Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation

Günseli Çubukçuoğlu Deniz, Serkan Durdu, Yeşim Doğan, Esra Erdemli, Hilal Özdağ, Ahmet Ruchan Akar, Günseli Çubukçuoğlu Deniz, Serkan Durdu, Yeşim Doğan, Esra Erdemli, Hilal Özdağ, Ahmet Ruchan Akar

Abstract

Objectives: Transcriptomics of atrial fibrillation (AFib) in the setting of chronic primary mitral regurgitation (MR) remains to be characterized. We aimed to compare the gene expression profiles of patients with degenerative MR in AFib and sinus rhythm (SR) for a clearer picture of AFib pathophysiology.

Methods: After transcriptomic analysis and bioinformatics (n = 59), differentially expressed genes were defined using 1.5-fold change as the threshold. Additionally, independent datasets from GEO were included as meta-analyses.

Results: QRT-PCR analysis confirmed that AFib persistence was associated with increased expression molecular changes underlying a transition to heart failure (NPPB, P = 0.002; ANGPTL2, P = 0.002; IGFBP2, P = 0.010), structural remodeling including changes in the extracellular matrix and cellular stress response (COLQ, P = 0.003; COMP, P = 0.028; DHRS9, P = 0.038; CHGB, P = 0.038), and cellular stress response (DNAJA4, P = 0.038). Furthermore, AFib persistence was associated with decreased expression of the targets of structural remodeling (BMP7, P = 0.021) and electrical remodeling (CACNB2, P = 0.035; MCOLN3, P = 0.035) in both left and right atrial samples. The transmission electron microscopic analysis confirmed ultrastructural atrial remodeling and autophagy in human AFib atrial samples.

Conclusions: Atrial cardiomyocyte remodeling in persistent AFib is closely linked to alterations in gene expression profiles compared to SR in patients with primary MR. Study findings may lead to novel therapeutic targets. This trial is registered with ClinicalTrials.gov identifier: NCT00970034.

Conflict of interest statement

The authors declare no competing interests.

Copyright © 2021 Günseli Çubukçuoğlu Deniz et al.

Figures

Figure 1
Figure 1
Flow diagram of experimental design.
Figure 2
Figure 2
Overview of study steps and schematic representation of the study findings.
Figure 3
Figure 3
Hierarchical cluster analysis of gene expression microarrays of right and left atrial biopsies from AFib patients with primary mitral regurgitation compared to controls (S.R.). Heatmap shows the clusters how 178 differentially expressed genes separate all samples using 1.5-fold change as the threshold. Consequential 178 differentially expressed genes outcome from comparing gene expression profiles between AFib vs. S.R. of all atria tissues and separate AFib samples from S.R. samples with 85% success. Columns represent samples, and rows represent differentially expressed genes. As can be seen on the color bar, red indicates increased gene expression, and green indicates decreased gene expression. Heat and intensity of red or green color appear according to the fold-change.
Figure 4
Figure 4
Electron micrograph of human atrial tissues. (a) Normal nucleus, typical striated myofilaments, and scattered mitochondria in a longitudinal section of the SR atrial sample. Scale bar: 2500 nm. (b) Lipofuscin accumulation, striated myofibrils, and mitochondria in the longitudinal section of the AFib atrial sample. Scale bar: 1000 nm. (c) Cross-section of the cardiac cell of SR atrial sample mitochondria and myofilaments is arranged around the nucleus. Scale bar: 2500 nm. (d) At the same magnification of the cardiac cell of AFib atrial sample in cross-section, shrinkage of the cell. Scale bar: 2500 nm. (e) Large vacuoles, myofilaments, and mitochondria clusters in condensed cytoplasm in AFib atrial sample. Scale bar: 1000 nm. (f) Lipofuscin accumulations gathered mitochondria and myofilaments in shrinkage cells in AFib atrial sample. Scale bar: 1000 nm. N: nucleus; nc: nucleolus; V: vacuole; lp: lipofuscin accumulations; m: mitochondria; mf: myofilaments.
Figure 5
Figure 5
Differentially expressed genes in LAA tissues of AFib vs. SR (fold change > 1.5; P < 0.05) and ultrastructural changes. As can be seen on the color bar, red indicates increased gene expression, and green indicates decreased gene expression.

References

    1. Schnabel R. B., Yin X., Gona P., et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. The Lancet. 2015;386(9989):154–162. doi: 10.1016/S0140-6736(14)61774-8.
    1. Chugh S. S., Havmoeller R., Narayanan K., et al. Worldwide epidemiology of atrial Fibrillation. Circulation. 2014;129(8):837–847. doi: 10.1161/CIRCULATIONAHA.113.005119.
    1. Nattel S., Burstein B., Dobrev D. Atrial remodeling and atrial Fibrillation. Circulation. Arrhythmia and Electrophysiology. 2008;1(1):62–73. doi: 10.1161/CIRCEP.107.754564.
    1. Roselli C., Chaffin M. D., Weng L.-C., et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics. 2018;50(9):1225–1233. doi: 10.1038/s41588-018-0133-9.
    1. Nattel S., Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. Journal of the American College of Cardiology. 2014;63(22):2335–2345. doi: 10.1016/j.jacc.2014.02.555.
    1. Pellman J., Sheikh F. Atrial fibrillation: mechanisms, therapeutics, and future directions. Comprehensive Physiology. 2015;5:649–665. doi: 10.1002/cphy.c140047.
    1. Dobrev D., Carlsson L., Nattel S. Novel molecular targets for atrial fibrillation therapy. Nature Reviews. Drug Discovery. 2012;11(4):275–291. doi: 10.1038/nrd3682.
    1. Deshmukh A., Barnard J., Sun H., et al. Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circulation. Arrhythmia and Electrophysiology. 2015;8(1):32–41. doi: 10.1161/CIRCEP.114.001632.
    1. Lamirault G., Gaborit N., le Meur N., et al. Gene expression profile associated with chronic atrial fibrillation and underlying valvular heart disease in man. Journal of Molecular and Cellular Cardiology. 2006;40(1):173–184. doi: 10.1016/j.yjmcc.2005.09.004.
    1. Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC: Clinical Electrophysiology. 2017;3(5):425–435. doi: 10.1016/j.jacep.2017.03.002.
    1. Kahr P. C., Piccini I., Fabritz L., et al. Systematic analysis of gene expression differences between left and right atria in different mouse strains and in human atrial tissue. PLoS One. 2011;6(10, article E26389) doi: 10.1371/journal.pone.0026389.
    1. Tsai F.-C., Lin Y., Chang S., et al. Differential left-to-right atria gene expression ratio in human sinus rhythm and atrial fibrillation: implications for arrhythmogenesis and thrombogenesis. International Journal of Cardiology. 2016;222:104–112. doi: 10.1016/j.ijcard.2016.07.103.
    1. Barth A. S., Merk S., Arnoldi E., et al. Reprogramming of the human atrial transcriptome in permanent atrial Fibrillation. Circulation Research. 2005;96(9):1022–1029. doi: 10.1161/01.RES.0000165480.82737.33.
    1. Yeh Y., Kuo C., Lee Y., et al. Region-specific gene expression profiles in the left atria of patients with valvular atrial fibrillation. Heart Rhythm. 2013;10(3):383–391. doi: 10.1016/j.hrthm.2012.11.013.
    1. Benjamini Y., Cohen R. Weighted false discovery rate controlling procedures for clinical trials. Biostatistics. 2017;18(1):91–104. doi: 10.1093/biostatistics/kxw030.
    1. Wang J., Duncan D., Shi Z., Zhang B. Web-based gene set analysis toolkit (Webgestalt): update 2013. Nucleic Acids Research. 2013;41(W1):W77–W83. doi: 10.1093/nar/gkt439.
    1. Tan S., Carr C. A., Yeoh K. K., Schofield C. J., Davies K. E., Clarke K. Identification of valid housekeeping genes for quantitative RT-PCR analysis of cardiosphere-derived cells preconditioned under hypoxia or with prolyl-4-hydroxylase inhibitors. Molecular Biology Reports. 2012;39(4):4857–4867. doi: 10.1007/s11033-011-1281-5.
    1. Livak K. J., Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔ_C_T Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. Liu H., Chen G., Zheng H., et al. Differences in atrial fibrillation-associated proteins between the left and right atrial appendages from patients with rheumatic mitral valve disease: a comparative proteomic analysis. Molecular Medicine Reports. 2016;14(5):4232–4242. doi: 10.3892/mmr.2016.5776.
    1. Modrego J., Maroto L., Tamargo J., et al. Comparative expression of proteins in left and right atrial appendages from patients with mitral valve disease at sinus rhythm and atrial fibrillation. Journal of Cardiovascular Electrophysiology. 2010;21:859–868. doi: 10.1111/j.1540-8167.2010.01718.x.
    1. Pourafkari L., Seyedhosseini S., Kazemi B., Esmaili H., Aslanabadi N. Changes in serum NT-pro BNP and left atrial BNP levels after percutaneous transvenous mitral commissurotomy in sinus rhythm versus atrial firilation. Journal of Cardiovascular and Thoracic Research. 2014;6(3):175–179. doi: 10.15171/jcvtr.2014.007.
    1. Yanagisawa S., Inden Y., Kato H., et al. Decrease in B-type natriuretic peptide levels and successful catheter ablation for atrial fibrillation in patients with heart failure. Pacing and Clinical Electrophysiology. 2016;39(3):225–234. doi: 10.1111/pace.12788.
    1. Ho J. E., Lyass A., Courchesne P., et al. Protein biomarkers of cardiovascular disease and mortality in the community. Journal of the American Heart Association. 2018;7(14) doi: 10.1161/JAHA.117.008108.
    1. Cañón S., Caballero R., Herraiz-Martínez A., et al. Mir-208b upregulation interferes with calcium handling in Hl-1 atrial myocytes: implications in human chronic atrial fibrillation. Journal of Molecular and Cellular Cardiology. 2016;99:162–173. doi: 10.1016/j.yjmcc.2016.08.012.
    1. Ling T.-Y., Wang X., Chai Q., et al. Regulation of cardiac CACNB2 by microRNA-499: potential role in atrial fibrillation. Bba Clinical. 2017;7:78–84. doi: 10.1016/j.bbacli.2017.02.002.
    1. Molina-Navarro M. M., Roselló-Lletí E., Ortega A., et al. Differential gene expression of cardiac ion channels in human dilated cardiomyopathy. PLoS One. 2013;8(12, article E79792) doi: 10.1371/journal.pone.0079792.
    1. Beetz N., Hein L., Meszaros J., et al. Transgenic simulation of human heart failure-like L-type Ca2+-channels: implications for fibrosis and heart rate in mice. Cardiovascular Research. 2009;84(3):396–406. doi: 10.1093/cvr/cvp251.
    1. Lelouvier B., Puertollano R. Mucolipin-3 Regulates Luminal Calcium, Acidification, and Membrane Fusion in the Endosomal Pathway. The Journal of Biological Chemistry. 2011;286(11):9826–9832. doi: 10.1074/jbc.M110.169185.
    1. Garcia L., Verdejo H. E., Kuzmicic J., et al. Impaired cardiac autophagy in patients developing postoperative atrial fibrillation. The Journal of Thoracic and Cardiovascular Surgery. 2012;143(2):451–459.e1. doi: 10.1016/j.jtcvs.2011.07.056.
    1. Wiersma M., Meijering R. A. M., Qi X. Y., et al. Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation. Journal of the American Heart Association. 2017;6(10):p. 6. doi: 10.1161/JAHA.117.006458.
    1. Wk O., Pc N. Netter’s Essential Histology. London, United Kingdom: Elseiver Saunders; 2013.
    1. Brundel B. J. J. M., Shiroshita-Takeshita A., Qi X., et al. Induction of heat shock response protects the heart against atrial fibrillation. Circulation Research. 2006;99(12):1394–1402. doi: 10.1161/01.RES.0000252323.83137.fe.
    1. Li X. Y., Hou H., Chen H. X., et al. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. The Journal of Thoracic and Cardiovascular Surgery. 2021;162(3):851–863.e3. doi: 10.1016/j.jtcvs.2020.01.079.

Source: PubMed

3
Abonneren