic antigens, but not by Ca2+ ionophores. The ability of NKSF to directly induce IFN-gamma production and to synergize with other physiological IFN-gamma inducers, joined with the previously described ability to enhance lymphocyte cytotoxicity and proliferation, indicates that this lymphokine is a powerful immunopotentiating agent.

References

    1. Biochem Biophys Res Commun. 1984 Feb 29;119(1):157-62
    1. J Immunol. 1985 Feb;134(2):718-27
    1. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4169-73
    1. J Immunol. 1983 Apr;130(4):1784-9
    1. J Immunol. 1984 Mar;132(3):1255-60
    1. J Immunol. 1983 May;130(5):2133-41
    1. Immunol Rev. 1982;63:73-110
    1. J Immunol. 1982 Sep;129(3):1299-305
    1. J Immunol. 1976 Jan;116(1):131-9
    1. Biochem Biophys Res Commun. 1985 Nov 15;132(3):908-14
    1. Nat Immun Cell Growth Regul. 1985;4(3):120-37
    1. J Exp Med. 1988 Feb 1;167(2):452-72
    1. J Exp Med. 1986 Jul 1;164(1):180-95
    1. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772-6
    1. Nat Immun Cell Growth Regul. 1987;6(4):171-88
    1. Lymphokine Res. 1986 Summer;5(3):205-13
    1. Cell Immunol. 1988 Apr 15;113(1):130-42
    1. J Immunol. 1987 Nov 15;139(10):3330-7
    1. Lymphokine Res. 1988 Winter;7(4):385-92
    1. J Immunol. 1986 Jun 15;136(12):4525-30
    1. J Exp Med. 1986 Jul 1;164(1):263-79
    1. J Immunol. 1987 May 15;138(10):3100-7
    1. J Immunol. 1987 Apr 1;138(7):2353-8
    1. J Immunol. 1986 Dec 15;137(12):3836-40
    1. J Exp Med. 1987 Jun 1;165(6):1581-94
    1. Annu Rev Biochem. 1987;56:727-77
    1. J Exp Med. 1989 Sep 1;170(3):827-45
    1. Science. 1989 Dec 22;246(4937):1617-20
    1. J Exp Med. 1984 Oct 1;160(4):1147-69
    1. Annu Rev Cell Biol. 1986;2:231-53
    1. J Immunol. 1986 Dec 15;137(12):3845-54
    1. Eur J Immunol. 1985 Nov;15(11):1079-83
    1. Cell Immunol. 1985 Sep;94(2):536-46
    1. Nature. 1985 Jan 24-30;313(6000):318-20
    1. J Immunol. 1985 Feb;134(2):967-70
    1. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6808-12
    1. J Exp Med. 1983 Sep 1;158(3):670-89
    1. J Immunol. 1983 Feb;130(2):988-92
    1. Immunol Rev. 1980;53:127-47
    1. Nature. 1982 May 20;297(5863):236-9
    1. Infect Immun. 1982 Jun;36(3):911-4
    1. J Immunol. 1980 Oct;125(4):1589-95
    1. Nucleic Acids Res. 1984 Jul 25;12(14):5627-38

Source: PubMed

3
Abonneren