Potential Effects of Natural H2S-Donors in Hypertension Management

Eugenia Piragine, Valentina Citi, Kim Lawson, Vincenzo Calderone, Alma Martelli, Eugenia Piragine, Valentina Citi, Kim Lawson, Vincenzo Calderone, Alma Martelli

Abstract

After the discovery of hydrogen sulfide (H2S) in the central nervous system by Abe and Kimura in 1996, the physiopathological role of H2S has been widely investigated in several systems such as the cardiovascular. In particular, H2S plays a pivotal role in the control of vascular tone, exhibiting mechanisms of action able to induce vasodilation: for instance, activation of potassium channels (KATP and Kv7) and inhibition of 5-phosphodiesterase (5-PDE). These findings paved the way for the research of natural and synthetic exogenous H2S-donors (i.e., molecules able to release H2S) in order to have new tools for the management of hypertension. In this scenario, some natural molecules derived from Alliaceae (i.e., garlic) and Brassicaceae (i.e., rocket or broccoli) botanical families show the profile of slow H2S-donors able to mimic the endogenous production of this gasotransmitter and therefore can be viewed as interesting potential tools for management of hypertension or pre-hypertension. In this article, the preclinical and clinical impacts of these natural H2S-donors on hypertension and vascular integrity have been reviewed in order to give a complete panorama of their potential use for the management of hypertension and related vascular diseases.

Keywords: Alliaceae; Brassicaceae; garlic; hydrogen sulfide; hypertension; isothiocyanates; polysulfides.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Relevant mechanisms of action accounting for the vasodilating effect induced by H2S. KATP = ATP-sensitive potassium channels, Kv7 = voltage-gated potassium channels, 5-PDE = 5-phosphodiesterase enzyme, VEGFR2 = vascular endothelial growth factor receptor 2, NO = nitric oxide.
Figure 2
Figure 2
Reaction between diallyl disulfide and glutathione (GSH), yielding the formation of H2S and perthiols, which generate another molecule of H2S and glutathione disulfide (GSSG).
Figure 3
Figure 3
Schematic representation of the reaction between cysteine and organic isothiocyanates (ITCs) leading to the formation of H2S.

References

    1. Kimura H. Hydrogen Sulfide (H2S) and Polysulfide (H2Sn) Signaling: The First 25 Years. Biomolecules. 2021;11:896. doi: 10.3390/biom11060896.
    1. Liu Y.H., Lu M., Hu L.F., Wong P.T., Webb G.D., Bian J.S. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid. Redox Signal. 2012;17:141–185. doi: 10.1089/ars.2011.4005.
    1. Martelli A., Testai L., Marino A., Breschi M.C., Da Settimo F., Calderone V. Hydrogen sulphide: Biopharmacological roles in the cardiovascular system and pharmaceutical perspectives. Curr. Med. Chem. 2012;19:3325–3336. doi: 10.2174/092986712801215928.
    1. Cacanyiova S., Berenyiova A., Kristek F. The role of hydrogen sulphide in blood pressure regulation. Physiol. Res. 2016;65:S273–S289. doi: 10.33549/physiolres.933438.
    1. Citi V., Piragine E., Testai L., Breschi M.C., Calderone V., Martelli A. The Role of Hydrogen Sulfide and H2S-donors in Myocardial Protection Against Ischemia/Reperfusion Injury. Curr. Med. Chem. 2018;25:4380–4401. doi: 10.2174/0929867325666180212120504.
    1. Citi V., Martelli A., Gorica E., Brogi S., Testai L., Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J. Adv. Res. 2021;27:99–113. doi: 10.1016/j.jare.2020.05.015.
    1. Testai L., Citi V., Martelli A., Brogi S., Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol. Res. 2020;160:105125. doi: 10.1016/j.phrs.2020.105125.
    1. Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA. 1987;84:9265–9269. doi: 10.1073/pnas.84.24.9265.
    1. Mancardi D., Pla A.F., Moccia F., Tanzi F., Munaron L. Old and new gasotransmitters in the cardiovascular system: Focus on the role of nitric oxide and hydrogen sulfide in endothelial cells and cardiomyocytes. Curr. Pharm. Biotechnol. 2011;12:1406–1415. doi: 10.2174/138920111798281090.
    1. Testai L., D’Antongiovanni V., Piano I., Martelli A., Citi V., Duranti E., Virdis A., Blandizzi C., Gargini C., Breschi M.C., et al. Different patterns of H2S/NO activity and cross-talk in the control of the coronary vascular bed under normotensive or hypertensive conditions. Nitric Oxide. 2015;47:25–33. doi: 10.1016/j.niox.2015.03.003.
    1. Nagpure B.V., Bian J.S. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. Oxid. Med. Cell. Longev. 2016;2016:6904327. doi: 10.1155/2016/6904327.
    1. Cirino G., Vellecco V., Bucci M. Nitric oxide and hydrogen sulfide: The gasotransmitter paradigm of the vascular system. Br. J. Pharmacol. 2017;174:4021–4031. doi: 10.1111/bph.13815.
    1. Wu D., Hu Q., Zhu D. An Update on Hydrogen Sulfide and Nitric Oxide Interactions in the Cardiovascular System. Oxid. Med. Cell. Longev. 2018;2018:4579140. doi: 10.1155/2018/4579140.
    1. Zhao W., Zhang J., Lu Y., Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001;20:6008–6016. doi: 10.1093/emboj/20.21.6008.
    1. Martelli A., Testai L., Breschi M.C., Lawson K., McKay N.G., Miceli F., Taglialatela M., Calderone V. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol. Res. 2013;70:27–34. doi: 10.1016/j.phrs.2012.12.005.
    1. Bucci M., Papapetropoulos A., Vellecco V., Zhou Z., Pyriochou A., Roussos C., Roviezzo F., Brancaleone V., Cirino G. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler. Thromb. Vasc. Biol. 2010;30:1998–2004. doi: 10.1161/ATVBAHA.110.209783.
    1. Zhu M.L., Zhao F.R., Zhu T.T., Wang Q.Q., Wu Z.Q., Song P., Xu J., Wan G.R., Yin Y.L., Li P. The antihypertension effect of hydrogen sulfide (H2S) is induced by activating VEGFR2 signaling pathway. Life Sci. 2021;267:118831. doi: 10.1016/j.lfs.2020.118831.
    1. Chen J., Ding X., Chen W., Chen S., Guan Q., Wen J., Chen Z. VEGFR2 in vascular smooth muscle cells mediates H2S-induced dilation of the rat cerebral basilar artery. Microvasc. Res. 2022;141:104309. doi: 10.1016/j.mvr.2021.104309.
    1. Chen L., Ingrid S., Ding Y.G., Liu Y., Qi J.G., Tang C.S., Du J.B. Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin. Med. J. 2007;120:389–393. doi: 10.1097/00029330-200703010-00008.
    1. Weber G.J., Pushpakumar S., Tyagi S.C., Sen U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol. Res. 2016;113:300–312. doi: 10.1016/j.phrs.2016.09.002.
    1. Calderone V., Martelli A., Testai L., Citi V., Breschi M.C. Using hydrogen sulfide to design and develop drugs. Expert Opin. Drug Discov. 2016;11:163–175. doi: 10.1517/17460441.2016.1122590.
    1. Bibli S.I., Hu J., Looso M., Weigert A., Ratiu C., Wittig J., Drekolia M.K., Tombor L., Randriamboavonjy V., Leisegang M.S., et al. Mapping the Endothelial Cell S-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. Circulation. 2021;143:935–948. doi: 10.1161/CIRCULATIONAHA.120.051877.
    1. Calderone V. Large-conductance, Ca2+-activated K+ channels: Function, pharmacology and drugs. Curr. Med. Chem. 2002;9:1385–1395. doi: 10.2174/0929867023369871.
    1. Cecchetti V., Calderone V., Tabarrini O., Sabatini S., Filipponi E., Testai L., Spogli R., Martinotti E., Fravolini A. Highly potent 1,4-benzothiazine derivatives as K(ATP)-channel openers. J. Med. Chem. 2003;46:3670–3679. doi: 10.1021/jm030791q.
    1. Calderone V., Spogli R., Martelli A., Manfroni G., Testai L., Sabatini S., Tabarrini O., Cecchetti V. Novel 1,4-benzothiazine derivatives as large conductance Ca2+-activated potassium channel openers. J. Med. Chem. 2008;51:5085–5092. doi: 10.1021/jm701605f.
    1. Calderone V., Testai L., Martelli A., Rapposelli S., Digiacomo M., Balsamo A., Breschi M.C. Anti-ischemic properties of a new spiro-cyclic benzopyran activator of the cardiac mito-KATP channel. Biochem. Pharmacol. 2010;79:39–47. doi: 10.1016/j.bcp.2009.07.017.
    1. Martelli A., Manfroni G., Sabbatini P., Barreca M.L., Testai L., Novelli M., Sabatini S., Massari S., Tabarrini O., Masiello P., et al. 1,4-Benzothiazine ATP-sensitive potassium channel openers: Modifications at the C-2 and C-6 positions. J. Med. Chem. 2013;56:4718–4728. doi: 10.1021/jm400435a.
    1. Tang G., Wu L., Liang W., Wang R. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol. Pharmacol. 2005;68:1757–1764. doi: 10.1124/mol.105.017467.
    1. Liang G.H., Adebiyi A., Leo M.D., McNally E.M., Leffler C.W., Jaggar J.H. Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am. J. Physiol. Heart Circ. Physiol. 2011;300:H2088–H2095. doi: 10.1152/ajpheart.01290.2010.
    1. Siebert N., Cantre D., Eipel C., Vollmar B. H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am. J. Physiol. Gastrointest Liver Physiol. 2008;295:G1266–G1273. doi: 10.1152/ajpgi.90484.2008.
    1. Schleifenbaum J., Kohn C., Voblova N., Dubrovska G., Zavarirskaya O., Gloe T., Crean C.S., Luft F.C., Huang Y., Schubert R., et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J. Hypertens. 2010;28:1875–1882. doi: 10.1097/HJH.0b013e32833c20d5.
    1. Martelli A., Citi V., Calderone V. Vascular Effects of H2S-Donors: Fluorimetric Detection of H2S Generation and Ion Channel Activation in Human Aortic Smooth Muscle Cells. Methods Mol. Biol. 2019;2007:79–87. doi: 10.1007/978-1-4939-9528-8_6.
    1. Martelli A., Testai L., Citi V., Marino A., Bellagambi F.G., Ghimenti S., Breschi M.C., Calderone V. Pharmacological characterization of the vascular effects of aryl isothiocyanates: Is hydrogen sulfide the real player? Vascul. Pharmacol. 2014;60:32–41. doi: 10.1016/j.vph.2013.11.003.
    1. Citi V., Martelli A., Bucci M., Piragine E., Testai L., Vellecco V., Cirino G., Calderone V. Searching for novel hydrogen sulfide donors: The vascular effects of two thiourea derivatives. Pharmacol. Res. 2020;159:105039. doi: 10.1016/j.phrs.2020.105039.
    1. Hedegaard E.R., Nielsen B.D., Kun A., Hughes A.D., Kroigaard C., Mogensen S., Matchkov V.V., Frobert O., Simonsen U. KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br. J. Pharmacol. 2014;171:69–82. doi: 10.1111/bph.12424.
    1. Abramavicius S., Petersen A.G., Renaltan N.S., Prat-Duran J., Torregrossa R., Stankevicius E., Whiteman M., Simonsen U. GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. Front Pharmacol. 2021;12:613989. doi: 10.3389/fphar.2021.613989.
    1. Sun Y., Huang Y., Yu W., Chen S., Yao Q., Zhang C., Bu D., Tang C., Du J., Jin H. Sulfhydration-associated phosphodiesterase 5A dimerization mediates vasorelaxant effect of hydrogen sulfide. Oncotarget. 2017;8:31888–31900. doi: 10.18632/oncotarget.16649.
    1. Tang G., Yang G., Jiang B., Ju Y., Wu L., Wang R. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox Signal. 2013;19:1634–1646. doi: 10.1089/ars.2012.4805.
    1. Dux M., Will C., Vogler B., Filipovic M.R., Messlinger K. Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br. J. Pharmacol. 2016;173:431–445. doi: 10.1111/bph.13164.
    1. Zhou Z., Martin E., Sharina I., Esposito I., Szabo C., Bucci M., Cirino G., Papapetropoulos A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol. Res. 2016;111:556–562. doi: 10.1016/j.phrs.2016.06.029.
    1. Corvino A., Frecentese F., Magli E., Perissutti E., Santagada V., Scognamiglio A., Caliendo G., Fiorino F., Severino B. Trends in H2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants. 2021;10:429. doi: 10.3390/antiox10030429.
    1. Zhao Y., Pacheco A., Xian M. Medicinal Chemistry: Insights into the Development of Novel H2S Donors. Handb. Exp. Pharmacol. 2015;230:365–388. doi: 10.1007/978-3-319-18144-8_18.
    1. Citi V., Corvino A., Fiorino F., Frecentese F., Magli E., Perissutti E., Santagada V., Brogi S., Flori L., Gorica E., et al. Structure-activity relationships study of isothiocyanates for H2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. J. Adv. Res. 2021;27:41–53. doi: 10.1016/j.jare.2020.02.017.
    1. Severino B., Corvino A., Fiorino F., Luciano P., Frecentese F., Magli E., Saccone I., Di Vaio P., Citi V., Calderone V., et al. 1,2,4-Thiadiazolidin-3,5-diones as novel hydrogen sulfide donors. Eur. J. Med. Chem. 2018;143:1677–1686. doi: 10.1016/j.ejmech.2017.10.068.
    1. Corvino A., Citi V., Fiorino F., Frecentese F., Magli E., Perissutti E., Santagada V., Calderone V., Martelli A., Gorica E., et al. H2S donating corticosteroids: Design, synthesis and biological evaluation in a murine model of asthma. J. Adv. Res. 2022;35:267–277. doi: 10.1016/j.jare.2021.05.008.
    1. Brancaleone V., Esposito I., Gargiulo A., Vellecco V., Asimakopoulou A., Citi V., Calderone V., Gobbetti T., Perretti M., Papapetropoulos A., et al. D-Penicillamine modulates hydrogen sulfide (H2S) pathway through selective inhibition of cystathionine-gamma-lyase. Br. J. Pharmacol. 2016;173:1556–1565. doi: 10.1111/bph.13459.
    1. Mitidieri E., Tramontano T., Gurgone D., Citi V., Calderone V., Brancaleone V., Katsouda A., Nagahara N., Papapetropoulos A., Cirino G., et al. Mercaptopyruvate acts as endogenous vasodilator independently of 3-mercaptopyruvate sulfurtransferase activity. Nitric Oxide. 2018;75:53–59. doi: 10.1016/j.niox.2018.02.003.
    1. Barresi E., Nesi G., Citi V., Piragine E., Piano I., Taliani S., Da Settimo F., Rapposelli S., Testai L., Breschi M.C., et al. Iminothioethers as Hydrogen Sulfide Donors: From the Gasotransmitter Release to the Vascular Effects. J. Med. Chem. 2017;60:7512–7523. doi: 10.1021/acs.jmedchem.7b00888.
    1. Martelli A., Testai L., Citi V., Marino A., Pugliesi I., Barresi E., Nesi G., Rapposelli S., Taliani S., Da Settimo F., et al. Arylthioamides as H2S Donors: L-Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. ACS Med. Chem. Lett. 2013;4:904–908. doi: 10.1021/ml400239a.
    1. Benavides G.A., Squadrito G.L., Mills R.W., Patel H.D., Isbell T.S., Patel R.P., Darley-Usmar V.M., Doeller J.E., Kraus D.W. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA. 2007;104:17977–17982. doi: 10.1073/pnas.0705710104.
    1. Martelli A., Citi V., Testai L., Brogi S., Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid. Redox Signal. 2020;32:110–144. doi: 10.1089/ars.2019.7888.
    1. Citi V., Martelli A., Testai L., Marino A., Breschi M.C., Calderone V. Hydrogen sulfide releasing capacity of natural isothiocyanates: Is it a reliable explanation for the multiple biological effects of Brassicaceae? Planta Med. 2014;80:610–613. doi: 10.1055/s-0034-1368591.
    1. Wang X., Liu Y., Liu X., Lin Y., Zheng X., Lu Y. Hydrogen Sulfide (H2S) Releasing Capacity of Isothiocyanates from Moringa oleifera Lam. Molecules. 2018;23:2809. doi: 10.3390/molecules23112809.
    1. Lucarini E., Micheli L., Trallori E., Citi V., Martelli A., Testai L., De Nicola G.R., Iori R., Calderone V., Ghelardini C., et al. Effect of glucoraphanin and sulforaphane against chemotherapy-induced neuropathic pain: Kv7 potassium channels modulation by H2 S release in vivo. Phytother. Res. 2018;32:2226–2234. doi: 10.1002/ptr.6159.
    1. Lin Y., Yang X., Lu Y., Liang D., Huang D. Isothiocyanates as H2S Donors Triggered by Cysteine: Reaction Mechanism and Structure and Activity Relationship. Org. Lett. 2019;21:5977–5980. doi: 10.1021/acs.orglett.9b02117.
    1. Sharifi A.M., Darabi R., Akbarloo N. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J. Ethnopharmacol. 2003;86:219–224. doi: 10.1016/S0378-8741(03)00080-1.
    1. Laggner H., Hermann M., Esterbauer H., Muellner M.K., Exner M., Gmeiner B.M., Kapiotis S. The novel gaseous vasorelaxant hydrogen sulfide inhibits angiotensin-converting enzyme activity of endothelial cells. J. Hypertens. 2007;25:2100–2104. doi: 10.1097/HJH.0b013e32829b8fd0.
    1. Nwokocha C.R., Ozolua R.I., Owu D.U., Nwokocha M.I., Ugwu A.C. Antihypertensive properties of Allium sativum (garlic) on normotensive and two kidney one clip hypertensive rats. Niger. J. Physiol. Sci. 2011;26:213–218.
    1. Han C.H., Liu J.C., Chen K.H., Lin Y.S., Chen C.T., Fan C.T., Lee H.L., Liu D.Z., Hou W.C. Antihypertensive activities of processed garlic on spontaneously hypertensive rats and hypertensive humans. Bot. Stud. 2011;52:277–283.
    1. Harauma A., Moriguchi T. Aged garlic extract improves blood pressure in spontaneously hypertensive rats more safely than raw garlic. J. Nutr. 2006;136:769S–773S. doi: 10.1093/jn/136.3.769S.
    1. Chen C.Y., Tsai T.Y., Chen B.H. Effects of Black Garlic Extract and Nanoemulsion on the Deoxy Corticosterone Acetate-Salt Induced Hypertension and Its Associated Mild Cognitive Impairment in Rats. Antioxidants. 2021;10:1611. doi: 10.3390/antiox10101611.
    1. Hsu C.N., Hou C.Y., Chang-Chien G.P., Lin S., Tain Y.L. Maternal Garlic Oil Supplementation Prevents High-Fat Diet-Induced Hypertension in Adult Rat Offspring: Implications of H2S-Generating Pathway in the Gut and Kidneys. Mol. Nutr. Food Res. 2021;65:e2001116. doi: 10.1002/mnfr.202001116.
    1. Ashraf M.Z., Hussain M.E., Fahim M. Endothelium mediated vasorelaxant response of garlic in isolated rat aorta: Role of nitric oxide. J. Ethnopharmacol. 2004;90:5–9. doi: 10.1016/j.jep.2003.06.001.
    1. Liang D., Wu H., Wong M.W., Huang D. Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Org. Lett. 2015;17:4196–4199. doi: 10.1021/acs.orglett.5b01962.
    1. Jeremic J.N., Jakovljevic V.L., Zivkovic V.I., Srejovic I.M., Bradic J.V., Milosavljevic I.M., Mitrovic S.L., Jovicic N.U., Bolevich S.B., Svistunov A.A., et al. Garlic Derived Diallyl Trisulfide in Experimental Metabolic Syndrome: Metabolic Effects and Cardioprotective Role. Int. J. Mol. Sci. 2020;21:9100. doi: 10.3390/ijms21239100.
    1. Yang Q., He G.W. Imbalance of Homocysteine and H2S: Significance, Mechanisms, and Therapeutic Promise in Vascular Injury. Oxid Med. Cell. Longev. 2019;2019:7629673. doi: 10.1155/2019/7629673.
    1. Cui T., Liu W., Chen S., Yu C., Li Y., Zhang J.Y. Antihypertensive effects of allicin on spontaneously hypertensive rats via vasorelaxation and hydrogen sulfide mechanisms. Biomed. Pharmacother. 2020;128:110240. doi: 10.1016/j.biopha.2020.110240.
    1. Cortese-Krott M.M., Kuhnle G.G., Dyson A., Fernandez B.O., Grman M., DuMond J.F., Barrow M.P., McLeod G., Nakagawa H., Ondrias K., et al. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc. Natl. Acad. Sci. USA. 2015;112:E4651–E4660. doi: 10.1073/pnas.1509277112.
    1. Dubey H., Singh A., Patole A.M., Tenpe C.R. Antihypertensive effect of allicin in dexamethasone-induced hypertensive rats. Integr. Med. Res. 2017;6:60–65. doi: 10.1016/j.imr.2016.12.002.
    1. Elkayam A., Mirelman D., Peleg E., Wilchek M., Miron T., Rabinkov A., Sadetzki S., Rosenthal T. The effects of allicin and enalapril in fructose-induced hyperinsulinemic hyperlipidemic hypertensive rats. Am. J. Hypertens. 2001;14:377–381. doi: 10.1016/S0895-7061(00)01298-X.
    1. Garcia-Trejo E.M., Arellano-Buendia A.S., Arguello-Garcia R., Loredo-Mendoza M.L., Garcia-Arroyo F.E., Arellano-Mendoza M.G., Castillo-Hernandez M.C., Guevara-Balcazar G., Tapia E., Sanchez-Lozada L.G., et al. Effects of Allicin on Hypertension and Cardiac Function in Chronic Kidney Disease. Oxid. Med. Cell. Longev. 2016;2016:3850402. doi: 10.1155/2016/3850402.
    1. Martelli A., Piragine E., Citi V., Testai L., Pagnotta E., Ugolini L., Lazzeri L., Di Cesare Mannelli L., Manzo O.L., Bucci M., et al. Erucin exhibits vasorelaxing effects and antihypertensive activity by H2 S-releasing properties. Br. J. Pharmacol. 2020;177:824–835. doi: 10.1111/bph.14645.
    1. Wilson R.K., Kwan T.K., Kwan C.Y., Sorger G.J. Effects of papaya seed extract and benzyl isothiocyanate on vascular contraction. Life Sci. 2002;71:497–507. doi: 10.1016/S0024-3205(02)01708-3.
    1. Salma U., Khan T., Shah A.J. Antihypertensive effect of the methanolic extract from Eruca sativa Mill., (Brassicaceae) in rats: Muscarinic receptor-linked vasorelaxant and cardiotonic effects. J. Ethnopharmacol. 2018;224:409–420. doi: 10.1016/j.jep.2018.06.013.
    1. Martelli A., Piragine E., Gorica E., Citi V., Testai L., Pagnotta E., Lazzeri L., Pecchioni N., Ciccone V., Montanaro R., et al. The H2S-Donor Erucin Exhibits Protective Effects against Vascular Inflammation in Human Endothelial and Smooth Muscle Cells. Antioxidants. 2021;10:961. doi: 10.3390/antiox10060961.
    1. Lin F., Huang X., Xing F., Xu L., Zhang W., Chen Z., Ke X., Song Y., Zeng Z. Semen Brassicae reduces thoracic aortic remodeling, inflammation, and oxidative damage in spontaneously hypertensive rats. Biomed. Pharmacother. 2020;129:110400. doi: 10.1016/j.biopha.2020.110400.
    1. Aekthammarat D., Pannangpetch P., Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine. 2019;54:9–16. doi: 10.1016/j.phymed.2018.10.023.
    1. Ried K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp. Ther. Med. 2020;19:1472–1478. doi: 10.3892/etm.2019.8374.
    1. Ried K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J. Nutr. 2016;146:389S–396S. doi: 10.3945/jn.114.202192.
    1. Ried K., Frank O.R., Stocks N.P. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas. 2010;67:144–150. doi: 10.1016/j.maturitas.2010.06.001.
    1. Ried K., Frank O.R., Stocks N.P. Aged garlic extract reduces blood pressure in hypertensives: A dose-response trial. Eur. J. Clin. Nutr. 2013;67:64–70. doi: 10.1038/ejcn.2012.178.
    1. Borrelli F., Capasso R., Izzo A.A. Garlic (Allium sativum L.): Adverse effects and drug interactions in humans. Mol. Nutr. Food Res. 2007;51:1386–1397. doi: 10.1002/mnfr.200700072.
    1. Kravchuk O.M., Goshovska Y.V., Korkach Y.P., Sagach V.F. Garlic supplement lowers blood pressure in 40-60 years old hypertensive individuals, regulates oxidative stress, plasma cholesterol and protrombin index. J. Cardiovasc. Med. Cardiol. 2021;8:41–47. doi: 10.17352/2455-2976.000168.
    1. Ried K., Travica N., Sali A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front. Nutr. 2018;5:122. doi: 10.3389/fnut.2018.00122.
    1. Soleimani D., Parisa Moosavian S., Zolfaghari H., Paknahad Z. Effect of garlic powder supplementation on blood pressure and hs-C-reactive protein among nonalcoholic fatty liver disease patients: A randomized, double-blind, placebo-controlled trial. Food Sci. Nutr. 2021;9:3556–3562. doi: 10.1002/fsn3.2307.
    1. Ashraf R., Khan R.A., Ashraf I., Qureshi A.A. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak. J. Pharm. Sci. 2013;26:859–863.
    1. Auer W., Eiber A., Hertkorn E., Hoehfeld E., Koehrle U., Lorenz A., Mader F., Merx W., Otto G., Schmid-Otto B., et al. Hypertension and hyperlipidaemia: Garlic helps in mild cases. Br. J. Clin. Pract. Suppl. 1990;69:3–6.
    1. Holzgartner H., Schmidt U., Kuhn U. Comparison of the efficacy and tolerance of a garlic preparation vs. bezafibrate. Arzneimittelforschung. 1992;42:1473–1477.
    1. Kandziora J. Blood pressure and lipid reducing effect of a garlic supplement in combination with a diuretic. Arztl. Forsch. 1988;35:3–8.
    1. Nakasone Y., Nakamura Y., Yamamoto T., Yamaguchi H. Effect of a traditional Japanese garlic preparation on blood pressure in prehypertensive and mildly hypertensive adults. Exp. Ther. Med. 2013;5:399–405. doi: 10.3892/etm.2012.819.
    1. Ried K., Travica N., Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press Control. 2016;9:9–21. doi: 10.2147/IBPC.S93335.
    1. De Santos O., Johns R. Effects of garlic powder and garlic oil preparations on blood lipids, blood pressure and well-being. Br. J. Clin. Res. 1995;6:91–100.
    1. Sobenin I.A., Andrianova I.V., Demidova O.N., Gorchakova T., Orekhov A.N. Lipid-lowering effects of time-released garlic powder tablets in double-blinded placebo-controlled randomized study. J. Atheroscler. Thromb. 2008;15:334–338. doi: 10.5551/jat.E550.
    1. Sobenin I.A., Andrianova I.V., Fomchenkov I.V., Gorchakova T.V., Orekhov A.N. Time-released garlic powder tablets lower systolic and diastolic blood pressure in men with mild and moderate arterial hypertension. Hypertens. Res. 2009;32:433–437. doi: 10.1038/hr.2009.36.
    1. Vorberg G., Schneider B. Therapy with garlic: Results of a placebo-controlled, double-blind study. Br. J. Clin. Pract. Suppl. 1990;69:7–11.
    1. Christiansen B., Bellostas Muguerza N., Petersen A.M., Kveiborg B., Madsen C.R., Thomas H., Ihlemann N., Sorensen J.C., Kober L., Sorensen H., et al. Ingestion of broccoli sprouts does not improve endothelial function in humans with hypertension. PLoS ONE. 2010;5:e12461. doi: 10.1371/journal.pone.0012461.
    1. Langston-Cox A.G., Anderson D., Creek D.J., Palmer K.R., Marshall S.A., Wallace E.M. Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension. Reprod. Sci. 2021;28:1489–1497. doi: 10.1007/s43032-020-00439-5.
    1. Mirmiran P., Bahadoran Z., Golzarand M., Zojaji H., Azizi F. A comparative study of broccoli sprouts powder and standard triple therapy on cardiovascular risk factors following H.pylori eradication: A randomized clinical trial in patients with type 2 diabetes. J. Diabetes Metab. Disord. 2014;13:64. doi: 10.1186/2251-6581-13-64.
    1. Borgi L., Muraki I., Satija A., Willett W.C., Rimm E.B., Forman J.P. Fruit and Vegetable Consumption and the Incidence of Hypertension in Three Prospective Cohort Studies. Hypertension. 2016;67:288–293. doi: 10.1161/HYPERTENSIONAHA.115.06497.
    1. Zhao C., Liu Y.Y., Lai S.S., Cao H., Guan Y., Cheang W.S., Liu B., Zhao K.W., Miao S., Riviere C., et al. Effects of domestic cooking process on the chemical and biological properties of dietary phytochemicals. Trends Food Sci. Tech. 2019;85:55–66. doi: 10.1016/j.tifs.2019.01.004.
    1. Oliviero T., Verkerk R., Dekker M. Isothiocyanates from Brassica Vegetables-Effects of Processing, Cooking, Mastication, and Digestion. Mol. Nutr. Food Res. 2018;62:e1701069. doi: 10.1002/mnfr.201701069.

Source: PubMed

3
Abonneren