An ethanolic extract of Lindera obtusiloba stems, YJP-14, improves endothelial dysfunction, metabolic parameters and physical performance in diabetic db/db mice

Jung-Ok Lee, Cyril Auger, Dong Hyun Park, Moonkyu Kang, Min-Ho Oak, Kyoung Rak Kim, Valérie B Schini-Kerth, Jung-Ok Lee, Cyril Auger, Dong Hyun Park, Moonkyu Kang, Min-Ho Oak, Kyoung Rak Kim, Valérie B Schini-Kerth

Abstract

Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated with an enhanced physical exercise capacity.

Conflict of interest statement

Competing Interests: Jung-Ok Lee, Moonkyu Kang and Kyoung Rak Kim are all employees of Hanwha Pharma. Co., Ltd, Chuncheon, Republic of Korea, whose company provided funding toward this study. Dong Hyun Park is an employee of YangJi Chemicals, Suwon, Republic of Korea, which is a daughter company of Hanwha. Hanwha has filed a European and US patent on YJP14 and endothelial dysfunction. The Korean FDA have approved further clinical studies regarding YJP-14 and endothelial dysfunction in diabetes. At present there are no further patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. LOE and pioglitazone treatments improve…
Figure 1. LOE and pioglitazone treatments improve blood glucose levels in db/db mice.
(A) Non-fasting and (B) fasting blood glucose levels from week 6 until week 14. All groups were fasted for 4 h before blood samples were taken. Values are shown as means ± S.E.M. (n = 13–14). *P<0.05 indicates a significant difference versus db/db group.
Figure 2. LOE and pioglitazone treatments improve…
Figure 2. LOE and pioglitazone treatments improve endothelium-dependent relaxations and reduce endothelium-dependent contractile responses to acetylcholine in aortic rings of db/db mice.
(A) Concentration-relaxation curves to Ach in aortic rings with endothelium, (B) concentration-contraction curves to Ach in the presence of Nw-nitro L-arginine (an inhibitor of eNOS) in rings with endothelium, and (C) concentration-relaxation curves to sodium nitroprusside (a NO donor) in rings with endothelium in the presence of Nw-nitro L-arginine and indomethacin to avoid the formation of endothelium-derived vasoactive NO and prostanoids, respectively. Values are shown as means ± S.E.M. (n = 5–6). *P<0.05 indicates a significant difference between db/+ group versus db/db group, db/db+Pio group or db/db+LOE group, and † db/db+Pio group versus db/db+LOE group.pone.0065227.g003.tif
Figure 3. LOE inhibits the activity of…
Figure 3. LOE inhibits the activity of cyclooxygenases.
(A) Cyclooxygenase-derived vasoactive prostanoids blunt endothelium-dependent relaxations to Ach in aortic rings of the db/+, db/db and db/db+Pio groups but not in the db/db+LOE group. Concentration-dependent relaxations induced by Ach in aortic rings with endothelium in the absence and presence of indomethacin (an inhibitor of cyclooxygenases). Values are shown as means ± S.E.M. (n = 5–7). *P<0.05 indicates a significant difference versus the respective control. (B) LOE inhibits COX-1 and COX-2 activity in vitro in a concentration-dependent manner. Values are shown as means ± S.D. (duplicate determinations).
Figure 4. Effect of LOE and pioglitazone…
Figure 4. Effect of LOE and pioglitazone treatments on vascular oxidative stress, and the expression of eNOS, NADPH oxidase subunits (NOX-1 and p47phox) and cyclooxygenases (COX-1 and COX-2) in aortic sections of db/db mice.
The formation of reactive oxygen species (ROS) was determined using the redox-sensitive probe dihydroethidine, and the expression of target proteins by immunofluorescent staining. Top: representative immunofluorescent staining; bottom: corresponding cumulative data. The lumen is on the right side of each image, and the scale bar corresponds to 50 µm. Values are shown as means ± S.E.M. (n = 6–7). *P<0.05 indicates a significant difference between db/+ group versus db/db group, db/db+Pio group or db/db+LOE group, †db/db group versus db/db+Pio group or db/db+LOE group, and #db/db+Pio group versus db/db+LOE group.
Figure 5. Effect of LOE and pioglitazone…
Figure 5. Effect of LOE and pioglitazone treatments on the expression of angiotensin II (Ang II) and angiotensin II type 1 receptors (AT1R) in aortic sections of db/db mice.
The expression of Ang II and AT1R was assessed by immunofluorescent staining. Top: representative immunofluorescent staining; bottom: corresponding cumulative data. The lumen is on the right side of each image, and the scale bar corresponds to 50 µm. Values are shown as means ± S.E.M. (n = 6–7). *P<0.05 indicates a significant difference between db/+ group versus db/db group, db/db+Pio group or db/db+LOE group, †db/db group versus db/db+Pio group or db/db+LOE group, and #db/db+Pio group versus db/db+LOE group.
Figure 6. LOE reduces plasma angiotensin converting…
Figure 6. LOE reduces plasma angiotensin converting enzyme (ACE) activity in db/db mice (A), and inhibits the activity of purified ACE (B).
Values are shown as means ± S.E.M. n = 6–7 (A) and 3 (B). *P<0.05 indicates a significant difference between db/+ group versus db/db group, db/db+Pio group or db/db+LOE group, †db/db group versus db/db+Pio group or db/db+LOE group, and #db/db+Pio group versus db/db+LOE group.
Figure 7. LOE but not pioglitazone improves…
Figure 7. LOE but not pioglitazone improves slightly but significantly the physical exercise capacity of db/db mice.
The physical performance was assessed using a treadmill. (A) Time to exhaustion, (B) maximal distance run before exhaustion. Values are shown as means ± S.E.M. (n = 13–14). *P<0.05 indicates a significant difference versus db/db group.

References

    1. WHO (1999) Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO Consultation. Part 1: diagnosis and classification of diabetes mellitus. Geneva, Switzerland: World Health Organization.
    1. Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, et al. (2002) The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 25: 829–834.
    1. Thompson D, Wolf AM (2001) The medical-care cost burden of obesity. Obes Rev 2: 189–197.
    1. Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, et al. (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100: 1134–1146.
    1. Sowers JR, Epstein M, Frohlich ED (2001) Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37: 1053–1059.
    1. Savage S, Estacio RO, Jeffers B, Schrier RW (1996) Urinary albumin excretion as a predictor of diabetic retinopathy, neuropathy, and cardiovascular disease in NIDDM. Diabetes Care 19: 1243–1248.
    1. Plutzky J (2011) Macrovascular effects and safety issues of therapies for type 2 diabetes. Am J Cardiol 108: 25B–32B.
    1. Selvin E, Erlinger TP (2004) Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 110: 738–743.
    1. Nichols GA, Hillier TA, Erbey JR, Brown JB (2001) Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care 24: 1614–1619.
    1. Capellini VK, Celotto AC, Baldo CF, Olivon VC, Viaro F, et al. (2010) Diabetes and vascular disease: basic concepts of nitric oxide physiology, endothelial dysfunction, oxidative stress and therapeutic possibilities. Curr Vasc Pharmacol 8: 526–544.
    1. Schalkwijk CG, Stehouwer CD (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond) 109: 143–159.
    1. Ihm SH, Lee JO, Kim SJ, Seung KB, Schini-Kerth VB, et al. (2009) Catechin prevents endothelial dysfunction in the prediabetic stage of OLETF rats by reducing vascular NADPH oxidase activity and expression. Atherosclerosis 206: 47–53.
    1. Henry RM, Ferreira I, Kostense PJ, Dekker JM, Nijpels G, et al. (2004) Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not; The Hoorn Study. Atherosclerosis 174: 49–56.
    1. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, et al. (2000) Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation 101: 1780–1784.
    1. Sallam N, Fisher A, Golbidi S, Laher I (2011) Weight and inflammation are the major determinants of vascular dysfunction in the aortae of db/db mice. Naunyn Schmiedebergs Arch Pharmacol 383: 483–492.
    1. Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, et al. (2011) Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact 192: 233–242.
    1. Park Y, Capobianco S, Gao X, Falck JR, Dellsperger KC, et al. (2008) Role of EDHF in type 2 diabetes-induced endothelial dysfunction. Am J Physiol Heart Circ Physiol 295: H1982–1988.
    1. Gao L, Mann GE (2009) Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling. Cardiovasc Res 82: 9–20.
    1. Chen W, Druhan LJ, Chen CA, Hemann C, Chen YR, et al. (2010) Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Biochemistry 49: 3129–3137.
    1. Schmidt TS, Alp NJ (2007) Mechanisms for the role of tetrahydrobiopterin in endothelial function and vascular disease. Clin Sci (Lond) 113: 47–63.
    1. Urso C, Caimi G (2011) [Oxidative stress and endothelial dysfunction]. Minerva Med 102: 59–77.
    1. Feletou M, Kohler R, Vanhoutte PM (2010) Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep 12: 267–275.
    1. Liang W, Tan CY, Ang L, Sallam N, Granville DJ, et al. (2008) Ramipril improves oxidative stress-related vascular endothelial dysfunction in db/db mice. J Physiol Sci 58: 405–411.
    1. O’Driscoll G, Green D, Rankin J, Stanton K, Taylor R (1997) Improvement in endothelial function by angiotensin converting enzyme inhibition in insulin-dependent diabetes mellitus. J Clin Invest 100: 678–684.
    1. Wang XR, Zhang MW, Chen DD, Zhang Y, Chen AF (2011) AMP-activated protein kinase rescues the angiogenic functions of endothelial progenitor cells via manganese superoxide dismutase induction in type 1 diabetes. Am J Physiol Endocrinol Metab 300: E1135–1145.
    1. Yook C (1989) Medicinal plants of Korea. Seoul: Academy Publishing.
    1. Lee JO, Oak MH, Jung SH, Park DH, Auger C, et al. (2011) An ethanolic extract of Lindera obtusiloba stems causes NO-mediated endothelium-dependent relaxations in rat aortic rings and prevents angiotensin II-induced hypertension and endothelial dysfunction in rats. Naunyn Schmiedebergs Arch Pharmacol 383: 635–645.
    1. Wong WT, Tian XY, Xu A, Ng CF, Lee HK, et al. (2010) Angiotensin II type 1 receptor-dependent oxidative stress mediates endothelial dysfunction in type 2 diabetic mice. Antioxid Redox Signal 13: 757–768.
    1. Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, et al. (2007) Pax-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop. Pediatr Nephrol 22: 813–824.
    1. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clinical diabetes 26: 77–82.
    1. Ding H, Triggle CR (2010) Endothelial dysfunction in diabetes: multiple targets for treatment. Pflugers Arch 459: 977–994.
    1. Sarr M, Chataigneau M, Martins S, Schott C, El Bedoui J, et al. (2006) Red wine polyphenols prevent angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase. Cardiovasc Res 71: 794–802.
    1. Ota H, Eto M, Kano MR, Kahyo T, Setou M, et al. (2010) Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the Akt pathway. Arterioscler Thromb Vasc Biol 30: 2205–2211.
    1. Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, et al. (2010) Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol Heart Circ Physiol 299: H985–994.
    1. Zanetti M, Gortan Cappellari G, Burekovic I, Barazzoni R, Stebel M, et al. (2010) Caloric restriction improves endothelial dysfunction during vascular aging: Effects on nitric oxide synthase isoforms and oxidative stress in rat aorta. Exp Gerontol 45: 848–855.
    1. Musicki B, Liu T, Lagoda GA, Strong TD, Sezen SF, et al. (2010) Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase. J Sex Med 7: 3023–3032.
    1. Sharma A, Bernatchez PN, de Haan JB (2012) Targeting endothelial dysfunction in vascular complications associated with diabetes. Int J Vasc Med 2012: 750126.
    1. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, et al. (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97: 22–28.
    1. Heitzer T, Schlinzig T, Krohn K, Meinertz T, Munzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104: 2673–2678.
    1. Regensteiner JG, Popylisen S, Bauer TA, Lindenfeld J, Gill E, et al. (2003) Oral L-arginine and vitamins E and C improve endothelial function in women with type 2 diabetes. Vasc Med 8: 169–175.
    1. Sridulyakul P, Chakraphan D, Patumraj S (2006) Vitamin C supplementation could reverse diabetes-induced endothelial cell dysfunction in mesenteric microcirculation in STZ-rats. Clin Hemorheol Microcirc 34: 315–321.
    1. Ajay M, Mustafa MR (2006) Effects of ascorbic acid on impaired vascular reactivity in aortas isolated from age-matched hypertensive and diabetic rats. Vascul Pharmacol 45: 127–133.
    1. Title LM, Cummings PM, Giddens K, Genest JJ Jr. Nassar BA (2000) Effect of folic acid and antioxidant vitamins on endothelial dysfunction in patients with coronary artery disease. J Am Coll Cardiol 36: 758–765.
    1. Cohen RA, Tong X (2010) Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease. J Cardiovasc Pharmacol 55: 308–316.
    1. Jimenez R, Lopez-Sepulveda R, Kadmiri M, Romero M, Vera R, et al. (2007) Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase. Free Radic Biol Med 43: 462–473.
    1. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, et al. (1993) Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther 266: 992–1000.
    1. Johnson DK, Schillinger KJ, Kwait DM, Hughes CV, McNamara EJ, et al. (2002) Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols. Endothelium 9: 191–203.
    1. Ying CJ, Xu JW, Ikeda K, Takahashi K, Nara Y, et al. (2003) Tea polyphenols regulate nicotinamide adenine dinucleotide phosphate oxidase subunit expression and ameliorate angiotensin II-induced hyperpermeability in endothelial cells. Hypertens Res 26: 823–828.
    1. Idris-Khodja N, Schini-Kerth V (2012) Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedebergs Arch Pharmacol 385: 749–758.
    1. Okudan N, Bariskaner H, Gokbel H, Sahin AS, Belviranli M, et al. (2011) The effect of supplementation of grape seed proanthocyanidin extract on vascular dysfunction in experimental diabetes. J Med Food 14: 1298–1302.
    1. Hartge MM, Unger T, Kintscher U (2007) The endothelium and vascular inflammation in diabetes. Diab Vasc Dis Res 4: 84–88.
    1. Bakker W, Eringa EC, Sipkema P, van Hinsbergh VW (2009) Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity. Cell Tissue Res 335: 165–189.
    1. Lewis TV, Dart AM, Chin-Dusting JP (1999) Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol. J Am Coll Cardiol 33: 805–812.
    1. Stapleton PA, Goodwill AG, James ME, Brock RW, Frisbee JC (2010) Hypercholesterolemia and microvascular dysfunction: interventional strategies. J Inflamm (Lond) 7: 54.
    1. Senador D, Kanakamedala K, Irigoyen MC, Morris M, Elased KM (2009) Cardiovascular and autonomic phenotype of db/db diabetic mice. Exp Physiol 94: 648–658.
    1. Freise C, Erben U, Neuman U, Kim K, Zeitz M, et al. (2010) An active extract of Lindera obtusiloba inhibits adipogenesis via sustained Wnt signaling and exerts anti-inflammatory effects in the 3T3-L1 preadipocytes. J Nutr Biochem 21: 1170–1177.
    1. Kusunoki M, Tsutsumi K, Sato D, Nakamura A, Habu S, et al. (2011) Pioglitazone-induced body weight gain is prevented by combined administration with the lipoprotein lipase activator NO-1886. Eur J Pharmacol 668: 486–491.
    1. Smith SR, De Jonge L, Volaufova J, Li Y, Xie H, et al. (2005) Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metabolism 54: 24–32.
    1. Zheng Z, Chen H, Li J, Li T, Zheng B, et al... (2011) Sirtuin 1-Mediated Cellular Metabolic Memory of High Glucose Via the LKB1/AMPK/ROS Pathway and Therapeutic Effects of Metformin. Diabetes.
    1. Mohan S, Reddick RL, Musi N, Horn DA, Yan B, et al. (2008) Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab Invest 88: 515–528.
    1. Park JH, Nam Y, Park SY, Kim JK, Choe NH, et al. (2011) Silk fibroin has a protective effect against high glucose induced apoptosis in HIT-T15 cells. J Biochem Mol Toxicol 25: 238–243.
    1. Kanda Y, Shimoda M, Hamamoto S, Tawaramoto K, Kawasaki F, et al. (2010) Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese diabetic mice: evidence for acute and chronic actions as a PPARgamma agonist. Am J Physiol Endocrinol Metab 298: E278–286.
    1. Junker N, Johansen JS, Hansen LT, Lund EL, Kristjansen PE (2005) Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells. Cancer Sci 96: 183–190.
    1. Lim YK, Retnam L, Bhagavath B, Sethi SK, bin Ali A, et al. (2002) Gonadal effects on plasma ACE activity in mice. Atherosclerosis 160: 311–316.

Source: PubMed

3
Abonneren