Cysteine-Rich Angiogenic Inducer 61 Improves Prognostic Accuracy of GRACE (Global Registry of Acute Coronary Events) 2.0 Risk Score in Patients With Acute Coronary Syndromes

Roland Klingenberg, Soheila Aghlmandi, Lorenz Räber, Alexander Akhmedov, Baris Gencer, David Carballo, David Nanchen, Heiner C Bucher, Nicolas Rodondi, François Mach, Stephan Windecker, Ulf Landmesser, Arnold von Eckardstein, Christian W Hamm, Thomas F Lüscher, Christian M Matter, Roland Klingenberg, Soheila Aghlmandi, Lorenz Räber, Alexander Akhmedov, Baris Gencer, David Carballo, David Nanchen, Heiner C Bucher, Nicolas Rodondi, François Mach, Stephan Windecker, Ulf Landmesser, Arnold von Eckardstein, Christian W Hamm, Thomas F Lüscher, Christian M Matter

Abstract

Background It remains unclear whether the novel biomarker cysteine-rich angiogenic inducer 61 (CCN1) adds incremental prognostic value to the GRACE 2.0 (Global Registry of Acute Coronary Events) risk score and biomarkers high-sensitivity Troponin T, hsCRP (high-sensitivity C-reactive protein), and NT-proBNP (N-terminal pro-B-type natriuretic peptide) in patients with acute coronary syndromes. Methods and Results Patients referred for coronary angiography with a primary diagnosis of acute coronary syndromes were enrolled in the Special Program University Medicine - Acute Coronary Syndromes and Inflammation cohort. The primary/secondary end points were 30-day/1-year all-cause mortality and the composite of all-cause mortality or myocardial infarction as used in the GRACE risk score. Associations between biomarkers and outcome were assessed using log-transformed biomarker values and the GRACE risk score (versions 1.0 and 2.0). The incremental value of CCN1 beyond a reference model was assessed using Harrell's C-statistics calculated from a Cox proportional-hazard model. The P value of the C-statistics was derived from a likelihood ratio test. Among 2168 patients recruited, 1732 could be analyzed. CCN1 was the strongest single predictor of all-cause mortality at 30 days (hazard ratio [HR], 1.77 [1.31, 2.40]) and 1 year (HR, 1.81 [1.47, 2.22]). Adding CCN1 alone to the GRACE 2.0 risk score improved C-statistics for prognostic accuracy of all-cause mortality at 30 days (0.87-0.88) and 1 year (0.81-0.82) and when combined with high-sensitivity Troponin T, hsCRP, NT-proBNP for 30 days (0.87-0.91), and for 1-year follow-up (0.81-0.84). CCN1 also increased the prognostic value for the composite of all-cause mortality or myocardial infarction. Conclusions CCN1 predicts adverse outcomes in patients with acute coronary syndromes adding incremental information to the GRACE risk score, suggesting distinct underlying molecular mechanisms. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT01000701.

Keywords: acute coronary syndrome; biomarkers; inflammation; risk.

Conflict of interest statement

The authors have no conflicts of interest to report beyond the stated funding institutions and companies.

Figures

Figure 1. Flow diagram.
Figure 1. Flow diagram.
The flow diagram shows patient enrollment and follow‐up throughout the study. T1 signifies blood drawn performed at coronary angiography. ACS indicates acute coronary syndromes; CCN1, cysteine‐rich angiogenic inducer 61; hsCRP, high‐sensitivity C‐reactive protein; hsTnT, high‐sensitivity Troponin T; and NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide.
Figure 2. Forrest plot illustration of the…
Figure 2. Forrest plot illustration of the relative prognostic accuracy of GRACE risk scores (version 1.0 in blue color and 2.0 in red color) and biomarkers for short‐term (A and B) and long‐term (C and D) adverse outcomes (n=1732).
For GRACE 2.0 scores, and the biomarkers, natural logarithm was used, and hazard ratios were reported per 1 log‐unit increase. CCN1 indicates cysteine‐rich angiogenic inducer 61; GRACE, Global Registry of Acute Coronary Events; hsCRP, high‐sensitivity C‐reactive protein; hsTnT, high‐sensitivity Troponin T; MI, myocardial infarction; and NT‐proBNP, N‐terminal pro‐B‐type natriuretic peptide.

References

    1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37:3232–3245. DOI: 10.1093/eurheartj/ehw334.
    1. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368:2004–2013. DOI: 10.1056/NEJMra1216063.
    1. Klingenberg R, Aghlmandi S, Liebetrau C, Räber L, Gencer B, Nanchen D, Carballo D, Akhmedov A, Montecucco F, Zoller S, et al. Cysteine‐rich angiogenic inducer 61 (cyr61): a novel soluble biomarker of acute myocardial injury improves risk stratification after acute coronary syndromes. Eur Heart J. 2017;38:3493–3502. DOI: 10.1093/eurheartj/ehx640.
    1. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, et al. Management of Acute Coronary Syndromes in Patients Presenting without Persistent STSEotESoC . 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST‐segment elevation of the european society of cardiology (ESC). Eur Heart J. 2015;2016(37):267–315. DOI: 10.1093/eurheartj/ehv320.
    1. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli‐Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST‐segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST‐segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39:119–177. DOI: 10.1093/eurheartj/ehx393.
    1. O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA , Ettinger SM, Fang JC, Fesmire FM, Franklin BA, et al. 2013 ACCF/AHA guideline for the management of ST‐elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;61:485–510. DOI: 10.1016/j.jacc.2012.11.018.
    1. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, Jaffe AS, Jneid H, Kelly RF, Kontos MC, et al. 2014 AHA/ACC guideline for the management of patients with non‐ST‐elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;130:2354–2394. DOI: 10.1161/CIR.0000000000000133.
    1. Klingenberg R, Aghlmandi S, Räber L, Gencer B, Nanchen D, Heg D, Carballo S, Rodondi N, Mach F, Windecker S, et al. Improved risk stratification of patients with acute coronary syndromes using a combination of hsTnT, NT‐proBNP and hsCRP with the GRACE score. Eur Heart J Acute Cardiovasc Care. 2018;7:129–138. DOI: 10.1177/2048872616684678.
    1. Fox KA, FitzGerald G, Puymirat E, Huang W, Carruthers K, Simon T, Coste P, Monsegu J, Gabriel Steg P, Danchin N, et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated grace risk score. BMJ Open. 2014;4:e004425. DOI: 10.1136/bmjopen-2013-004425.
    1. Perbal B, Tweedie S, Bruford E. The official unified nomenclature adopted by the hgnc calls for the use of the acronyms, CCN1–6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1–3 respectively. J Cell Commun Signal. 2018;12:625–629. DOI: 10.1007/s12079-018-0491-1.
    1. Jun JI, Lau LF. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov. 2011;10:945–963. DOI: 10.1038/nrd3599.
    1. Hinkel R, Trenkwalder T, Petersen B, Husada W, Gesenhues F, Lee S, Hannappel E, Bock‐Marquette I, Theisen D, Leitner L, et al. MRTF‐A controls vessel growth and maturation by increasing the expression of CCN1 and CCN2. Nat Commun. 2014;5:3970. DOI: 10.1038/ncomms4970.
    1. Jun JI, Kim KH, Lau LF. The matricellular protein CCN1 mediates neutrophil efferocytosis in cutaneous wound healing. Nat Commun. 2015;6:7386. DOI: 10.1038/ncomms8386.
    1. Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12:676–685. DOI: 10.1038/ncb2070.
    1. Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A. Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol. 2016;67:2018–2028. DOI: 10.1016/j.jacc.2016.02.047.
    1. Granger CB, Goldberg RJ, Dabbous O, Pieper KS, Eagle KA, Cannon CP, Van de Werf F, Avezum A, Goodman SG, Flather MD, et al. Predictors of hospital mortality in the global registry of acute coronary events. Arch Intern Med. 2003;163:2345–2353. DOI: 10.1001/archinte.163.19.2345.
    1. Eagle KA, Lim MJ, Dabbous OH, Pieper KS, Goldberg RJ, Van de Werf F, Goodman SG, Granger CB, Steg PG, Gore JM, et al. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6‐month postdischarge death in an international registry. JAMA. 2004;291:2727–2733. DOI: 10.1001/jama.291.22.2727.
    1. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–1931. DOI: 10.1093/eurheartj/ehu207.
    1. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–172. discussion 207–112. DOI: 10.1002/sim.2929.
    1. Kvisvik B, Morkrid L, Rosjo H, Cvancarova M, Rowe AD, Eek C, Bendz B, Edvardsen T, Gravning J. High‐sensitivity troponin T vs I in acute coronary syndrome: prediction of significant coronary lesions and long‐term prognosis. Clin Chem. 2017;63:552–562. DOI: 10.1373/clinchem.2016.261107.
    1. Lindholm D, James SK, Bertilsson M, Becker RC, Cannon CP, Giannitsis E, Harrington RA, Himmelmann A, Kontny F, Siegbahn A, et al. Biomarkers and coronary lesions predict outcomes after revascularization in non‐ST‐elevation acute coronary syndrome. Clin Chem. 2017;63:573–584. DOI: 10.1373/clinchem.2016.261271.
    1. Widera C, Pencina MJ, Bobadilla M, Reimann I, Guba‐Quint A, Marquardt I, Bethmann K, Korf‐Klingebiel M, Kempf T, Lichtinghagen R, et al. Incremental prognostic value of biomarkers beyond the GRACE (Global Registry of Acute Coronary Events) score and high‐sensitivity cardiac troponin T in non‐ST‐elevation acute coronary syndrome. Clin Chem. 2013;59:1497–1505. DOI: 10.1373/clinchem.2013.206185.
    1. Scirica BM, Sabatine MS, Jarolim P, Murphy SA, de Lemos JL , Braunwald E, Morrow DA. Assessment of multiple cardiac biomarkers in non‐ST‐segment elevation acute coronary syndromes: observations from the MERLIN‐TIMI 36 Trial. Eur Heart J. 2011;32:697–705. DOI: 10.1093/eurheartj/ehq468.
    1. Chew DP, Hyun K, Morton E, Horsfall M, Hillis GS, Chow CK, Quinn S, D’Souza M, Yan AT, Gale CP, et al. Objective risk assessment vs standard care for acute coronary syndromes: a randomized clinical trial. JAMA Cardiol. 2021;6:304–313. DOI: 10.1001/jamacardio.2020.6314.
    1. Harrington RA, Ohman EM. Risk stratification science goes to a new level. JAMA Cardiol. 2021;6:314–315. DOI: 10.1001/jamacardio.2020.6325.
    1. Chan MY, Neely ML, Roe MT, Goodman SG, Erlinge D, Cornel JH, Winters KJ, Jakubowski JA, Zhou C, Fox KAA, et al. Temporal biomarker profiling reveals longitudinal changes in risk of death or myocardial infarction in non‐ST‐segment elevation acute coronary syndrome. Clin Chem. 2017;63:1214–1226. DOI: 10.1373/clinchem.2016.265272.

Source: PubMed

3
Abonneren