A finger photoplethysmography waveform during the valsalva maneuver detects changes in left heart filling pressure after hemodialysis

Panagis Galiatsatos, Kapil Parakh, Jennifer Monti, Sumeska Thavarajah, Harriet Aneke-Ogbu, Amaris Watson, Daniel Kim, Nae-Yuh Wang, Tariq Shafi, Harry A Silber, Panagis Galiatsatos, Kapil Parakh, Jennifer Monti, Sumeska Thavarajah, Harriet Aneke-Ogbu, Amaris Watson, Daniel Kim, Nae-Yuh Wang, Tariq Shafi, Harry A Silber

Abstract

Background: A noninvasive system for determining left ventricular (LV) filling pressure may help to improve personalized fluid removal goals in hemodialysis patients. We previously showed that the change in photoplethysmography (PPG) pulse amplitude measured by finger PPG during a Valsalva maneuver correlates with invasively measured left ventricular end-diastolic pressure (LVEDP). This key PPG change, the ratio of finger PPG pulse amplitude at end-Valsalva to baseline, is known as the Pulse Amplitude Ratio, PAR. The objective of this study was to determine how PAR changes after fluid removal in hemodialysis.

Methods: We tested subjects with end-stage renal disease, before and after hemodialysis. Each subject performed a Valsalva maneuver with an effort of 20 mmHg for 10 s, guided by the device display. Finger PPG was recorded continuously before and during the maneuver. PAR was calculated automatically.

Results: Twenty-seven subjects (21 Males) ages 25-75 years were tested. Access sites were AV-fistulas of the arm predominantly. Weight decreased from 99.7 ± 36.9 kg to 97.0 ± 6.0 kg (p < 0.0003) with an average fluid removal of 3.07 ± 1.08 l. Correspondingly, PAR decreased from 0.74 ± 0.24 to 0.62 ± 0.23 (p = 0.003). The change in PAR was correlated with baseline PAR (r = 0.48, p = 0.01).

Conclusion: An index of left heart filling pressure obtained noninvasively using finger photoplethysmography during the Valsalva maneuver is sensitive enough to detect reductions in filling pressure after fluid removal with hemodialysis. Further studies are warranted to determine if this method can be used to guide fluid removal during hemodialysis.

Figures

Fig. 1
Fig. 1
A typical photoplethysmography (PPG) waveform response during the Valsava maneuver: a Before hemodialysis and b After hemodialysis. Pulse amplitude ratio (PAR) is calculated as the pulse amplitude of the waveform at the end of 10 s of Valsalva (PAV) divided by the average pulse amplitude of several cycles at baseline (PAB). In this example, PAR = 0.81 before hemodialysis and PAR = 0.67 after hemodialysis. The automated algorithm acquiring the data allows a maximum of 3 s for the subject’s expiratory effort to equal or exceed 20 mmHg in order for the data to be accepted and stored
Fig. 2
Fig. 2
Bland-Altman plot of baseline Pulse Amplitude Ratio (PAR) measurements
Fig. 3
Fig. 3
Box plots of Pulse Amplitude Ratio (PAR) by finger photoplethysmography (PPG), before and after hemodialysis. PAR decreased after one session of dialysis

References

    1. Kalantar-Zadeh K, Regidor DL, Kovesdy CP, Van Wyck D, Bunnapradist S, Horwich TB, Fonarow GC. Fluid retention is associated with cardiovascular mortality in patients undergoing long-term hemodialysis. Circulation. 2009;119(5):671–9. doi: 10.1161/CIRCULATIONAHA.108.807362.
    1. Jager JQ, Mehta RL. Assessment of dry weight in hemodialysis: an overview. J Am Soc Nephrol. 1999;10:392–403.
    1. Parfrey PS, Foley RN, Harnett JD, Kent GM, Murray DC, Barre PE. Outcome and risk factors for left ventricular disorders in chronic uraemia. Nephrol Dial Transplant. 1996;11(7):1277–85. doi: 10.1093/ndt/11.7.1277.
    1. van Kraaij DJ, Schuurmans MM, Jansen RW, Hoefnagels WH, Go RI. Use of the Valsalva manoeuvre to identify haemodialysis patients at risk of congestive heart failure. Nephrol Dial Transplant. 1998;13(6):1518–23. doi: 10.1093/ndt/13.6.1518.
    1. Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM. Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol. 2015;26(3):724–34. doi: 10.1681/ASN.2014020222.
    1. Sands JJ, Usvyat LA, Sullivan T, Segal JH, Zabetakis P, Kotanko P, Maddux FW, Diaz-Buxo JA. Intradialytic hypotension: frequency, sources of variation and correlation with clinical outcome. Hemodial Int. 2014;18(2):415–22. doi: 10.1111/hdi.12138.
    1. Kim YK, Shin SJ, Ihm SH, Park CS, Kim HY, Hong TY, Song HC, Yang CW, Kim YS, Choi EJ. Longitudinal changes of left ventricular filling pressure and N-terminal pro-brain natriuretic peptide on chronic hemodialysis. Clin Nephrol. 2010;74(3):190–7. doi: 10.5414/CNP74190.
    1. Brennan JM, Ronan A, Goonewardena S, Blair JE, Hammes M, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT. Handcarried ultrasound measurement of the inferior vena cava for assessment of intravascular volume status in the outpatient hemodialysis clinic. Clin J Am Soc Nephrol. 2006;1(4):749–53. doi: 10.2215/CJN.00310106.
    1. Mallamaci F, Benedetto FA, Tripepi R, Rastelli S, Castellino P, Tripepi G, Picano E, Zoccali C. Detection of pulmonary congestion by chest ultrasound in dialysis patients. JACC Cardiovasc Imaging. 2010;3(6):586–94. doi: 10.1016/j.jcmg.2010.02.005.
    1. Cordtz J, Olde B, Solem K, Ladefoged SD. Central venous oxygen saturation and thoracic admittance during dialysis: new approaches to hemodynamic monitoring. Hemodial Int. 2008;12(3):369–77. doi: 10.1111/j.1542-4758.2008.00283.x.
    1. Davies SJ, Davenport A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014;86(3):489–96. doi: 10.1038/ki.2014.207.
    1. Sanders GP, Mendes LA, Colucci WS, Givertz MM. Noninvasive methods for detecting elevated left-sided cardiac filling pressure. J Card Fail. 2000;6(2):157–64. doi: 10.1016/S1071-9164(00)90018-6.
    1. Knowles JH, Gorlin R, Storey CF. Clinical test for pulmonary congestion with use of the Valsalva maneuver. J Am Med Assoc. 1956;160(1):44–8. doi: 10.1001/jama.1956.02960360046009a.
    1. Judson WE, Hatcher JD, Wilkins RW. Blood pressure responses to the Valsalva maneuver in cardiac patients with and without congestive failure. Circulation. 1955;11(6):889–99. doi: 10.1161/01.CIR.11.6.889.
    1. Zema MJ, Restivo B, Sos T, Sniderman KW, Kline S. Left ventricular dysfunction--bedside Valsalva manoeuvre. Br Heart J. 1980;44(5):560–9. doi: 10.1136/hrt.44.5.560.
    1. Felker GM, Cuculich PS, Gheorghiade M. The Valsalva maneuver: a bedside “biomarker” for heart failure. Am J Med. 2006;119(2):117–22. doi: 10.1016/j.amjmed.2005.06.059.
    1. Silber HA, Trost JC, Johnston PV, Maughan WL, Wang NY, Kasper EK, Aversano TR, Bush DE. Finger photoplethysmography during the Valsalva maneuver reflects left ventricular filling pressure. Am J Physiol Heart Circ Physiol. 2012;302(10):H2043–7. doi: 10.1152/ajpheart.00609.2011.
    1. Garcia MJ. Left ventricular filling. Heart Fail Clin. 2008;4(1):47–56. doi: 10.1016/j.hfc.2007.10.005.
    1. Schmidt DE, Shah PK. Accurate detection of elevated left ventricular filling pressure by a simplified bedside application of the Valsalva maneuver. Am J Cardiol. 1993;71(5):462–5. doi: 10.1016/0002-9149(93)90458-O.
    1. Fritsch-Yelle JM, Convertino VA, Schlegel TT. Acute manipulations of plasma volume alter arterial pressure responses during Valsalva maneuvers. J Appl Physiol (1985) 1999;86(6):1852–7.
    1. Bernardi L, Saviolo R, Spodick DH. Noninvasive assessment of central circulatory pressures by analysis of ear densitographic changes during the Valsalva maneuver. Am J Cardiol. 1989;64(12):787–92. doi: 10.1016/0002-9149(89)90766-2.
    1. McIntyre KM, Vita JA, Lambrew CT, Freeman J, Loscalzo J. A noninvasive method of predicting pulmonary-capillary wedge pressure. N Engl J Med. 1992;327(24):1715–20. doi: 10.1056/NEJM199212103272404.
    1. Remmen JJ, Aengevaeren WR, Verheugt FW, Jansen RW. Normal values of pulmonary capillary wedge pressure and the blood pressure response to the Valsalva manoeuvre in healthy elderly subjects. Clin Physiol Funct Imaging. 2005;25(6):318–26. doi: 10.1111/j.1475-097X.2005.00630.x.
    1. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30(6):1527–33. doi: 10.1016/S0735-1097(97)00344-6.
    1. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler catheterization study. Circulation. 2000;102:1788–1794. doi: 10.1161/01.CIR.102.15.1788.
    1. Basso F, Milan Manani S, Cruz DN, Teixeira C, Brendolan A, Nalesso F, Zanella M, Ronco C. Comparison and Reproducibility of Techniques for Fluid Status Assessment in Chronic Hemodialysis Patients. Cardiorenal Med. 2013;3(2):104–112. doi: 10.1159/000351008.

Source: PubMed

3
Abonneren