Angiopoietin-like protein as a novel marker for liver fibrosis in chronic hepatitis B patients with normal to minimally raised ALT

Yongqiong Deng, Hong Zhao, Jiyuan Zhou, Linlin Yan, Guiqiang Wang, China HepB-Related Fibrosis Assessment Research Group, Yongqiong Deng, Hong Zhao, Jiyuan Zhou, Linlin Yan, Guiqiang Wang, China HepB-Related Fibrosis Assessment Research Group

Abstract

Background: For hepatitis B patients who do not meet the treatment criteria recommended by guidelines, therapy decisions depend on hepatic histology. Angiopoietin-like protein 2 (Angptl2) is a mediator of chronic inflammation that contributes to extracellular matrix remodeling. The aim of this study was to explore the predictive value of Angptl2 as a novel biomarker of liver histology.

Methods: Hepatitis B patients with normal to minimally raised ALT were recruited. Serum Angptl2 concentrations were detected using commercial ELISA kit. The fibrosis score were assessed according to Ishak criteria. Significant fibrosis was defined as ISHAK score ≥ 3.

Results: Of 460 patients, 223 cases served as training cohort and 237 ones as validation cohort. Serum Angptl2 concentration was significantly associated with fibrosis scores in both training and validation group. Angptl2 combined index (ACI) for assessing significant fibrosis was developed from training cohort, based on Angptl2 and conventional variables. ACI showed areas under receiver-operating characteristic curve (AUC) of 0.835 for predicting significant fibrosis, which was superior to APRI (AUC = 0.776, P = 0.049), FIB-4 (AUC = 0.750, P = 0.010), Hui model (AUC = 0.756, P = 0.028), and had a better trend than Forn's index (AUC = 0.796, P = 0.083) in training cohort. Finally, validation cohort revealed its robustness and reliability.

Conclusion: Higher Angptl2 level represents as a potential biomarker independently associated with fibrosis stages. Compared with APRI, Hui model, FIB-4, Forn's index, ACI did better in diagnosing significant fibrosis in hepatitis B patients.

Trial registration: The complete clinical trials protocol is available by request at clinicaltrials.gov ( NCT01962155 ) and chictr.org ( ChiCTR-DDT-13003724 ).

Keywords: Angiopoietin-like protein; Hepatitis B; Liver fibrosis.

Conflict of interest statement

Ethics approval and consent to participate

All patients provided written informed consent for the scientific use of their data and samples, and the study was approved by the Ethical Committee of Peking University First Hospital.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Boxplot of the serum Angptl2 concentrations in relation to fibrosis score in the training cohort all patients (a) and patients with normal ALT (b) .The above and below lines indicate the SD. The middle line represents the medians. *** p < 0.001, **p < 0.01, and *p < 0.05. For all patients in the training cohort, p < 0.001. For patients with normal ALT in the training cohort, p = 0.003
Fig. 2
Fig. 2
Receiver operating characteristics (ROC) cures of the Angptl2 combined index (ACI), APRI, FIB-4, Forns’ index to distinguish patients with and without significant fibrosis in the Training cohort. a Area under the ROC curves (AUC) of above models in the training set. b AUC for above models in patients with Normal ALT in the training set
Fig. 3
Fig. 3
Receiver-operating characteristic curve (ROC) cures of the ACI, APRI, FIB-4, Forns’ index to distinguish patients with and without significant fibrosis in the Validation cohort. (a) AUC of above models in the validation set. (b) AUC of above models in patients with normal ALT in validation set

References

    1. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–1555. doi: 10.1016/S0140-6736(15)61412-X.
    1. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006;45:529–538. doi: 10.1016/j.jhep.2006.05.013.
    1. Liang X, Bi S, Yang W, Wang L, Cui G, Cui F, et al. Epidemiological serosurvey of hepatitis B in China--declining HBV prevalence due to hepatitis B vaccination. Vaccine. 2009;27:6550–6557. doi: 10.1016/j.vaccine.2009.08.048.
    1. Sarin SK, Kumar M, Lau GK, Abbas Z, Chan HL, Chen CJ, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int. 2016;10:1–98. doi: 10.1007/s12072-015-9675-4.
    1. Colloredo G, Guido M, Sonzogni A, Leandro G. Impact of liver biopsy size on histological evaluation of chronic viral hepatitis: the smaller the sample, the milder the disease. J Hepatol. 2003;39:239–244. doi: 10.1016/S0168-8278(03)00191-0.
    1. Bedossa P, Dargère D, Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38:1449–1457. doi: 10.1016/j.hep.2003.09.022.
    1. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–2618. doi: 10.1111/j.1572-0241.2002.06038.x.
    1. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014;25:245–254. doi: 10.1016/j.tem.2014.03.012.
    1. Odagiri H, Kadomatsu T, Endo M, Masuda T, Morioka MS, Fukuhara S, et al. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin α5β1, p38 MAPK, and matrix metalloproteinases. Sci Signal. 2014;7:ra7. doi: 10.1126/scisignal.2004612.
    1. Tazume H, Miyata K, Tian Z, Endo M, Horiguchi H, Takahashi O, et al. Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2012;32:1400–1409. doi: 10.1161/ATVBAHA.112.247866.
    1. Novo E, Cannito S, Paternostro C, Bocca C, Miglietta A, Parola M. Cellular and molecular mechanisms in liver fibrogenesis. Arch Biochem Biophys. 2014;548:20–37. doi: 10.1016/j.abb.2014.02.015.
    1. Kim I, Kim HG, Kim H, Kim HH, Park SK, Uhm CS, et al. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin related protein that prevents endothelial-cell apoptosis. Biochem J. 2000;346:603–610. doi: 10.1042/bj3460603.
    1. Yoshinaga T, Shigemitsu T, Nishimata H, Kitazono M, Hori E, Tomiyoshi A, et al. Angiopoietin-like protein 2 as a potential biomarker for colorectal cancer. Mol Clin Oncol. 2015;3:1080–1084. doi: 10.3892/mco.2015.577.
    1. Chen Y, Jiang H, Zhu L, Wang P, Liu S, Xiao X, et al. Diagnostic and prognostic value of serum Angiopoietin-like protein 2 in patients with non-small cell lung cancer. Clin Lab. 2017;63:59–65.
    1. Liang Y, Nie H, Ren H, Li F, Tian C, Li H, et al. Change of serum Angiopoietin-like protein 2 and its significance in patients with arteriosclerotic occlusion. Zhong guo Yi Xue Ke Xue Yuan Xue Bao. 2017;39:188–195.
    1. Jia W, Song LW, Fang YQ, Wu XF, Liu DY, Xu C, et al. Antibody to hepatitis B core antigen levels in the natural history of chronic hepatitis B: a prospective observational study. Medicine (Baltimore) 2014;93:e322. doi: 10.1097/MD.0000000000000322.
    1. Deng Y, Zhao H, Zhou J, Yan L, Wang G. China HepB-related fibrosis assessment research group. Complement 5a is an indicator of significant fibrosis and earlier cirrhosis in patients chronically infected with hepatitis B virus. Infection. 2017;45:75–81. doi: 10.1007/s15010-016-0942-7.
    1. Wai CT, Greenson JK, Fontana RJ, Kalbfleisch JD, Marrero JA, Conjeevaram HS, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–526. doi: 10.1053/jhep.2003.50346.
    1. Hui AY, Chan HL, Wong VW, Liew CT, Chim AM, Chan FK, et al. Identification of chronic hepatitis B patients without significant liver fibrosis by a simple noninvasivepredictive model. Am J Gastroenterol. 2005;100:616–623. doi: 10.1111/j.1572-0241.2005.41289.x.
    1. Vallet-Pichard A, Mallet V, Nalpas B, Verkarre V, Nalpas A, Dhalluin-Venier V, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection comparison with liver biopsy and fibrotest. Hepatology. 2007;46:32–36. doi: 10.1002/hep.21669.
    1. Forns X, Ampurdanès S, Llovet JM, Aponte J, Quintó L, Martínez-Bauer E, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36:986–992. doi: 10.1053/jhep.2002.36128.
    1. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22:696–699. doi: 10.1016/0168-8278(95)80226-6.
    1. Walsh KM, Fletcher A, MacSween RN, Morris AJ. Basement membrane peptides as markers of liver disease in chronic hepatitis C. J Hepatol. 2000;32:325–330. doi: 10.1016/S0168-8278(00)80079-3.
    1. Murawaki Y, Koda M, Okamoto K, Mimura K, Kawasaki H. Diagnostic value of serum type IV collagen test in comparison with platelet count for predicting the fibrotic stage in patients withchronic hepatitis C. J Gastroenterol Hepatol. 2001;16:777–781. doi: 10.1046/j.1440-1746.2001.02515.x.
    1. Murawaki Y, Ikuta Y, Idobe Y, Kawasaki H. Serum matrix metalloproteinase-1 in patients with chronic viral hepatitis. J Gastroenterol Hepatol. 1999;14:138–145. doi: 10.1046/j.1440-1746.1999.01821.x.
    1. Kazankov K, Barrera F, Møller HJ, Bibby BM, Vilstrup H, George J, et al. Soluble CD163, a macrophage activation marker, is independently associated with fibrosis in patients with chronic viral hepatitis B and C. Hepatology. 2014;60:521–530. doi: 10.1002/hep.27129.
    1. Grønbaek H, Sandahl TD, Mortensen C, Vilstrup H, Møller HJ, Møller S. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis. Aliment Pharmacol Ther. 2012;36:173–180. doi: 10.1111/j.1365-2036.2012.05134.x.
    1. Kim WR, Flamm SL. Di Bisceglie AM, Bodenheimer HC, public policy Committee of the American Association for the study of liver disease. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology. 2008;47:1363–1370. doi: 10.1002/hep.22109.
    1. Kumar M, Sarin SK, Hissar S, Pande C, Sakhuja P, Sharma BC, et al. Virologic and histologic features of chronic hepatitis B virus-infected asymptomatic patients with persistently normal ALT. Gastroenterol. 2008;134:1376–1384. doi: 10.1053/j.gastro.2008.02.075.
    1. Lai M, Hyatt BJ, Nasser I, Curry M, Afdhal NH. The clinical significance of persistently normal ALT in chronic hepatitis B infection. J Hepatol. 2007;47:760–767. doi: 10.1016/j.jhep.2007.07.022.
    1. Tsang PS, Trinh H, Garcia RT, Phan JT, Ha NB, Nguyen H, et al. Significant prevalence of histologic disease in patients with chronic hepatitis B and mildly elevated serum alanine aminotransferase levels. Clin Gastroenterol Hepatol. 2008;6:569–574. doi: 10.1016/j.cgh.2008.02.037.
    1. Nakamura T, Okada T, Endo M, Kadomatsu T, Taniwaki T, Sei A, et al. Angiopoietin-like protein 2 induced by mechanical stress accelerates degeneration and hypertrophy of the Ligamentum Flavum in lumbar Spinal Canal Stenosis. PLoS One. 2014;17(9):e85542. doi: 10.1371/journal.pone.0085542.
    1. Gao L, Ge C, Fang T, Zhao F, Chen T, Yao M, et al. ANGPTL2 promotes tumor metastasis in Hepatocellular carcinoma. J Gastroenterol Hepatol. 2015;30:396–404. doi: 10.1111/jgh.12702.

Source: PubMed

3
Abonneren