Evening chronotype is associated with changes in eating behavior, more sleep apnea, and increased stress hormones in short sleeping obese individuals

Eliane A Lucassen, Xiongce Zhao, Kristina I Rother, Megan S Mattingly, Amber B Courville, Lilian de Jonge, Gyorgy Csako, Giovanni Cizza, Sleep Extension Study Group, Eliane A Lucassen, Xiongce Zhao, Kristina I Rother, Megan S Mattingly, Amber B Courville, Lilian de Jonge, Gyorgy Csako, Giovanni Cizza, Sleep Extension Study Group

Abstract

Background: Short sleep duration and decreased sleep quality are emerging risk factors for obesity and its associated morbidities. Chronotype, an attribute that reflects individual preferences in the timing of sleep and other behaviors, is a continuum from morningness to eveningness. The importance of chronotype in relation to obesity is mostly unknown. Evening types tend to have unhealthy eating habits and suffer from psychological problems more frequently than Morning types, thus we hypothesized that eveningness may affect health parameters in a cohort of obese individuals reporting sleeping less than 6.5 hours per night.

Methodology and principal findings: BASELINE DATA FROM OBESE (BMI: 38.5±6.4 kg/m(2)) and short sleeping (5.8±0.8 h/night by actigraphy) participants (n = 119) of the Sleep Extension Study were analyzed (www.ClinicalTrials.gov, identifier NCT00261898). Assessments included the Horne and Ostberg Morningness-Eveningness questionnaire, a three-day dietary intake diary, a 14-day sleep diary, 14 days of actigraphy, and measurements of sleep apnea. Twenty-four hour urinary free cortisol, 24 h urinary norepinephrine and epinephrine levels, morning plasma ACTH and serum cortisol, fasting glucose and insulin, and lipid parameters were determined. Eveningness was associated with eating later in the day on both working and non-working days. Progression towards eveningness was associated with an increase in BMI, resting heart rate, food portion size, and a decrease in the number of eating occasions and HDL-cholesterol. Evening types had overtly higher 24 h urinary epinephrine and morning plasma ACTH levels, and higher morning resting heart rate than Morning types. In addition, Evening types more often had sleep apnea, independent of BMI or neck circumference.

Conclusions: Eveningness was associated with eating later and a tendency towards fewer and larger meals and lower HDL-cholesterol levels. In addition, Evening types had more sleep apnea and higher stress hormones. Thus, eveningness in obese, chronically sleep-deprived individuals compounds the cardiovascular risk associated with obesity.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Sleep characteristics per chronotype.
Figure 1. Sleep characteristics per chronotype.
Horizontal bars represent sleep time as measured by actigraphy. Bedtime (mean±SD) and risetime (mean±SD) on all days combined and separately on non-working days and on work days in Morning (grey bars) and Evening types (black bars). The mid-sleep times (MSTs) (mean±SD) are depicted by open diamonds and compared between chronotypes by t-tests.
Figure 2. Pattern and timing of food…
Figure 2. Pattern and timing of food intake vs. chronotype score.
Plot of chronotype scores versus the number of eating occasions (A), the portion size (B), and the amount of caloric intake after 20∶00 (C) with a trend line, respectively. N = 113 for all. R2, slope, and p-value for the prediction of chronotype score on food intake variables in each plot are calculated from gender-corrected models. Closed circles represent women, open diamonds represent men.
Figure 3. Anthropometrics and HDL-C vs. chronotype…
Figure 3. Anthropometrics and HDL-C vs. chronotype score.
Plot of Chronotype scores versus BMI (A), neck circumference (B), and HDL-C (C) with a trend line, respectively. N = 119 for all. R2 slope, and p-value for the prediction of chronotype score on variables in each plot are calculated from gender-corrected models. Closed circles represent women, open diamonds represent men.
Figure 4. Stress hormones and heart rate…
Figure 4. Stress hormones and heart rate vs. chronotype score.
Chronotype scores on the horizontal axis are regressed against plasma ACTH (n = 118; A), 24 h urinary epinephrine (n = 110; B) and norepinephrine (n = 114; C), and resting heart rate (n = 113; D). R2 for the gender-corrected model is reported, and slope and p-value for the prediction of chronotype score on variables in the model are given. Closed circles represent women, open diamonds represent men.

References

    1. Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence and trends in obesity in the distribution of body mass index among US adults, 1999–2010. JAMA 307: 491–497.
    1. Cizza G, Rother KI (2012) Beyond fast food and slow motion: weighty contributors to the obesity epidemic. J Endocrinol Invest. 35: 236–242.
    1. Cizza G, Skarulis M, Mignot E (2005) A link between short sleep and obesity: building the evidence for causation. Sleep 28: 1217–1220.
    1. Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol 22: 939–943.
    1. Vink JM, Groot AS, Kerkhof GA, Boomsma DI (2001) Genetic analysis of morningness and eveningness. Chronobiol Int 18: 809–822.
    1. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, et al. (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11: 429–438.
    1. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4: 97–110.
    1. Mongrain V, Carrier J, Dumont M (2005) Chronotype and sex effects on sleep architecture and quantitative sleep EEG in healthy young adults. Sleep 28: 819–827.
    1. Pabst SR, Negriff S, Dorn LD, Susman EJ, Huang B (2009) Depression and anxiety in adolescent females: the impact of sleep preference and body mass index. J Adoles Health 44: 554–560.
    1. Roeser K, Obergfell F, Meule A, Vögele C, Schlarb AA, et al. (2012) Of larks and hearts–morningness/eveningness, heart rate variability and cardiovascular stress response at different times of day. Physiol Behav 106: 151–157.
    1. Schubert E, Randler C (2008) Association between chronotype and the constructs of the Three-Factor-Eating-Questionnaire. Appetite 51: 501–555.
    1. Sato-Mito N, Shibata S, Sasaki S, Sato K (2011) Dietary intake is associated with human chronotype as assessed by morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int J Food Sci Nutr 62: 525–532.
    1. Meijer JH, Colwell CS, Rohling JH, Houben T, Michel S (2012) Dynamic neuronal network organization of the circadian clock and possible deterioration in disease. Prog Brain Res 199: 143–162.
    1. Lack L, Bailey M, Lovato, Wright H (2009) Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat Sci Sleep 1: 1–8.
    1. Cizza G, Marincola P, Mattingly M, Williams L, Mitler M, et al. (2010) Treatment of obesity with extension of sleep duration: a randomized, prospective, controlled trial. Clin Trials 7: 274–285.
    1. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28: 193–213.
    1. Johns MW (1991) A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep 14: 540–545.
    1. Westbrook PR, Levendowski DJ, Cvetinovic M, Zavora T, Velimirovic V, et al. (2005) Description and validation of the apnea risk evaluation system: a novel method to diagnose sleep apnea-hypopnea in the home. Chest 128: 2166–2175.
    1. Ayappa I, Norman RG, Seelall V, Rapoport DM (2008) Validation of a self-applied unattended monitor for sleep disordered breathing. J Clin Sleep Med 4: 26–37.
    1. Natale V, Cicogna P (2002) Morningness-eveningness dimension: is it really a continuum? Pers. Individ. Diff 32: 809–816.
    1. Lichstein KL, Stone KC, Donaldson J, Nau SD, Soeffing JP, et al. (2006) Actigraphy validation with insomnia. Sleep 29: 232–239.
    1. Schakel SF (2001) Maintaining a nutrient database in a changing marketplace: Keeping pace with changing food products - A research perspective. J Food Comp Anal 14: 315–322.
    1. Kant AK, Schatzkin A, Graubard BI, Ballard-Barbash R (1995) Frequency of eating occasions and weight change in the NHANES I Epidemiologic Follow-up Study. Int J Obes Relat Metab Disord 19: 468–474.
    1. Smeets AJ, Westerterp-Plantenga MS (2008) Acute effects on metabolism and appetite profile of one meal difference in the lower range of meal frequency. Br J Nutr 99: 1316–1321.
    1. Chapelot D, Marmonier C, Aubert R, Allègre C, Gausseres N, et al. (2006) Consequence of omitting or adding a meal in man on body composition, food intake, and metabolism. Obesity (Silver Spring) 14: 215–227.
    1. Baron KG, Reid KJ, Kern AS, Zee PC (2011) Role of sleep timing in caloric intake and BMI. Obesity (Silver Spring) 19: 1347–1381.
    1. Keim NL, Van Loan MD, Horn WF, Barbieri TF, Mayclin PL (1997) Weight loss is greater with consumption of large morning meals and fat-free mass is preserved with large evening meals in women on a controlled weight reduction regimen. J Nutr 127: 75–82.
    1. de Castro JM (2004) The time of day of food intake influences overall intake in humans. J Nutr 134: 104–111.
    1. Brennan IM, Luscombe-Marsh ND, Seimon RV, Otto B, Horowitz M, et al. (2012) Effects of fat, protein, and carbohydrate, and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am J Physiol Gastrointest Liver Physiol 303: G129–140.
    1. Kanerva N, Kronholm E, Partonen T, Ovaskainen ML, Kaartinen NE, et al. (2012) Tendency toward eveningness is associated with unhealthy dietary habits. Chronobiol Int 29: 920–927.
    1. Garaulet M, Esteban Tardido A, Lee YC, Smith CE, Parnell LD, et al. (2007) SIRT1 and CLOCK 3111T>C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Sleep Med Rev 11: 429–438.
    1. Merikanto I, Kronholm E, Peltonen M, Laatikainen T, Lahti T, et al. (2012) Relation of chronotype to sleep complaints in the general Finnish population. Chronobiol Int 29: 311–317.
    1. Martin JS, Hébert M, Ledoux E, Gaudreault M, Laberge L (2012 ) Relationship of chronotype to sleep, light exposure, and work-related fatigue in student workers. Chronobiol Int 3: 295–304.
    1. Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, et al. (2011) Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab 96: E463–472.
    1. van Oosterhout F, Lucassen EA, Houben T, vanderLeest HT, Antle MC, et al. (2012) Amplitude of the SCN clock enhanced by the behavioral activity rhythm. PLoS One 7: e39693.
    1. Randler C, Kretz S (2011) Assortative mating in morningness-eveningness. Int J Psychol 46: 91–96.
    1. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, et al. (2009) Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49: 868–913.
    1. Roeser K, Obergfell F, Meule A, Vögele C, Schlarb AA, et al. (2012) Of larks and hearts–morningness/eveningness, heart rate variability and cardiovascular stress response at different times of day. Physiol Behav 106: 151–157.
    1. Lucassen EA, Cizza G (2012) The hypothalamic-pituitary-adrenal axis, obesity, and chronic stress exposure: sleep and the HPA axis in obesity. Curr Obes Rep 1: 208–215.
    1. Henley DE, Russell GM, Douthwaite JA, Wood SA, Buchanan F, et al. (2009) Hypothalamic-pituitary-adrenal axis activation in obstructive sleep apnea: the effect of continuous positive airway pressure therapy. J Clin Endocrinol Metab 94: 4234–4242.
    1. Fletcher EC (2003) Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep 26: 15–19.
    1. Pack AI, Cola MF, Goldszmidt A, Ogilvie MD, Gottschalk A (1992) Correlation between oscillations in ventilation and frequency content of the electroencephalogram. J Appl Physiol 72: 985–992.
    1. Coffee JC (2006) Is chronic hyperventilation syndrome a risk factor for sleep apnea? Part 1. Journal of Bodywork and Movement Therapies 10: 134–146.
    1. Paine SJ, Gander PH, Travier N (2006) The epidemiology of morningness/eveningness: influence of age, gender, ethnicity and socioeconomic factors in adults (30–49 years). J Biol Rhythms 21: 68–76.
    1. Taillard J, Philip P, Chastang JF, Bioulac B (2004) Validation of Horne and Ostberg morningness-eveningness questionnaire in a middle-aged population of French workers. J Biol Rhythms 19: 76–86.
    1. Hur YM (2007) Stability of genetic influence on morningness-eveningness: a cross-sectional examination of South Korean twins from preadolescence to young adulthood. J Sleep Res 16: 17–23.
    1. Cizza G, Requena M, Galli G, de Jonge L (2011) Chronic sleep deprivation and seasonality: implications for the obesity epidemic. J Endocrinol Invest 34: 793–800.
    1. Kantermann T, Forstner S, Halle M, Schlangen L, Roenneberg T, et al. (2012) The stimulating effect of bright light on physical performance depends on internal time. PLoS One 7: e40655.
    1. Iranmanesh A, Lizarralde G, Short D, Veldhuis JD (1990) Intensive venous sampling paradigms disclose high frequency adrenocorticotropin release episodes in normal men. J Clin Endocrinol Metab 71: 1276–1283.
    1. Toth P (2005) The “good cholesterol” high-density lipoprotein. Circulation 111: e89–e91.

Source: PubMed

3
Abonneren