Red and Yellow Injectable Platelet-Rich Fibrin Demonstrated Differential Effects on Periodontal Ligament Stem Cell Proliferation, Migration, and Osteogenic Differentiation

Prakan Thanasrisuebwong, Sirichai Kiattavorncharoen, Rudee Surarit, Chareerut Phruksaniyom, Nisarat Ruangsawasdi, Prakan Thanasrisuebwong, Sirichai Kiattavorncharoen, Rudee Surarit, Chareerut Phruksaniyom, Nisarat Ruangsawasdi

Abstract

The biological benefits of using two fractions derived from injectable platelet-rich fibrin (i-PRF) in bone regeneration remain unclear. Thus, the current study examined two fractionation protocols producing yellow i-PRF and red i-PRF on periodontal ligament stem cells (PDLSCs). The i-PRF samples from five donors were harvested from two different levels, with and without a buffy coat layer, to obtain red and yellow i-PRF, respectively. The PDLSCs were isolated and characterized before their experimental use. The culture medium in each assay was loaded with 20% of the conditioned medium containing the factors released from the red and yellow i-PRF. Cell proliferation and cell migration were determined with an MTT and trans-well assay, respectively. Osteogenic differentiation was investigated using alkaline phosphatase and Alizarin red staining. The efficiency of both i-PRFs was statistically compared. We found that the factors released from the red i-PRF had a greater effect on cell proliferation and cell migration. Moreover, the factors released from the yellow i-PRF stimulated PDLSC osteogenic differentiation earlier compared with the red i-PRF. These data suggest that the red i-PRF might be suitable for using in bone regeneration because it induced the mobilization and growth of bone regenerative cells without inducing premature mineralization.

Keywords: bone regeneration; cell migration; cell proliferation; injectable platelet-rich fibrin; osteogenic differentiation; periodontal ligament stem cells.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Periodontal ligament stem cell characterization. (a) The isolated cells were evaluated for single colony formation (scale bar = 5 mm), (b) and multi-lineage differentiation potency; adipogenic differentiation, neurogenic differentiation, and osteogenic differentiation, (scale bars = 100 µm). (c) Analysis of the stem cell markers showed 70‒99% CD105+, CD90+, CD73+, CD146+, and CD34− cells.
Figure 2
Figure 2
Proliferative effects on periodontal ligament stem cells. (a) Cell culture medium containing the release from the red i-PRF enhanced cell proliferation significantly greater than the medium consisting of the release from the yellow i-PRF at day 5. (b) Live cell images of cell number in the different culture mediums (scale bars = 200 µm). Significance was assessed using one-way ANOVA followed by post hoc least-significant difference tests to compare the differences between groups. The data are shown as individual donor pairs. * p < 0.05.
Figure 3
Figure 3
Migration of periodontal ligament stem cells. Conditioned medium obtained from the release from red or yellow i-PRFs was loaded into the growth medium supplemented with fetal bovine serum as the positive control. The medium without any supplement was the negative control. The number of migrated cells was significantly higher in the red i-PRF group than the yellow i-PRF group as shown (a) quantitatively and (b) microscopically (scale bar = 200 µm). Significance was assessed using one-way ANOVA followed by post hoc least-significant difference tests to compare the differences between groups. The data are shown as individual donor pairs. * p < 0.05.
Figure 4
Figure 4
Osteogenic differentiation of periodontal ligament stem cells. Effects of the release from the i-PRF types on osteogenic differentiation were tested in parallel with osteogenic medium as the positive control and growth medium as the negative control. The release from the yellow i-PRF improved osteogenic differentiation more than the release from the red i-PRF demonstrated a significantly higher (a) alkaline phosphatase activity, (b) percent of calcification and (c) alizarin red staining (scale bar = 100 µm). Significance was assessed using one-way ANOVA followed by post hoc least-significant difference tests to compare the differences between groups. The data are shown as individual donor pairs. * p < 0.05 and *** p < 0.001.

References

    1. Jung R.E., Schmoekel H.G., Zwahlen R., Kokovic V., Hammerle C.H., Weber F.E. Platelet-rich plasma and fibrin as delivery systems for recombinant human bone morphogenetic protein-2. Clin. Oral Implants Res. 2005;16:676–682. doi: 10.1111/j.1600-0501.2005.01183.x.
    1. Chotitumnavee J., Parakaw T., Srisatjaluk R.L., Pruksaniyom C., Pisitpipattana S., Thanathipanont C., Amarasingh T., Tiankhum N., Chimchawee N., Ruangsawasdi N. In vitro evaluation of local antibiotic delivery via fibrin hydrogel. J. Dent. Sci. 2019;14:7–14. doi: 10.1016/j.jds.2018.08.010.
    1. Spotnitz W.D. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective. ISRN Surg. 2014;2014:203943. doi: 10.1155/2014/203943.
    1. Dohan D.M., Choukroun J., Diss A., Dohan S.L., Dohan A.J., Mouhyi J., Gogly B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006;101:e37–e44. doi: 10.1016/j.tripleo.2005.07.008.
    1. Shah R., Gowda T.M., Thomas R., Kumar T., Mehta D.S. Biological activation of bone grafts using injectable platelet-rich fibrin. J. Prosthet. Dent. 2019;121:391–393. doi: 10.1016/j.prosdent.2018.03.027.
    1. Ghanaati S., Booms P., Orlowska A., Kubesch A., Lorenz J., Rutkowski J., Landes C., Sader R., Kirkpatrick C., Choukroun J. Advanced platelet-rich fibrin: A new concept for cell-based tissue engineering by means of inflammatory cells. J. Oral Implantol. 2014;40:679–689. doi: 10.1563/aaid-joi-D-14-00138.
    1. Abd El Raouf M., Wang X., Miusi S., Chai J., Mohamed AbdEl-Aal A.B., Nefissa Helmy M.M., Ghanaati S., Choukroun J., Choukroun E., Zhang Y., et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets. 2019;30:213–221. doi: 10.1080/09537104.2017.1401058.
    1. Kyyak S., Blatt S., Pabst A., Thiem D., Al-Nawas B., Kammerer P.W. Combination of an allogenic and a xenogenic bone substitute material with injectable platelet-rich fibrin—A comparative in vitro study. J. Biomater. Appl. 2020:885328220914407. doi: 10.1177/0885328220914407.
    1. Mourao C.F., Valiense H., Melo E.R., Mourao N.B., Maia M.D. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: Technical note. Rev. Col. Bras. Cir. 2015;42:421–423. doi: 10.1590/0100-69912015006013.
    1. Gulsen U., Dereci O. Evaluation of New Bone Formation in Sinus Floor Augmentation With Injectable Platelet-Rich Fibrin-Soaked Collagen Plug: A Pilot Study. Implant Dent. 2019;28:220–225. doi: 10.1097/ID.0000000000000883.
    1. Xie H., Xie Y.F., Liu Q., Shang L.Y., Chen M.Z. Bone regeneration effect of injectable-platelet rich fibrin (I-PRF) in lateral sinus lift: A pilot study. Shanghai Kou Qiang Yi Xue. 2019;28:71–75.
    1. Ozsagir Z.B., Saglam E., Sen Yilmaz B., Choukroun J., Tunali M. Injectable platelet-rich fibrin and microneedling for gingival augmentation in thin periodontal phenotype: A randomized controlled clinical trial. J. Clin. Periodontol. 2020;47:489–499. doi: 10.1111/jcpe.13247.
    1. Ucak Turer O., Ozcan M., Alkaya B., Surmeli S., Seydaoglu G., Haytac M.C. Clinical evaluation of injectable platelet-rich fibrin with connective tissue graft for the treatment of deep gingival recession defects: A controlled randomized clinical trial. J. Clin. Periodontol. 2020;47:72–80. doi: 10.1111/jcpe.13193.
    1. Wang X., Zhang Y., Choukroun J., Ghanaati S., Miron R.J. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets. 2018;29:48–55. doi: 10.1080/09537104.2017.1293807.
    1. Thanasrisuebwong P., Surarit R., Bencharit S., Ruangsawasdi N. Influence of Fractionation Methods on Physical and Biological Properties of Injectable Platelet-Rich Fibrin: An Exploratory Study. Int. J. Mol. Sci. 2019;20:1657. doi: 10.3390/ijms20071657.
    1. Kim S.H., Kim K.H., Seo B.M., Koo K.T., Kim T.I., Seol Y.J., Ku Y., Rhyu I.C., Chung C.P., Lee Y.M. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: A pilot study. J. Periodontol. 2009;80:1815–1823. doi: 10.1902/jop.2009.090249.
    1. Miron R.J., Fujioka-Kobayashi M., Hernandez M., Kandalam U., Zhang Y., Ghanaati S., Choukroun J. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin. Oral Investig. 2017;21:2619–2627. doi: 10.1007/s00784-017-2063-9.
    1. Varela H.A., Souza J.C.M., Nascimento R.M., Araujo R.F., Jr., Vasconcelos R.C., Cavalcante R.S., Guedes P.M., Araujo A.A. Injectable platelet rich fibrin: Cell content, morphological, and protein characterization. Clin. Oral Investig. 2019;23:1309–1318. doi: 10.1007/s00784-018-2555-2.
    1. Miron R.J., Chai J., Zheng S., Feng M., Sculean A., Zhang Y. A novel method for evaluating and quantifying cell types in platelet rich fibrin and an introduction to horizontal centrifugation. J. Biomed. Mater. Res. A. 2019;107:2257–2271. doi: 10.1002/jbm.a.36734.
    1. Donos N., Dereka X., Calciolari E. The use of bioactive factors to enhance bone regeneration: A narrative review. J. Clin. Periodontol. 2019;46(Suppl. 21):124–161. doi: 10.1111/jcpe.13048.
    1. Fernandez-Medina T., Vaquette C., Ivanovski S. Systematic Comparison of the Effect of Four Clinical-Grade Platelet Rich Hemoderivatives on Osteoblast Behaviour. Int. J. Mol. Sci. 2019;20:6243. doi: 10.3390/ijms20246243.
    1. Gassling V.L., Acil Y., Springer I.N., Hubert N., Wiltfang J. Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009;108:48–55. doi: 10.1016/j.tripleo.2009.02.007.
    1. Jin R., Song G., Chai J., Gou X., Yuan G., Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J. Tissue Eng. 2018;9:2041731418817505. doi: 10.1177/2041731418817505.
    1. Chen L., Tredget E.E., Wu P.Y., Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS ONE. 2008;3:e1886. doi: 10.1371/journal.pone.0001886.
    1. Shirley D., Marsh D., Jordan G., McQuaid S., Li G. Systemic recruitment of osteoblastic cells in fracture healing. J. Orthop. Res. 2005;23:1013–1021. doi: 10.1016/j.orthres.2005.01.013.
    1. Su P., Tian Y., Yang C., Ma X., Wang X., Pei J., Qian A. Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy. Int. J. Mol. Sci. 2018;19:2343. doi: 10.3390/ijms19082343.
    1. Bhattacharya I., Ghayor C., Weber F.E. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering—A Review. Transfus. Med. Hemother. 2016;43:336–343. doi: 10.1159/000447494.
    1. Lienemann P.S., Vallmajo-Martin Q., Papageorgiou P., Blache U., Metzger S., Kivelio A.S., Milleret V., Sala A., Hoehnel S., Roch A., et al. Smart Hydrogels for the Augmentation of Bone Regeneration by Endogenous Mesenchymal Progenitor Cell Recruitment. Adv. Sci. (Weinh) 2020;7:1903395. doi: 10.1002/advs.201903395.
    1. Moisley K.M., El-Jawhari J.J., Owston H., Tronci G., Russell S.J., Jones E.A., Giannoudis P.V. Optimising proliferation and migration of mesenchymal stem cells using platelet products: A rational approach to bone regeneration. J. Orthop. Res. 2019;37:1329–1338. doi: 10.1002/jor.24261.
    1. Vander Heiden M.G., Plas D.R., Rathmell J.C., Fox C.J., Harris M.H., Thompson C.B. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell Biol. 2001;21:5899–5912. doi: 10.1128/MCB.21.17.5899-5912.2001.
    1. Somerman M.J., Young M.F., Foster R.A., Moehring J.M., Imm G., Sauk J.J. Characteristics of human periodontal ligament cells in vitro. Arch. Oral Biol. 1990;35:241–247. doi: 10.1016/0003-9969(90)90062-F.
    1. Winning L., El Karim I.A., Lundy F.T. A Comparative Analysis of the Osteogenic Potential of Dental Mesenchymal Stem Cells. Stem Cells Dev. 2019;28:1050–1058. doi: 10.1089/scd.2019.0023.
    1. Kumar A., Salimath B.P., Stark G.B., Finkenzeller G. Platelet-derived growth factor receptor signaling is not involved in osteogenic differentiation of human mesenchymal stem cells. Tissue Eng. Part A. 2010;16:983–993. doi: 10.1089/ten.tea.2009.0230.
    1. Ponte A.L., Marais E., Gallay N., Langonne A., Delorme B., Herault O., Charbord P., Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25:1737–1745. doi: 10.1634/stemcells.2007-0054.
    1. Fierro F., Illmer T., Jing D., Schleyer E., Ehninger G., Boxberger S., Bornhäuser M. Inhibition of platelet-derived growth factor receptorbeta by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Prolif. 2007;40:355–366. doi: 10.1111/j.1365-2184.2007.00438.x.
    1. Gruber R., Karreth F., Kandler B., Fuerst G., Rot A., Fischer M.B., Watzek G. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets. 2004;15:29–35. doi: 10.1080/09537100310001643999.
    1. Vogel J.P., Szalay K., Geiger F., Kramer M., Richter W., Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006;17:462–469. doi: 10.1080/09537100600758867.
    1. Miron R.J., Fujioka-Kobayashi M., Zhang Y., Sculean A., Pippenger B., Shirakata Y., Kandalam U., Hernandez M. Osteogain(R) loaded onto an absorbable collagen sponge induces attachment and osteoblast differentiation of ST2 cells in vitro. Clin. Oral Investig. 2017;21:2265–2272. doi: 10.1007/s00784-016-2019-5.

Source: PubMed

3
Abonneren