Evaluation of the mechanisms of sarcopenia in chronic inflammatory disease: protocol for a prospective cohort study

Amritpal Dhaliwal, Felicity R Williams, Jonathan I Quinlan, Sophie L Allen, Carolyn Greig, Andrew Filer, Karim Raza, Subrata Ghosh, Gareth G Lavery, Philip N Newsome, Surabhi Choudhary, Leigh Breen, Matthew J Armstrong, Ahmed M Elsharkawy, Janet M Lord, Amritpal Dhaliwal, Felicity R Williams, Jonathan I Quinlan, Sophie L Allen, Carolyn Greig, Andrew Filer, Karim Raza, Subrata Ghosh, Gareth G Lavery, Philip N Newsome, Surabhi Choudhary, Leigh Breen, Matthew J Armstrong, Ahmed M Elsharkawy, Janet M Lord

Abstract

Background: Several chronic inflammatory diseases co-exist with and accelerate sarcopenia (reduction in muscle strength, function and mass) and negatively impact on both morbidity and mortality. There is currently limited research on the extent of sarcopenia in such conditions, how to accurately assess it and whether there are generic or disease-specific mechanisms driving sarcopenia. Therefore, this study aims to identify potential mechanisms driving sarcopenia within chronic inflammatory disease via a multi-modal approach; in an attempt to help define potential interventions for future use.

Methods: This prospective cohort study will consist of a multi-modal assessment of sarcopenia and its underlying mechanisms. Recruitment will target three chronic inflammatory diseases: chronic liver disease (CLD) (n=50), with a subset of NAFLD (n=20), inflammatory bowel disease (IBD) (n=50) and rheumatoid arthritis (RA) (n=50) both before and after therapeutic intervention. In addition, 20 age and sex matched healthy individuals will be recruited for comparison. Participants will undergo 4 assessment visits at weeks 0, 2, 12 and 24. Visits will consist of the following assessments: blood tests, anthropometrics, functional assessment, quadriceps muscle imaging, actigraphy, quality of life questionnaires, food diary collection and muscle biopsy of the vastus lateralis (at weeks 2 and 24 only). In addition, stool and urine samples will be collected for future microbiome and metabolomics analysis.

Discussion: This is the first study to use a multi-modal assessment model to phenotype sarcopenia in these chronic inflammatory diseases. We hope to identify generic as well as disease-specific mechanisms driving sarcopenia. We appreciate that these cohorts do require separate standards of care treatments which limit comparison between groups.

Ethics and dissemination: The study is approved by the Health Research Authority - West Midlands Solihull Research Ethics Service Committee Authority (REC reference: 18/WM/0167). Recruitment commenced in January 2019 and will continue until July 2021. The study was halted in March 2020 and again in January 2021 with the COVID-19 pandemic. The findings will be disseminated through peer-reviewed publications and conference presentations. All data will be stored on a secure server.

Trial registration: ClinicalTrials.gov Identifier: NCT04734496.

Keywords: Chronic liver disease; Inflammatory arthritis; Inflammatory bowel disease; Sarcopenia.

Conflict of interest statement

The authors declare they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Flow chart to summarise each visit and time point of the study and the assessments performed

References

    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis—report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.
    1. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154(3):557–568.
    1. Taillandier D, Polge C. Skeletal muscle atrogenes: From rodent models to human pathologies. Biochimie. 2019;166:251–269.
    1. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119(6):526.e9–526.17.
    1. Morgan SA, Hassan-Smith ZK, Doig CL, Sherlock M, Stewart PM, Lavery GG. Glucocorticoids and 11β-HSD1 are major regulators of intramyocellular protein metabolism. J Endocrinol. 2016;229(3):277–286.
    1. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun. 2003;300(4):965–971.
    1. Cederholm T, Barazzoni R, Austin P, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. 2017;36(1):49–64.
    1. European Association for the Study of the Liver Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–193.
    1. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65(6):1232–1244.
    1. Ebadi M, Bhanji RA, Mazurak VC, Montano-Loza AJ. Sarcopenia in cirrhosis: from pathogenesis to interventions. J Gastroenterol. 2019;54(10):845–859.
    1. Hanai T, Shiraki M, Nishimura K, Ohnishi S, Imai K, Suetsugu A, et al. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition. 2015;31(1):193–199.
    1. Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JXQ, et al. Inclusion of Sarcopenia Within MELD (MELD-Sarcopenia) and the Prediction of Mortality in Patients With Cirrhosis. Clin Transl Gastroenterol. 2015;6(7):e102–e10e.
    1. van Ginneken BTJ, van den Berg-Emons RJG, Kazemier G, Metselaar HJ, Tilanus HW, Stam HJ. Physical fitness, fatigue, and quality of life after liver transplantation. Eur J Appl Physiol. 2007;100(3):345–353.
    1. Dhaliwal A, Williams FR, El-sherif O, Armstrong MJ. Sarcopenia in Liver Transplantation: an Update. Curr Hepatol Rep. 2020;19(2):128–137.
    1. Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology (Baltimore, Md). 2001;33(2):464–470.
    1. Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GAM, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology (Baltimore, Md). 2015;61(6):2018–2029.
    1. Hassan-Smith ZK, Morgan SA, Sherlock M, Hughes B, Taylor AE, Lavery GG, et al. Gender-Specific Differences in Skeletal Muscle 11beta-HSD1 Expression Across Healthy Aging. J Clin Endocrinol Metab. 2015;100(7):2673–2681.
    1. Scaldaferri F, Pizzoferrato M, Lopetuso LR, Musca T, Ingravalle F, Sicignano LL, et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol Res Pract. 2017;2017:8646495.
    1. Ryan E, McNicholas D, Creavin B, Kelly ME, Walsh T, Beddy D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm Bowel Dis. 2018;25(1):67–73.
    1. Gower-Rousseau C, Sarter H, Savoye G, Tavernier N, Fumery M, Sandborn WJ, et al. Validation of the Inflammatory Bowel Disease Disability Index in a population-based cohort. Gut. 2017;66(4):588–596.
    1. Grimstad T, Norheim KB, Isaksen K, Leitao K, Hetta AK, Carlsen A, et al. Fatigue in Newly Diagnosed Inflammatory Bowel Disease. J Crohns Colitis. 2015;9(9):725–730.
    1. Pizzoferrato M, de Sire R, Ingravalle F, Mentella MC, Petito V, Martone AM, et al. Characterization of Sarcopenia in an IBD Population Attending an Italian Gastroenterology Tertiary Center. Nutrients. 2019;11(10):2281.
    1. Dhaliwal A, Quinlan JI, Overthrow K, Greig C, Lord JM, Armstrong MJ, et al. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients. 2021;13(2):656.
    1. Bamba S, Sasaki M, Takaoka A, Takahashi K, Imaeda H, Nishida A, et al. Sarcopenia is a predictive factor for intestinal resection in admitted patients with Crohn's disease. PLoS One. 2017;12(6):e0180036–e018003e.
    1. van Langenberg DR, Gatta PD, Hill B, Zacharewicz E, Gibson PR, Russell AP. Delving into disability in Crohn's disease: Dysregulation of molecular pathways may explain skeletal muscle loss in Crohn's disease☆. J Crohn's Colitis. 2014;8(7):626–634.
    1. Subramaniam K, Fallon K, Ruut T, Lane D, McKay R, Shadbolt B, et al. Infliximab reverses inflammatory muscle wasting (sarcopenia) in Crohn's disease. Aliment Pharmacol Ther. 2015;41(5):419–428.
    1. Malm K, Bergman S, Andersson MLE, Bremander A, Larsson I. Quality of life in patients with established rheumatoid arthritis: A phenomenographic study. SAGE Open Med. 2017;5:2050312117713647.
    1. Katz P. Causes and consequences of fatigue in rheumatoid arthritis. Curr Opin Rheumatol. 2017;29(3):269–276.
    1. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15.
    1. Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6(9):e1887–e188e.
    1. Morgan SA, McCabe EL, Gathercole LL, Hassan-Smith ZK, Larner DP, Bujalska IJ, et al. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A. 2014;111(24):E2482–E2E91.
    1. Masuko K. Rheumatoid Cachexia Revisited: A Metabolic Co-Morbidity in Rheumatoid Arthritis. Front Nutr. 2014;1:20. 10.3389/fnut.2014.00020.
    1. Baillet A, Vaillant M, Guinot M, Juvin R, Gaudin P. Efficacy of resistance exercises in rheumatoid arthritis: meta-analysis of randomized controlled trials. Rheumatology. 2011;51(3):519–527.
    1. Khoja SS, Almeida GJ, Chester Wasko M, Terhorst L, Piva SR. Association of Light-Intensity Physical Activity With Lower Cardiovascular Disease Risk Burden in Rheumatoid Arthritis. Arthritis Care Res (Hoboken). 2016;68(4):424–431.
    1. Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86(3):309–314.
    1. Lemmey AB, Marcora SM, Chester K, Wilson S, Casanova F, Maddison PJ. Effects of high-intensity resistance training in patients with rheumatoid arthritis: A randomized controlled trial. Arthritis Care Res (Hoboken). 2009;61(12):1726–1734.
    1. Banugo P, Amoako D. Prehabilitation. BJA Educ. 2017;17(12):401–405.
    1. Duarte-Rojo A, Ruiz-Margáin A, Montaño-Loza AJ, Macías-Rodríguez RU, Ferrando A, Kim WR. Exercise and physical activity for patients with end-stage liver disease: Improving functional status and sarcopenia while on the transplant waiting list. Liver Transplant. 2018;24(1):122–139.
    1. Williams AM, Waits S, Englesbe MJ. The Importance of Prehabilitation in Liver Transplantation. Curr Transplant Rep. 2015;2(4):312–315.
    1. Lamb CA, Kennedy NA, Raine T, Hendy PA, Smith PJ, Limdi JK, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Suppl 3):s1–s106.
    1. Emery P, Pope JE, Kruger K, Lippe R, DeMasi R, Lula S, et al. Efficacy of Monotherapy with Biologics and JAK Inhibitors for the Treatment of Rheumatoid Arthritis: A Systematic Review. Adv Ther. 2018;35(10):1535–1563.
    1. Curtis JR, Singh JA. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin Ther. 2011;33(6):679–707.
    1. NICE . Drug treament for rheumatoid arthritis National Institute for Health and Care Excellence. 2021.
    1. Neurath MF, Travis SP. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 2012;61(11):1619–1635.
    1. Roubenoff R, Parise H, Payette HA, Abad LW, D'Agostino R, Jacques PF, et al. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med. 2003;115(6):429–435.
    1. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10.
    1. Naranjo JD, Dziki JL, Badylak SF. Regenerative Medicine Approaches for Age-Related Muscle Loss and Sarcopenia: A Mini-Review. Gerontology. 2017;63(6):580–589.
    1. Long CL, Dillard DR, Bodzin JH, Geiger JW, Blakemore WS. Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans. Metabolism. 1988;37(9):844–849.
    1. Lai JC, Dodge JL, Sen S, Covinsky K, Feng S. Functional decline in patients with cirrhosis awaiting liver transplantation: Results from the functional assessment in liver transplantation (FrAILT) study. Hepatology (Baltimore, Md). 2016;63(2):574–580.
    1. Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, et al. Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55(4):M221–M231.
    1. Aamann L, Dam G, Borre M, Drljevic-Nielsen A, Overgaard K, Andersen H, et al. Resistance Training Increases Muscle Strength and Muscle Size in Patients With Liver Cirrhosis. Clin Gastroenterol Hepatol. 2020;18(5):1179–87.e6. 10.1016/j.cgh.2019.07.058. Epub 2019 Aug 5.
    1. Orr JG, Homer T, Ternent L, Newton J, McNeil CJ, Hudson M, et al. Health related quality of life in people with advanced chronic liver disease. J Hepatol. 2014;61(5):1158–1165.
    1. Janani K, Jain M, Vargese J, Srinivasan V, Harika K, Michael T, et al. Health-related quality of life in liver cirrhosis patients using SF-36 and CLDQ questionnaires. Clin Exp Hepatol. 2018;4(4):232–239.
    1. Hewlett S, Dures E, Almeida C. Measures of fatigue: Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ), Bristol Rheumatoid Arthritis Fatigue Numerical Rating Scales (BRAF NRS) for severity, effect, and coping, Chalder Fatigue Questionnaire (CFQ), Checklist Individual Strength (CIS20R and CIS8R), Fatigue Severity Scale (FSS), Functional Assessment Chronic Illness Therapy (Fatigue) (FACIT-F), Multi-Dimensional Assessment of Fatigue (MAF), Multi-Dimensional Fatigue Inventory (MFI), Pediatric Quality Of Life (PedsQL) Multi-Dimensional Fatigue Scale, Profile of Fatigue (ProF), Short Form 36 Vitality Subscale (SF-36 VT), and Visual Analog Scales (VAS) Arthritis Care Res (Hoboken). 2011;63(Suppl 11):S263–SS86.
    1. Peolsson A, Hedlund R, Oberg B. Intra- and inter-tester reliability and reference values for hand strength. J Rehabil Med. 2001;33(1):36–41.
    1. Clarys JP, Marfell-Jones MJ. Anthropometric prediction of component tissue masses in the minor limb segments of the human body. Hum Biol. 1986;58(5):761–769.
    1. Clarys JP, Martin AD, Drinkwater DT, Marfell-Jones MJ. The skinfold: myth and reality. J Sports Sci. 1987;5(1):3–33.
    1. Hume P, Marfell-Jones M. The importance of accurate site location for skinfold measurement. J Sports Sci. 2008;26(12):1333–1340.
    1. Gleeson NP, Mercer TH. The utility of isokinetic dynamometry in the assessment of human muscle function. Sports Med. 1996;21(1):18–34.
    1. Tsekoura M, Billis E, Tsepis E, Dimitriadis Z, Matzaroglou C, Tyllianakis M, et al. The Effects of Group and Home-Based Exercise Programs in Elderly with Sarcopenia: A Randomized Controlled Trial. J Clin Med. 2018;7(12).
    1. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–319.
    1. Akagi R, Iwanuma S, Fukuoka M, Kanehisa H, Fukunaga T, Kawakami Y. Methodological issues related to thickness-based muscle size evaluation. J Physiol Anthropol. 2011;30(4):169–174.
    1. Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, et al. Applicability of ultrasound muscle thickness measurements for predicting fat-free mass in elderly population. J Nutr Health Aging. 2014;18(6):579–585.
    1. Franchi MV, Atherton PJ, Reeves ND, Fluck M, Williams J, Mitchell WK, et al. Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf). 2014;210(3):642–654.
    1. Carey EJ, Lai JC, Wang CW, Dasarathy S, Lobach I, Montano-Loza AJ, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23(5):625–633.
    1. Kang SH, Kim MY, Baik SK. The Impact of Sarcopenia and Its Rate of Change on Prognostic Value of Liver Cirrhosis. J Korean Med Sci. 2018;33(50):e334.
    1. Carey EJ, Lai JC, Sonnenday C, Tapper EB, Tandon P, Duarte-Rojo A, et al. A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology. 2019.
    1. Lai JC, Covinsky KE, McCulloch CE, Feng S. The Liver Frailty Index Improves Mortality Prediction of the Subjective Clinician Assessment in Patients With Cirrhosis. Am J Gastroenterol. 2018;113(2):235–242.
    1. Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CM, Sawyer MB, Beaumont C, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7(2):126–135.
    1. Zamboni M, Gattazzo S, Rossi AP. Myosteatosis: a relevant, yet poorly explored element of sarcopenia. Eur Geriatr Med. 2019;10(1):5–6.
    1. Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: Current Concepts and Imaging Implications. Am J Roentgenol. 2015;205(3):W255–WW66.
    1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet (London, England). 2019;393(10191):2636–2646.
    1. Berzigotti A, Saran U, Dufour JF. Physical activity and liver diseases. Hepatology. 2016;63(3):1026–1040.
    1. Tandon P, Ney M, Irwin I, Ma MM, Gramlich L, Bain VG, et al. Severe muscle depletion in patients on the liver transplant wait list: its prevalence and independent prognostic value. Liver Transpl. 2012;18(10):1209–1216.
    1. Hu X, Jiang J, Wang H, Zhang L, Dong B, Yang M. Association between sleep duration and sarcopenia among community-dwelling older adults: A cross-sectional study. Medicine (Baltimore). 2017;96(10):e6268–e626e.
    1. Nishikawa H, Enomoto H, Yoh K, Iwata Y, Sakai Y, Kishino K, et al. Effect of Sarcopenia on Sleep Disturbance in Patients with Chronic Liver Diseases. J Clin Med. 2018;8(1):16.
    1. Patidar KR, Bajaj JS. Covert and Overt Hepatic Encephalopathy: Diagnosis and Management. Clin Gastroenterol Hepatol. 2015;13(12):2048–2061.
    1. Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, et al. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol. 2011;54(5):915–921.
    1. Shanely RA, Zwetsloot KA, Triplett NT, Meaney MP, Farris GE, Nieman DC. Human skeletal muscle biopsy procedures using the modified Bergström technique. J Vis Exp. 2014;91:51812.
    1. Kurup AN, Lekah A, Reardon ST, Schmit GD, McDonald JS, Carter RE, et al. Bleeding Rate for Ultrasound-Guided Paracentesis in Thrombocytopenic Patients. J Ultrasound Med. 2015;34(10):1833–1838.
    1. Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49(6):2087–2107.
    1. Veitch AM, Vanbiervliet G, Gershlick AH, Boustiere C, Baglin TP, Smith LA, et al. Endoscopy in patients on antiplatelet or anticoagulant therapy, including direct oral anticoagulants: British Society of Gastroenterology (BSG) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines. Endoscopy. 2016;48(4):c1.
    1. Dhatariya K, Levy N, Kilvert A, Watson B, Cousins D, Flanagan D, et al. NHS Diabetes guideline for the perioperative management of the adult patient with diabetes. Diabetic Med. 2012;29(4):420–433.

Source: PubMed

3
Abonneren