Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

Dominika Justyna Ksiazek-Winiarek, Piotr Szpakowski, Andrzej Glabinski, Dominika Justyna Ksiazek-Winiarek, Piotr Szpakowski, Andrzej Glabinski

Abstract

Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets.

References

    1. Noseworthy J. H., Lucchinetti C., Rodriguez M., Weinshenker B. G. Multiple sclerosis. The New England Journal of Medicine. 2000;343(13):938–952. doi: 10.1056/nejm200009283431307.
    1. Sorensen P. S. Multiple sclerosis: pathophysiology revisited. The Lancet Neurology. 2005;4(1):9–10. doi: 10.1016/s1474-4422(04)00948-2.
    1. Nistico R., Mori F., Feligioni M., Nicoletti F., Centonze D. Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;369(1633)20130162
    1. Johnston M. V., Ishida A., Ishida W. N., Matsushita H. B., Nishimura A., Tsuji M. Plasticity and injury in the developing brain. Brain & Development. 2009;31(1):1–10. doi: 10.1016/j.braindev.2008.03.014.
    1. Draganski B., Gaser C., Kempermann G., et al. Temporal and spatial dynamics of brain structure changes during extensive learning. The Journal of Neuroscience. 2006;26(23):6314–6317. doi: 10.1523/jneurosci.4628-05.2006.
    1. Dayan E., Cohen L. G. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–454. doi: 10.1016/j.neuron.2011.10.008.
    1. Martin S. J., Morris R. G. M. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus. 2002;12(5):609–636. doi: 10.1002/hipo.10107.
    1. Jacobs K. M., Donoghue J. P. Reshaping the cortical motor map by unmasking latent intracortical connections. Science. 1991;251(4996):944–947. doi: 10.1126/science.2000496.
    1. Cantrell A. R., Catterall W. A. Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nature Reviews Neuroscience. 2001;2(6):397–407. doi: 10.1038/35077553.
    1. Hess G., Aizenman C. D., Donoghue J. P. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal of Neurophysiology. 1996;75(5):1765–1778.
    1. Hess G., Donoghue J. P. Long-term depression of horizontal connections in rat motor cortex. European Journal of Neuroscience. 1996;8(4):658–665. doi: 10.1111/j.1460-9568.1996.tb01251.x.
    1. Martino G. How the brain repairs itself: new therapeutic strategies in inflammatory and degenerative CNS disorders. The Lancet Neurology. 2004;3(6):372–378. doi: 10.1016/s1474-4422(04)00771-9.
    1. Martino G., Pluchino S., Bonfanti L., Schwartz M. Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells. Physiological Reviews. 2011;91(4):1281–1304. doi: 10.1152/physrev.00032.2010.
    1. Frischer J. M., Bramow S., Dal-Bianco A., et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(5):1175–1189. doi: 10.1093/brain/awp070.
    1. Evangelou N., Konz D., Esiri M. M., Smith S., Palace J., Matthews P. M. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain. 2000;123(part 9):1845–1849. doi: 10.1093/brain/123.9.1845.
    1. Crawford D. K., Mangiardi M., Xia X., López-Valdés H. E., Tiwari-Woodruff S. K. Functional recovery of callosal axons following demyelination: a critical window. Neuroscience. 2009;164(4):1407–1421. doi: 10.1016/j.neuroscience.2009.09.069.
    1. Mezzapesa D. M., Rocca M. A., Rodegher M., Comi G., Filippi M. Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Human Brain Mapping. 2008;29(5):562–573. doi: 10.1002/hbm.20418.
    1. Pantano P., Mainero C., Lenzi D., et al. A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain. 2005;128(9):2146–2153. doi: 10.1093/brain/awh549.
    1. Reddy H., Narayanan S., Matthews P. M., et al. Relating axonal injury to functional recovery in MS. Neurology. 2000;54(1):236–239.
    1. Cifelli A., Matthews P. M. Cerebral plasticity in multiple sclerosis: insights from fMRI. Multiple Sclerosis. 2002;8(3):193–199. doi: 10.1191/1352458502ms820oa.
    1. Schoonheim M. M., Geurts J. J. G., Barkhof F. The limits of functional reorganization in multiple sclerosis. Neurology. 2010;74(16):1246–1247. doi: 10.1212/wnl.0b013e3181db9957.
    1. Tomassini V., Johansen-Berg H., Leonardi L., et al. Preservation of motor skill learning in patients with multiple sclerosis. Multiple Sclerosis. 2011;17(1):103–115. doi: 10.1177/1352458510381257.
    1. Zeller D., Aufm Kampe K., Biller A., et al. Rapid-onset central motor plasticity in multiple sclerosis. Neurology. 2010;74(9):728–735. doi: 10.1212/WNL.0b013e3181d31dcf.
    1. Whitlock J. R., Heynen A. J., Shuler M. G., Bear M. F. Learning induces long-term potentiation in the hippocampus. Science. 2006;313(5790):1093–1097. doi: 10.1126/science.1128134.
    1. Engert F., Bonhoeffer T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature. 1999;399(6731):66–70. doi: 10.1038/19978.
    1. Monfils M.-H., VandenBerg P. M., Kleim J. A., Teskey G. C. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer v of rat sensorimotor neocortex. Cerebral Cortex. 2004;14(5):586–593. doi: 10.1093/cercor/bhh020.
    1. Desmond N. L., Levy W. B. Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dentate gyrus. The Journal of Comparative Neurology. 1986;253(4):466–475. doi: 10.1002/cne.902530404.
    1. Pastalkova E., Serrano P., Pinkhasova D., Wallace E., Fenton A. A., Sacktor T. C. Storage of spatial information by the maintenance mechanism of LTP. Science. 2006;313(5790):1141–1444. doi: 10.1126/science.1128657.
    1. de Roo M., Klauser P., Muller D. LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biology. 2008;6(9, article e219) doi: 10.1371/journal.pbio.0060219.
    1. Morgen K., Kadom N., Sawaki L., et al. Training-dependent plasticity in patients with multiple sclerosis. Brain. 2004;127(11):2506–2517. doi: 10.1093/brain/awh266.
    1. Mori F., Kusayanagi H., Nicoletti C. G., Weiss S., Marciani M. G., Centonze D. Cortical plasticity predicts recovery from relapse in multiple sclerosis. Multiple Sclerosis. 2014;20(4):451–457. doi: 10.1177/1352458513512541.
    1. Mori F., Nisticò R., Mandolesi G., et al. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. NeuroMolecular Medicine. 2014;16(1):38–51. doi: 10.1007/s12017-013-8249-7.
    1. Rossi S., Studer V., Moscatelli A., et al. Opposite roles of NMDA receptors in relapsing and primary progressive multiple sclerosis. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0067357.e67357
    1. Centonze D., Muzio L., Rossi S., et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. Journal of Neuroscience. 2009;29(11):3442–3452. doi: 10.1523/jneurosci.5804-08.2009.
    1. Rossi S., Muzio L., de Chiara V., et al. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity. 2011;25(5):947–956. doi: 10.1016/j.bbi.2010.10.004.
    1. Mandolesi G., Grasselli G., Musella A., et al. GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiology of Disease. 2012;46(2):414–424. doi: 10.1016/j.nbd.2012.02.005.
    1. Nisticò R., Mango D., Mandolesi G., et al. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE. 2013;8(1) doi: 10.1371/journal.pone.0054666.e54666
    1. Dutta R., McDonough J., Yin X., et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology. 2006;59(3):478–489. doi: 10.1002/ana.20736.
    1. Clements R. J., McDonough J., Freeman E. J. Distribution of parvalbumin and calretinin immunoreactive interneurons in motor cortex from multiple sclerosis post-mortem tissue. Experimental Brain Research. 2008;187(3):459–465. doi: 10.1007/s00221-008-1317-9.
    1. Dantzer R., O'Connor J. C., Freund G. G., Johnson R. W., Kelley K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience. 2008;9(1):46–56. doi: 10.1038/nrn2297.
    1. Di Filippo M., de Iure A., Durante V., et al. Synaptic plasticity and experimental autoimmune encephalomyelitis: implications for multiple sclerosis. Brain Research. 2014 doi: 10.1016/j.brainres.2014.12.004.
    1. Dirnagl U., Klehmet J., Braun J. S., et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2, supplement):770–773. doi: 10.1161/01.str.0000251441.89665.bc.
    1. Haeusler K. G., Schmidt W. U. H., Föhring F., et al. Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovascular Diseases. 2008;25(1-2):50–58. doi: 10.1159/000111499.
    1. Minichiello L., Casagranda F., Tatche R. S., et al. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Neuron. 1998;21(2):335–345. doi: 10.1016/s0896-6273(00)80543-7.
    1. Liu I. Y. C., Lyons W. E., Mamounas L. A., Thompson R. F. Brain-derived neurotrophic factor plays a critical role in contextual fear conditioning. Journal of Neuroscience. 2004;24(36):7958–7963. doi: 10.1523/JNEUROSCI.1948-04.2004.
    1. Rex C. S., Lin C.-Y., Kramár E. A., Chen L. Y., Gall C. M., Lynch G. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. Journal of Neuroscience. 2007;27(11):3017–3029. doi: 10.1523/jneurosci.4037-06.2007.
    1. Chen L. Y., Rex C. S., Sanaiha Y., Lynch G., Gall C. M. Learning induces neurotrophin signaling at hippocampal synapses. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(15):7030–7035. doi: 10.1073/pnas.0912973107.
    1. Hofer M., Pagliusi S. R., Hohn A., Leibrock J., Barde Y.-A. Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. The EMBO Journal. 1990;9(8):2459–2464.
    1. Kerschensteiner M., Gallmeier E., Behrens L., et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? Journal of Experimental Medicine. 1999;189(5):865–870. doi: 10.1084/jem.189.5.865.
    1. Lewin G. R., Barde Y.-A. Physiology of the neurotrophins. Annual Review of Neuroscience. 1996;19(1):289–317. doi: 10.1146/annurev.ne.19.030196.001445.
    1. Besser M., Wank R. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. Journal of Immunology. 1999;162(11):6303–6306.
    1. Moalem G., Leibowitz-Amit R., Yoles E., Mor F., Cohen I. R., Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Medicine. 1999;5(1):49–55. doi: 10.1038/4734.
    1. Hammarberg H., Lidman O., Lundberg C., et al. Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. Journal of Neuroscience. 2000;20(14):5283–5291.
    1. Hauben E., Nevo U., Yoles E., et al. Autoimmune T cells as potential neuroprotective therapy for spinal cord injury. The Lancet. 2000;355(9200):286–287. doi: 10.1016/s0140-6736(99)05140-5.
    1. Studer L., Spenger C., Seiler R. W., Othberg A., Lindvall O., Odin P. Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. Experimental Brain Research. 1996;108(2):328–336.
    1. Tongiorgi E., Sartori A., Baj G., et al. Altered serum content of brain-derived neurotrophic factor isoforms in multiple sclerosis. Journal of the Neurological Sciences. 2012;320(1-2):161–165. doi: 10.1016/j.jns.2012.07.016.
    1. Lundgaard I., Luzhynskaya A., Stockley J. H., et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biology. 2013;11(12) doi: 10.1371/journal.pbio.1001743.e1001743
    1. Schneider H., Pitossi F., Balschun D., Wagner A., del Rey A., Besedovsky H. O. A neuromodulatory role of interleukin-1beta in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(13):7778–7783.
    1. Rachal Pugh C., Fleshner M., Watkins L. R., Maier S. F., Rudy J. W. The immune system and memory consolidation: a role for the cytokine IL-1β . Neuroscience and Biobehavioral Reviews. 2001;25(1):29–41. doi: 10.1016/s0149-7634(00)00048-8.
    1. Barrientos R. M., Frank M. G., Hein A. M., et al. Time course of hippocampal IL-1 β and memory consolidation impairments in aging rats following peripheral infection. Brain, Behavior, and Immunity. 2009;23(1):46–54. doi: 10.1016/j.bbi.2008.07.002.
    1. Frank M. G., Barrientos R. M., Hein A. M., Biedenkapp J. C., Watkins L. R., Maier S. F. IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344xBN F1 rats. Brain, Behavior, and Immunity. 2010;24(2):254–262.
    1. Bellinger F. P., Madamba S., Siggins G. R. Interleukin 1β inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Research. 1993;628(1-2):227–234. doi: 10.1016/0006-8993(93)90959-q.
    1. Erion J. R., Wosiski-Kuhn M., Dey A., et al. Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. The Journal of Neuroscience. 2014;34(7):2618–2631. doi: 10.1523/jneurosci.4200-13.2014.
    1. Kim D. Y., Hao J., Liu R., Turner G., Shi F.-D., Rho J. M. Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS ONE. 2012;7(5) doi: 10.1371/journal.pone.0035476.e35476
    1. di Filippo M., Chiasserini D., Gardoni F., et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiology of Disease. 2013;52:229–236. doi: 10.1016/j.nbd.2012.12.009.
    1. Prochnow N., Gold R., Haghikia A. An electrophysiologic approach to quantify impaired synaptic transmission and plasticity in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology. 2013;264(1-2):48–53. doi: 10.1016/j.jneuroim.2013.09.012.
    1. Huang E. J., Reichardt L. F. Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677.
    1. Tong L., Aleph Prieto G., Kramár E. A., et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. The Journal of Neuroscience. 2012;32(49):17714–17724. doi: 10.1523/jneurosci.1253-12.2012.
    1. Helmut K., Hanisch U.-K., Noda M., Verkhratsky A. Physiology of microglia. Physiological Reviews. 2011;91(2):461–553. doi: 10.1152/physrev.00011.2010.
    1. Cherry J. D., Olschowka J. A., O'Banion M. K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of Neuroinflammation. 2014;11, article 98 doi: 10.1186/1742-2094-11-98.
    1. Olah M., Amor S., Brouwer N., et al. Identification of a microglia phenotype supportive of remyelination. Gila. 2012;60(2):306–321. doi: 10.1002/glia.21266.
    1. Amor S., Puentes F., Baker D., van der Valk P. Inflammation in neurodegenerative diseases. Immunology. 2010;129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x.
    1. De Felice F. G., Velasco P. T., Lambert M. P., et al. Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. The Journal of Biological Chemistry. 2007;282(15):11590–11601. doi: 10.1074/jbc.m607483200.
    1. Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120(3):393–399. doi: 10.1093/brain/120.3.393.
    1. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine. 1998;338(5):278–285. doi: 10.1056/nejm199801293380502.
    1. Haass C., Kaether C., Thinakaran G., Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harbor Perspectives in Medicine. 2012;2(5) doi: 10.1101/cshperspect.a006270.a006270
    1. Kang J., Lemaire H.-G., Unterbeck A., et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325(6106):733–736. doi: 10.1038/325733a0.
    1. Yamin G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. Journal of Neuroscience Research. 2009;87(8):1729–1736. doi: 10.1002/jnr.21998.
    1. Li S., Hong S., Shepardson N. E., Walsh D. M., Shankar G. M., Selkoe D. Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009;62(6):788–801. doi: 10.1016/j.neuron.2009.05.012.
    1. Itoh A., Akaike T., Sokabe M., et al. Impairments of long-term potentiation in hippocampal slices of β-amyloid-infused rats. European Journal of Pharmacology. 1999;382(3):167–175. doi: 10.1016/s0014-2999(99)00601-9.
    1. Chen Q.-S., Wei W.-Z., Shimahara T., Xie C.-W. Alzheimer amyloid β-peptide inhibits the late phase of long-term potentiation through calcineurin-dependent mechanisms in the hippocampal dentate gyrus. Neurobiology of Learning and Memory. 2002;77(3):354–371. doi: 10.1006/nlme.2001.4034.
    1. Parameshwaran K., Sims C., Kanju P., et al. Amyloid β-peptide Aβ1-42 but not Aβ 1-40 attenuates synaptic AMPA receptor function. Synapse. 2007;61(6):367–374. doi: 10.1002/syn.20386.
    1. Liu L., Wong T. P., Pozza M. F., et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304(5673):1021–1024. doi: 10.1126/science.1096615.
    1. Hsieh H., Boehm J., Sato C., et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron. 2006;52(5):831–843. doi: 10.1016/j.neuron.2006.10.035.
    1. Mucke L., Selkoe D. J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harbor Perspectives in Medicine. 2012;2(7) doi: 10.1101/cshperspect.a006338.a006338
    1. Shankar G. M., Li S., Mehta T. H., et al. Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nature Medicine. 2008;14(8):837–842. doi: 10.1038/nm1782.
    1. Rowan M. J., Klyubin I., Wang Q., Hu N. W., Anwyl R. Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochemical Society Transactions. 2007;35, part 5:1219–1223. doi: 10.1042/bst0351219.
    1. Furlan R., Brambilla E., Sanvito F., et al. Vaccination with amyloid-β peptide induces autoimmune encephalomyelitis in C57/BL6 mice. Brain. 2003;126(2):285–291. doi: 10.1093/brain/awg031.
    1. Grant J. L., Ghosn E. E. B., Axtell R. C., et al. Reversal of paralysis and reduced inflammation from peripheral administration of β-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Science Translational Medicine. 2012;4(145) doi: 10.1126/scitranslmed.3004145.145ra105
    1. Kurnellas M. P., Adams C. M., Sobel R. A., Steinman L., Rothbard J. B. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Science Translational Medicine. 2013;5(179) doi: 10.1126/scitranslmed.3005681.179ra42
    1. Hein Nee Maier K., Köhler A., Diem R., et al. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neuroscience Letters. 2008;436(1):72–76.
    1. Vališ M., Taláb R., Šťourač P., Andrýs C., Masopust J. Tau protein, phosphorylated tau protein and beta-amyloid42 in the cerebrospinal fluid of multiple sclerosis patients. Neuroendocrinology Letters. 2008;29(6):971–976.
    1. Szalardy L., Zadori D., Simu M., Bencsik K., Vecsei L., Klivenyi P. Evaluating biomarkers of neuronal degeneration and neuroinflammation in CSF of patients with multiple sclerosis–osteopontin as a potential marker of clinical severity. Journal of the Neurological Sciences. 2013;331(1-2):38–42. doi: 10.1016/j.jns.2013.04.024.
    1. Rossi S., Mancino R., Bergami A., et al. Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Multiple Sclerosis. 2011;17(11):1301–1312. doi: 10.1177/1352458511410342.
    1. Augutis K., Axelsson M., Portelius E., et al. Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis. Multiple Sclerosis. 2013;19(5):543–552. doi: 10.1177/1352458512460603.
    1. Mori F., Rossi S., Sancesario G., et al. Cognitive and cortical plasticity deficits correlate with altered amyloid-[beta] CSF levels in multiple sclerosis. Neuropsychopharmacology. 2011;36(3):559–568. doi: 10.1038/npp.2010.187.
    1. Bellmann-Strobl J., Wuerfel J., Aktas O., et al. Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis. Neurology. 2009;73(20):1624–1627. doi: 10.1212/WNL.0b013e3181c1de4f.
    1. Braak H., Zetterberg H., del Tredici K., Blennow K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathologica. 2013;126(5):631–641. doi: 10.1007/s00401-013-1139-0.
    1. Blennow K., Zetterberg H., Fagan A. M. Fluid biomarkers in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine. 2012;2(9) doi: 10.1101/cshperspect.a006221.a006221
    1. Englund H., Gunnarsson M. D., Brundin R. M., et al. Oligomerization partially explains the lowering of Abeta42 in Alzheimer's disease cerebrospinal fluid. Neurodegenerative Diseases. 2009;6(4):139–147. doi: 10.1159/000225376.
    1. Kierdorf K., Wang Y., Neumann H. Immune-mediated CNS damage. Results and Problems in Cell Differentiation. 2010;51:173–196. doi: 10.1007/400_2008_15.
    1. Schwartz M., Moalem G., Leibowitz-Amit R., Cohen I. R. Innate and adaptive immune responses can be beneficial for CNS repair. Trends in Neurosciences. 1999;22(7):259–299.
    1. Kerschensteiner M., Stadelmann C., Dechant G., Wekerle H., Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Annals of Neurology. 2003;53(3):292–304. doi: 10.1002/ana.10446.
    1. Rottlaender A., Villwock H., Addicks K., Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology. 2011;133(3):370–378. doi: 10.1111/j.1365-2567.2011.03450.x.
    1. Ponomarev E. D., Shriver L. P., Maresz K., Pedras-Vasconcelos J., Verthelyi D., Dittel B. N. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. Journal of Immunology. 2007;178(1):39–48. doi: 10.4049/jimmunol.178.1.39.
    1. Frost E. E., Nielsen J. A., Le T. Q., Armstrong R. C. PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. Journal of Neurobiology. 2003;54(3):457–472. doi: 10.1002/neu.10158.
    1. Erlandsson A., Enarsson M., Forsberg-Nilsson K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. Journal of Neuroscience. 2001;21(10):3483–3491.
    1. Vana A. C., Flint N. C., Harwood N. E., Le T. Q., Fruttiger M., Armstrong R. C. Platelet-derived growth factor promotes repair of chronically demyelinated white matter. Journal of Neuropathology and Experimental Neurology. 2007;66(11):975–988. doi: 10.1097/nen.0b013e3181587d46.
    1. Williams B. P., Park J. K., Alberta J. A., et al. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron. 1997;18(4):553–562. doi: 10.1016/S0896-6273(00)80297-4.
    1. Cheng B., Mattson M. P. PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: evidence for induction of antioxidant pathways. Journal of Neuroscience. 1995;15(11):7095–7104.
    1. Mori F., Rossi S., Piccinin S., et al. Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. The Journal of Neuroscience. 2013;33(49):19112–19119. doi: 10.1523/jneurosci.2536-13.2013.
    1. Mori F., Nicoletti C. G., Rossi S., et al. Growth factors and synaptic plasticity in relapsing-remitting multiple sclerosis. NeuroMolecular Medicine. 2014;16(2):490–498. doi: 10.1007/s12017-014-8297-7.
    1. Peng F., Yao H., Bai X., et al. Platelet-derived growth factor-mediated induction of the synaptic plasticity gene Arc/Arg3.1. Journal of Biological Chemistry. 2010;285(28):21615–21624. doi: 10.1074/jbc.m110.107003.
    1. Harirchian M. H., Tekieh A. H., Modabbernia A., et al. Serum and CSF PDGF-AA and FGF-2 in relapsing-remitting multiple sclerosis: a case-control study. European Journal of Neurology. 2012;19(2):241–247. doi: 10.1111/j.1468-1331.2011.03476.x.
    1. Sasahara M., Fries J. W. U., Raines E. W., et al. PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell. 1991;64(1):217–227. doi: 10.1016/0092-8674(91)90223-l.
    1. Gozal D., Simakajornboon N., Czapla M. A., et al. Brainstem activation of platelet-derived growth factor-receptor modulates the late phase of the hypoxic ventilatory response. Journal of Neurochemistry. 2000;74(1):310–319. doi: 10.1046/j.1471-4159.2000.0740310.x.
    1. Bonow R. H., Aïd S., Zhang Y., Becker K. G., Bosetti F. The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics Journal. 2009;9(2):116–126. doi: 10.1038/tpj.2008.15.
    1. Guzowski J. F., Setlow B., Wagner E. K., McGaugh J. L. Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. The Journal of Neuroscience. 2001;21(14):5089–5098.
    1. Ishii Y., Oya T., Zheng L., et al. Mouse brains deficient in neuronal PDGF receptor-β develop normally but are vulnerable to injury. Journal of Neurochemistry. 2006;98(2):588–600. doi: 10.1111/j.1471-4159.2006.03922.x.
    1. Bartlett T. E., Wang Y. T. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology. 2013;74:59–68. doi: 10.1016/j.neuropharm.2013.01.012.
    1. Piomelli D. The molecular logic of endocannabinoid signalling. Nature Reviews Neuroscience. 2003;4(11):873–884. doi: 10.1038/nrn1247.
    1. Marsicano G., Lutz B. Neuromodulatory functions of the endocannabinoid system. Journal of Endocrinological Investigation. 2006;29(supplement 3):27–46. doi: 10.1007/bf03349186.
    1. Vaughan C. W., Christie M. J. Retrograde signalling by endocannabinoids. Handbook of Experimental Pharmacology. 2005;168:367–383. doi: 10.1007/3-540-26573-2-12.
    1. Harkany T., Keimpema E., Barabás K., Mulder J. Endocannabinoid functions controlling neuronal specification during brain development. Molecular and Cellular Endocrinology. 2008;286(1-2) supplement 1:S84–S90. doi: 10.1016/j.mce.2008.02.011.
    1. Lovinger D. M. Presynaptic modulation by endocannabinoids. Handbook of Experimental Pharmacology. 2008;184:435–477. doi: 10.1007/978-3-540-74805-2-14.
    1. Chevaleyre V., Takahashi K. A., Castillo P. E. Endocannabinoid-mediated synaptic plasticity in the CNS. Annual Review of Neuroscience. 2006;29:37–76. doi: 10.1146/annurev.neuro.29.051605.112834.
    1. Pryce G., Ahmed Z., Hankey D. J. R., et al. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003;126(part 10):2191–2202. doi: 10.1093/brain/awg224.
    1. Mestre L., Correa F., Arévalo-Martín A., et al. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis. Journal of Neurochemistry. 2005;92(6):1327–1339. doi: 10.1111/j.1471-4159.2004.02979.x.
    1. Mestre L., Docagne F., Correa F., et al. A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Molecular and Cellular Neuroscience. 2009;40(2):258–266. doi: 10.1016/j.mcn.2008.10.015.
    1. Croxford J. L., Pryce G., Jackson S. J., et al. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology. 2008;193(1-2):120–129. doi: 10.1016/j.jneuroim.2007.10.024.
    1. Zhang M., Martin B. R., Adler M. W., et al. Modulation of cannabinoid receptor activation as a neuroprotective strategy for EAE and stroke. Journal of Neuroimmune Pharmacology. 2009;4(2):249–259. doi: 10.1007/s11481-009-9148-4.
    1. Centonze D., Bari M., Rossi S., et al. The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain. 2007;130(10):2543–2553. doi: 10.1093/brain/awm160.
    1. Baker D., Pryce G., Croxford J. L., et al. Endocannabinoids control spasticity in a multiple sclerosis model. The FASEB Journal. 2001;15(2):300–302.
    1. Webb M., Luo L., Ma J. Y., Tham C.-S. Genetic deletion of fatty acid amide hydrolase results in improved long-term outcome in chronic autoimmune encephalitis. Neuroscience Letters. 2008;439(1):106–110. doi: 10.1016/j.neulet.2008.04.090.
    1. Musella A., Sepman H., Mandolesi G., et al. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis. Neuropharmacology. 2014;79:567–572. doi: 10.1016/j.neuropharm.2014.01.007.
    1. Devane W. A., Dysarz F. A., III, Johnson M. R., Melvin L. S., Howlett A. C. Determination and characterization of a cannabinoid receptor in rat brain. Molecular Pharmacology. 1988;34(5):605–613.
    1. Howlett A. C. Reverse pharmacology applied to the cannabinoid receptor. Trends in Pharmacological Sciences. 1990;11(10):395–397. doi: 10.1016/0165-6147(90)90142-U.
    1. Rossi S., Furlan R., Chiara V. D., et al. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity. 2011;25(6):1242–1248. doi: 10.1016/j.bbi.2011.03.017.
    1. Rossi S., Motta C., Studer V., et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Multiple Sclerosis. 2014;20(3):304–312. doi: 10.1177/1352458513498128.
    1. Centonze D., Mori F., Koch G., et al. Lack of effect of cannabis-based treatment on clinical and laboratory measures in multiple sclerosis. Neurological Sciences. 2009;30(6):531–534. doi: 10.1007/s10072-009-0136-5.
    1. Zhao P., Leonoudakis D., Abood M. E., Beattie E. C. Cannabinoid receptor activation reduces TNFalpha-Induced surface localization of AMPAR-type glutamate receptors and excitotoxicity. Neuropharmacology. 2010;58(2):551–558. doi: 10.1016/j.neuropharm.2009.07.035.
    1. de Roo M., Klauser P., Garcia P. M., Poglia L., Muller D. Chapter 11 Spine dynamics and synapse remodeling during LTP and memory processes. Progress in Brain Research. 2008;169:199–207. doi: 10.1016/s0079-6123(07)00011-8.
    1. Kesselring J., Beer S. Symptomatic therapy and neurorehabilitation in multiple sclerosis. The Lancet Neurology. 2005;4(10):643–652. doi: 10.1016/s1474-4422(05)70193-9.
    1. Novotna A., Mares J., Ratcliffe S., et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. European Journal of Neurology. 2011;18(9):1122–1131. doi: 10.1111/j.1468-1331.2010.03328.x.
    1. De Chiara V., Errico F., Musella A., et al. Voluntary exercise and sucrose consumption enhance cannabinoid cb1 receptor sensitivity in the striatum. Neuropsychopharmacology. 2010;35(2):374–387. doi: 10.1038/npp.2009.141.
    1. Rossi S., Furlan R., De Chiara V., et al. Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiology of Disease. 2009;36(1):51–59. doi: 10.1016/j.nbd.2009.06.013.
    1. Mori F., Ljoka C., Nicoletti C. G., et al. CB1 receptor affects cortical plasticity and response to physiotherapy in multiple sclerosis. Neurology: Neuroimmunology & Neuroinflammation. 2014;1(4, article e48)
    1. Cutando L., Busquets-Garcia A., Puighermanal E., et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. The Journal of Clinical Investigation. 2013;123(7):2816–2831. doi: 10.1172/jci67569.
    1. Rossi S., Buttari F., Studer V., et al. The (AAT)n repeat of the cannabinoid CB1 receptor gene influences disease progression in relapsing multiple sclerosis. Multiple Sclerosis. 2011;17(3):281–288. doi: 10.1177/1352458510388680.
    1. Ramil E., Sánchez A. J., González-Pérez P., et al. The cannabinoid receptor 1 gene (CNR1) and multiple sclerosis: an association study in two case-control groups from Spain. Multiple Sclerosis. 2010;16(2):139–146. doi: 10.1177/1352458509355071.
    1. Madroñal N., Gruart A., Valverde O., Espadas I., Moratalla R., Delgado-García J. M. Involvement of cannabinoid CB1 receptor in associative learning and in hippocampal CA3-CA1 synaptic plasticity. Cerebral Cortex. 2012;22(3):550–566. doi: 10.1093/cercor/bhr103.
    1. Dubreucq S., Durand A., Matias I., et al. Ventral tegmental area cannabinoid type-1 receptors control voluntary exercise performance. Biological Psychiatry. 2013;73(9):895–903. doi: 10.1016/j.biopsych.2012.10.025.

Source: PubMed

3
Abonneren