PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation

Simon J Wilson, Fraz A Ismat, Zhaoqing Wang, Michael Cerra, Hafid Narayan, Jennifer Raftis, Timothy J Gray, Shea Connell, Samira Garonzik, Xuewen Ma, Jing Yang, David E Newby, Simon J Wilson, Fraz A Ismat, Zhaoqing Wang, Michael Cerra, Hafid Narayan, Jennifer Raftis, Timothy J Gray, Shea Connell, Samira Garonzik, Xuewen Ma, Jing Yang, David E Newby

Abstract

Objective: BMS-986120 is a novel first-in-class oral PAR4 (protease-activated receptor 4) antagonist with potent and selective antiplatelet effects. We sought to determine for the first time, the effect of BMS-986120 on human ex vivo thrombus formation.

Approach and results: Forty healthy volunteers completed a phase 1 parallel-group PROBE trial (Prospective Randomized Open-Label Blinded End Point). Ex vivo platelet activation, platelet aggregation, and thrombus formation were measured at 0, 2, and 24 hours after (1) oral BMS-986120 (60 mg) or (2) oral aspirin (600 mg) followed at 18 hours with oral aspirin (600 mg) and oral clopidogrel (600 mg). BMS-986120 demonstrated highly selective and reversible inhibition of PAR4 agonist peptide (100 μM)-stimulated P-selectin expression, platelet-monocyte aggregates, and platelet aggregation (P<0.001 for all). Compared with pretreatment, total thrombus area (μm2/mm) at high shear was reduced by 29.2% (95% confidence interval, 18.3%-38.7%; P<0.001) at 2 hours and by 21.4% (9.3%-32.0%; P=0.002) at 24 hours. Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus deposition: 34.8% (19.3%-47.3%; P<0.001) at 2 hours and 23.3% (5.1%-38.0%; P=0.016) at 24 hours. In contrast to aspirin alone, or in combination with clopidogrel, BMS-986120 had no effect on thrombus formation at low shear (P=nonsignificant). BMS-986120 administration was not associated with an increase in coagulation times or serious adverse events.

Conclusions: BMS-986120 is a highly selective and reversible oral PAR4 antagonist that substantially reduces platelet-rich thrombus formation under conditions of high shear stress. Our results suggest PAR4 antagonism has major potential as a therapeutic antiplatelet strategy.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439190.

Keywords: antiplatelet; human; novel; protease-activated receptor 4; thrombosis.

© 2017 The Authors.

Figures

Figure 1.
Figure 1.
Pharmacokinetics of BMS-986120. BMS-986120 was rapidly absorbed with a half-life of 4 h. Data shown are mean plasma concentrations of BMS-986120 (±95% confidence intervals) after administration of a single oral 60-mg dose.
Figure 2.
Figure 2.
BMS-986120 demonstrated highly selective, potent, and reversible inhibition of PAR (protease-activated receptor) 4-stimulated platelet activation and aggregation. Box plots of platelet activation and aggregation in response to (A–C) PAR4 Agonist peptide (AP; 100 μM), (D and E) PAR1 AP (100 μM), (F) PAR1 AP (25 μM), (G) ADP (10 μM), and (H) arachidonic acid (AA; 5 mmol/L), in volunteers randomized to BMS-986120. Data shown are the adjusted mean (+) normalized to unstimulated values. The line within the box represents the median, upper and lower edges of the box represent the 75th and 25th percentiles, and upper and lower whiskers represent the 95th and 5th percentiles. Statistical comparisons (least significance difference test) vs 0 h are represented above each plot. ns indicates nonsignificant. *P<0.05, **P<0.01, ***P<0.001.
Figure 3.
Figure 3.
BMS-986120 reduced thrombus formation at high shear but not at low shear. A, Representative image of porcine aortic media exposed to human blood at high shear stained to quantify total thrombus area. Sections were stained with polyclonal goat antihuman fibrin(ogen) antibody and CD61 monoclonal mouse antihuman antibody before treatment with 3,3′-diaminobenzidine substrate chromogen. Sections were then counterstained with a modified Masson trichrome (hematoxylin and sirius red, 0.1%). Effect of (B) BMS-986120 and (C) aspirin (ASA)±clopidogrel (Clop.) on total thrombus area at high and low shear. Statistical comparisons (least significance difference test) vs 0 h are represented above each plot. ns indicates nonsignificant. *P<0.05, **P<0.01, ***P<0.001.
Figure 4.
Figure 4.
Reductions in thrombus formation were driven by a decrease in platelet-rich thrombus formation. Representative image of thrombus formed at high shear stained to allow quantification of (A) platelet-rich and (B) fibrin-rich thrombus area. Sections were stained with polyclonal goat antihuman fibrin(ogen) antibody and CD61 monoclonal mouse antihuman antibody before counterstaining with tyramide Cy3 (cyanine 3) and FITC (fluorescein isothiocyanate). Effect of (C) BMS-986120 and (D) aspirin (ASA)±clopidogrel (Clop.) on platelet and fibrin deposition at low and high shear. Data shown are adjusted means±95% confidence intervals. Statistical comparisons (least significance difference test) vs 0 h are represented above each plot. ns indicates nonsignificant. *P<0.05, **P<0.01, ***P<0.001.

References

    1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Amsterdam EA, Wenger NK, Brindis RG, et al. ACC/AHA Task Force Members. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;130:e344–e426. doi: 10.1161/CIR.0000000000000134.
    1. Steg PG, James SK, Atar D Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC) ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33:2569–2619. doi: 10.1093/eurheartj/ehs215.
    1. Roffi M, Patrono C, Collet JP, et al. Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315. doi: 10.1093/eurheartj/ehv320.
    1. Geeganage CM, Diener HC, Algra A, Chen C, Topol EJ, Dengler R, Markus HS, Bath MW, Bath PM Acute Antiplatelet Stroke Trialists Collaboration. Dual or mono antiplatelet therapy for patients with acute ischemic stroke or transient ischemic attack: systematic review and meta-analysis of randomized controlled trials. Stroke. 2012;43:1058–1066. doi: 10.1161/STROKEAHA.111.637686.
    1. Rothwell PM, Algra A, Chen Z, Diener HC, Norrving B, Mehta Z. Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: time-course analysis of randomised trials. Lancet. 2016;388:365–375. doi: 10.1016/S0140-6736(16)30468-8.
    1. Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;127:1425–1443. doi: 10.1161/CIR.0b013e31828b82aa.
    1. Brass LF. Thrombin and platelet activation. Chest. 2003;124(suppl 3):18S–25S.
    1. Eikelboom JW, Hirsh J, Spencer FA, Baglin TP, Weitz JI. Antiplatelet drugs: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141:e89S–119S. doi: 10.1378/chest.11-2293.
    1. Wiviott SD, Steg PG. Clinical evidence for oral antiplatelet therapy in acute coronary syndromes. Lancet. 2015;386:292–302. doi: 10.1016/S0140-6736(15)60213-6.
    1. CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348:1329–1339. doi: 10.1016/S0140-6736(96)09457-3.
    1. Moscucci M, Fox KA, Cannon CP, Klein W, López-Sendón J, Montalescot G, White K, Goldberg RJ. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). Eur Heart J. 2003;24:1815–1823.
    1. Morrow DA, Braunwald E, Bonaca MP, et al. TRA 2P–TIMI 50 Steering Committee and Investigators. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med. 2012;366:1404–1413. doi: 10.1056/NEJMoa1200933.
    1. Wilson SJ, Newby DE, Dawson D, Irving J, Berry C. Duration of dual antiplatelet therapy in acute coronary syndrome. Heart. 2017;103:573–580. doi: 10.1136/heartjnl-2016-309871.
    1. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest. 1999;103:879–887. doi: 10.1172/JCI6042.
    1. Tricoci P, Huang Z, Held C, et al. TRACER Investigators. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med. 2012;366:20–33. doi: 10.1056/NEJMoa1109719.
    1. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Jr, Tam C, Coughlin SR. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–694. doi: 10.1038/29325.
    1. Covic L, Singh C, Smith H, Kuliopulos A. Role of the PAR4 thrombin receptor in stabilizing platelet-platelet aggregates as revealed by a patient with Hermansky-Pudlak syndrome. Thromb Haemost. 2002;87:722–727.
    1. Covic L, Gresser AL, Kuliopulos A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry. 2000;39:5458–5467.
    1. Wu CC, Wu SY, Liao CY, Teng CM, Wu YC, Kuo SC. The roles and mechanisms of PAR4 and P2Y12/phosphatidylinositol 3-kinase pathway in maintaining thrombin-induced platelet aggregation. Br J Pharmacol. 2010;161:643–658. doi: 10.1111/j.1476-5381.2010.00921.x.
    1. Mazharian A, Roger S, Berrou E, Adam F, Kauskot A, Nurden P, Jandrot-Perrus M, Bryckaert M. Protease-activating receptor-4 induces full platelet spreading on a fibrinogen matrix: involvement of ERK2 and p38 and Ca2+ mobilization. J Biol Chem. 2007;282:5478–5487. doi: 10.1074/jbc.M609881200.
    1. Wong PC, Seiffert D, Bird JE, et al. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med. 2017;9:eaaf5294.
    1. Leger AJ, Jacques SL, Badar J, Kaneider NC, Derian CK, Andrade-Gordon P, Covic L, Kuliopulos A. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation. 2006;113:1244–1254. doi: 10.1161/CIRCULATIONAHA.105.587758.
    1. Wu CC, Teng CM. Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation. Eur J Pharmacol. 2006;546:142–147. doi: 10.1016/j.ejphar.2006.07.004.
    1. Wen W, Young SE, Duvernay MT, Schulte ML, Nance KD, Melancon BJ, Engers J, Locuson CW, II, Wood MR, Daniels JS, Wu W, Lindsley CW, Hamm HE, Stauffer SR. Substituted indoles as selective protease activated receptor 4 (PAR-4) antagonists: discovery and SAR of ML354. Bioorg Med Chem Lett. 2014;24:4708–4713. doi: 10.1016/j.bmcl.2014.08.021.
    1. Covic L, Misra M, Badar J, Singh C, Kuliopulos A. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med. 2002;8:1161–1165. doi: 10.1038/nm760.
    1. Stampfuss JJ, Schrör K, Weber AA. Inhibition of platelet thromboxane receptor function by a thrombin receptor-targeted pepducin. Nat Med. 2003;9:1447. doi: 10.1038/nm1203-1447a.
    1. Ismat FA, Ma X, Wang Z, Frost CE, Ni YG, Yang J. Abstract TMP91: phase I assessment of the safety, tolerability, pharmacokinetics and pharmacodynamics of the oral protease-activated receptor-4 antagonist BMS-986120. Stroke. 2016;47:ATMP91.
    1. Chelliah R, Lucking AJ, Tattersall L, Daga S, Beresford-Cleary NJ, Cortas K, Fox KA, Feuerstein GZ, Connolly TM, Newby DE. P-selectin antagonism reduces thrombus formation in humans. J Thromb Haemost. 2009;7:1915–1919. doi: 10.1111/j.1538-7836.2009.03587.x.
    1. Lucking AJ, Chelliah R, Trotman AD, Connolly TM, Feuerstein GZ, Fox KA, Boon NA, Badimon JJ, Newby DE. Characterisation and reproducibility of a human ex vivo model of thrombosis. Thromb Res. 2010;126:431–435. doi: 10.1016/j.thromres.2010.06.030.
    1. Lucking AJ, Visvanathan A, Philippou H, Fraser S, Grant PJ, Connolly TM, Gardell SJ, Feuerstein GZ, Fox KA, Booth NA, Newby DE. Effect of the small molecule plasminogen activator inhibitor-1 (PAI-1) inhibitor, PAI-749, in clinical models of fibrinolysis. J Thromb Haemost. 2010;8:1333–1339. doi: 10.1111/j.1538-7836.2010.03872.x.
    1. Lev EI, Marmur JD, Zdravkovic M, Osende JI, Robbins J, Delfin JA, Richard M, Erhardtsen E, Thomsen MS, Lincoff AM, Badimon JJ. Antithrombotic effect of tissue factor inhibition by inactivated factor VIIa: an ex vivo human study. Arterioscler Thromb Vasc Biol. 2002;22:1036–1041.
    1. Wåhlander K, Eriksson-Lepkowska M, Nyström P, Eriksson UG, Sarich TC, Badimon JJ, Kalies I, Elg M, Bylock A. Antithrombotic effects of ximelagatran plus acetylsalicylic acid (ASA) and clopidogrel plus ASA in a human ex vivo arterial thrombosis model. Thromb Haemost. 2006;95:447–453. doi: 10.1160/TH05-10-0664.
    1. Hayes R, Chesebro JH, Fuster V, Dangas G, Fallon JT, Sharma SK, Coller BS, Badimon L, Marmur JD, Badimon JJ. Antithrombotic effects of abciximab. Am J Cardiol. 2000;85:1167–1172.
    1. Shimbo D, Osende J, Chen J, Robbins J, Shimoto Y, Kunitada S, Fuster V, Badimon JJ. Antithrombotic effects of DX-9065a, a direct factor Xa inhibitor: a comparative study in humans versus low molecular weight heparin. Thromb Haemost. 2002;88:733–738.
    1. Zafar MU, Ibáñez B, Choi BG, Vorchheimer DA, Piñero A, Jin X, Sharma RK, Badimon JJ. A new oral antiplatelet agent with potent antithrombotic properties: comparison of DZ-697b with clopidogrel a randomised phase I study. Thromb Haemost. 2010;103:205–212. doi: 10.1160/TH09-06-0378.
    1. Zafar MU, Vorchheimer DA, Gaztanaga J, Velez M, Yadegar D, Moreno PR, Kunitada S, Pagan J, Fuster V, Badimon JJ. Antithrombotic effects of factor Xa inhibition with DU-176b: phase-I study of an oral, direct factor Xa inhibitor using an ex-vivo flow chamber. Thromb Haemost. 2007;98:883–888.
    1. Goto S, Ikeda Y, Saldívar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest. 1998;101:479–486. doi: 10.1172/JCI973.
    1. Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109:5087–5095. doi: 10.1182/blood-2006-12-027698.
    1. Gotoh K, Minamino T, Katoh O, Hamano Y, Fukui S, Hori M, Kusuoka H, Mishima M, Inoue M, Kamada T. The role of intracoronary thrombus in unstable angina: angiographic assessment and thrombolytic therapy during ongoing anginal attacks. Circulation. 1988;77:526–534.
    1. Maseri A, Chierchia S, Davies G. Pathophysiology of coronary occlusion in acute infarction. Circulation. 1986;73:233–239.
    1. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78(5)(pt 1):1157–1166.
    1. Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9:1317–1323.
    1. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation. 2012;125:1147–1156. doi: 10.1161/CIRCULATIONAHA.111.047431.
    1. Alli O, Smith C, Hoffman M, Amanullah S, Katz P, Amanullah AM. Incidence, predictors, and outcomes of gastrointestinal bleeding in patients on dual antiplatelet therapy with aspirin and clopidogrel. J Clin Gastroenterol. 2011;45:410–414. doi: 10.1097/MCG.0b013e3181faec3c.
    1. Mehta SR, Yusuf S, Peters RJ, Bertrand ME, Lewis BS, Natarajan MK, Malmberg K, Rupprecht H, Zhao F, Chrolavicius S, Copland I, Fox KA Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial (CURE) Investigators. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358:527–533. doi: 10.1016/S0140-6736(01)05701-4.
    1. Kapetanakis EI, Medlam DA, Boyce SW, Haile E, Hill PC, Dullum MK, Bafi AS, Petro KR, Corso PJ. Clopidogrel administration prior to coronary artery bypass grafting surgery: the cardiologist’s panacea or the surgeon’s headache? Eur Heart J. 2005;26:576–583. doi: 10.1093/eurheartj/ehi074.
    1. Kastrati A, Mehilli J, Schühlen H, Dirschinger J, Dotzer F, ten Berg JM, Neumann FJ, Bollwein H, Volmer C, Gawaz M, Berger PB, Schömig A Intracoronary Stenting and Antithrombotic Regimen-Rapid Early Action for Coronary Treatment Study Investigators. A clinical trial of abciximab in elective percutaneous coronary intervention after pretreatment with clopidogrel. N Engl J Med. 2004;350:232–238. doi: 10.1056/NEJMoa031859.
    1. Husted S. Benefits and risks with antiplatelet therapy: how great a problem is bleeding? Eur Heart J Suppl. 2008;10:I19–I24.
    1. French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. J Thromb Haemost. 2016;14:1642–1654. doi: 10.1111/jth.13293.
    1. Dangwal S, Rauch BH, Gensch T, Dai L, Bretschneider E, Vogelaar CF, Schrör K, Rosenkranz AC. High glucose enhances thrombin responses via protease-activated receptor-4 in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31:624–633. doi: 10.1161/ATVBAHA.110.219105.
    1. Pavic G, Grandoch M, Dangwal S, Jobi K, Rauch BH, Doller A, Oberhuber A, Akhyari P, Schrör K, Fischer JW, Fender AC. Thrombin receptor protease-activated receptor 4 is a key regulator of exaggerated intimal thickening in diabetes mellitus. Circulation. 2014;130:1700–1711. doi: 10.1161/CIRCULATIONAHA.113.007590.
    1. Giesen PL, Rauch U, Bohrmann B, Kling D, Roqué M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci USA. 1999;96:2311–2315.
    1. Rauch U, Nemerson Y. Circulating tissue factor and thrombosis. Curr Opin Hematol. 2000;7:273–277.
    1. Badimon L, Badimon JJ. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. Experimental study in the pig model. J Clin Invest. 1989;84:1134–1144. doi: 10.1172/JCI114277.
    1. Badimon JJ, Lettino M, Toschi V, Fuster V, Berrozpe M, Chesebro JH, Badimon L. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation. 1999;99:1780–1787.
    1. Toschi V, Gallo R, Lettino M, Fallon JT, Gertz SD, Fernández-Ortiz A, Chesebro JH, Badimon L, Nemerson Y, Fuster V, Badimon JJ. Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation. 1997;95:594–599.
    1. Giesen PL, Nemerson Y. Tissue factor on the loose. Semin Thromb Hemost. 2000;26:379–384.
    1. Balasubramanian V, Grabowski E, Bini A, Nemerson Y. Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood. 2002;100:2787–2792. doi: 10.1182/blood-2002-03-0902.
    1. Rauch U, Bonderman D, Bohrmann B, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor. Blood. 2000;96:170–175.

Source: PubMed

3
Abonneren