Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity

Mario Stampanoni Bassi, Ennio Iezzi, Luigi Pavone, Georgia Mandolesi, Alessandra Musella, Antonietta Gentile, Luana Gilio, Diego Centonze, Fabio Buttari, Mario Stampanoni Bassi, Ennio Iezzi, Luigi Pavone, Georgia Mandolesi, Alessandra Musella, Antonietta Gentile, Luana Gilio, Diego Centonze, Fabio Buttari

Abstract

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.

Keywords: brain networks; connectivity; inflammation; long-term potentiation (LTP); multiple sclerosis; resting state functional MRI (rs-fMRI); synaptic plasticity; synaptic scaling.

Conflict of interest statement

The authors declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: G.M. reports grants and/or personal fees from Merck, Novartis, Biogen Idec, and Ibsa. D.C. is an Advisory Board member of Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva and received honoraria for speaking or consultation fees from Almirall, Bayer Schering, Biogen, GW Pharmaceuticals, Merck Serono, Novartis, Roche, Sanofi-Genzyme, and Teva. He is also the principal investigator in clinical trials for Bayer Schering, Biogen, Merck Serono, Mitsubishi, Novartis, Roche, Sanofi-Genzyme, and Teva. His preclinical and clinical research was supported by grants from Bayer Schering, Biogen Idec, Celgene, Merck Serono, Novartis, Roche, Sanofi-Genzyme and Teva. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. F.B. acted as Advisory Board members of Teva and Roche and received honoraria for speaking or consultation fees from Merck Serono, Teva, Biogen Idec, Sanofi, and Novartis and non-financial support from Merck Serono, Teva, Biogen Idec, and Sanofi. M.S.B., E.I., L.P., A.M., A.G., and L.G. declare no conflict of interest.

Figures

Figure 1
Figure 1
Different forms of synaptic plasticity cooperate to promote optimal brain network topology. Left panel: (A) In physiological conditions, the balance between anti-homeostatic and homeostatic plasticity allows the generation of potentiated synapses, associated with selective information processing, and prevents uncontrolled hyperexcitability. (B) Long-term potentiation (LTP) may be specifically involved in generating highly connected nodes (hubs); conversely, synaptic downscaling may be useful for maintaining low connectivity in the peripheral nodes of the network. The fine-tuning between these two forms of synaptic plasticity is required to form brain networks characterized by a scale-free degree distribution. (C) The resulting brain network architecture is characterized by elevated efficiency of information processing and resilience to random damage. Right panel: (A) In multiple sclerosis (MS), neuroinflammation is associated with impaired LTP and pathologically overexpressed synaptic upscaling, leading to uncontrolled neuronal hyperexcitability. (B) Disrupted LTP may selectively reduce hub connectivity, while overexpressed upscaling may contribute to increasing connectivity in the periphery. This is associated with loss of optimal brain network architecture as demonstrated by further random degree distribution. (C) Loss of LTP may selectively disrupt hub connectivity and rich club organization. Conversely, pathologic upscaling may promote increased local connectivity. The resulting brain network architecture dramatically reduces efficiency and impairs the ability to compensate for ongoing brain damage in MS.

References

    1. Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2015;69:292–302. doi: 10.1002/ana.22366.
    1. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr. Opin. Neurol. 2002;15:239–245. doi: 10.1097/00019052-200206000-00003.
    1. Rossi S., Studer V., Motta C., Germani G., Macchiarulo G., Buttari F., Mancino R., Castelli M., De Chiara V., Weiss S., et al. Cerebrospinal fluid detection of interleukin-1b in phase of remission predicts disease progression in multiple sclerosis. J. Neuroinflammation. 2014;11:32. doi: 10.1186/1742-2094-11-32.
    1. Stampanoni Bassi M., Iezzi E., Landi D., Monteleone F., Gilio L., Simonelli I., Musella A., Mandolesi G., De Vito F., Furlan R., et al. Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J. Neurol. 2018;265:2540–2547. doi: 10.1007/s00415-018-8994-5.
    1. Centonze D., Muzio L., Rossi S., Cavasinni F., De Chiara V., Bergami A., Musella A., D’Amelio M., Cavallucci V., Martorana A., et al. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci. 2009;29:3442–3452. doi: 10.1523/JNEUROSCI.5804-08.2009.
    1. Mandolesi G., Musella A., Gentile A., Grasselli G., Haji N., Sepman H., Fresegna D., Bullitta S., De Vito F., Musumeci G., et al. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J. Neurosci. 2013;33:12105–12121. doi: 10.1523/JNEUROSCI.5369-12.2013.
    1. Stampanoni Bassi M., Gilio L., Buttari F., Maffei P., Marfia G.A., Restivo D.A., Centonze D., Iezzi E. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Front. Neurosci. 2017;11:710. doi: 10.3389/fnins.2017.00710.
    1. Achard S., Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 2007;3:e17. doi: 10.1371/journal.pcbi.0030017.
    1. Hillary F.G., Grafman J.H. Injured Brains and Adaptive Networks: The Benefits and Costs of Hyperconnectivity. Trends. Cogn. Sci. 2017;21:385–401. doi: 10.1016/j.tics.2017.03.003.
    1. Centonze D., Rossi S., Tortiglione A., Picconi B., Prosperetti C., De Chiara V., Bernardi G., Calabresi P. Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiol. Dis. 2007;27:44–53. doi: 10.1016/j.nbd.2007.03.012.
    1. Di Lazzaro V., Profice P., Pilato F., Capone F., Ranieri F., Pasqualetti P., Colosimo C., Pravatà E., Cianfoni A., Dileone M. Motor cortex plasticity predicts recovery in acute stroke. Cereb. Cortex. 2010;20:1523–1528. doi: 10.1093/cercor/bhp216.
    1. Watts D.J., Strogatz S.H. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–442. doi: 10.1038/30918.
    1. Sporns O., Tononi G., Kötter R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 2005;1:e42. doi: 10.1371/journal.pcbi.0010042.
    1. Stam C.J., Reijneveld J.C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 2007;1:3. doi: 10.1186/1753-4631-1-3.
    1. Bullmore E., Sporns O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186–198. doi: 10.1038/nrn2575.
    1. Stam C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014;15:683–695. doi: 10.1038/nrn3801.
    1. Rossini P.M., Di Iorio R., Bentivoglio M., Bertini G., Ferreri F., Gerloff C., Ilmoniemi R.J., Miraglia F., Nitsche M.A., Pestilli F., et al. Methods for analysis of brain connectivity: An IFCN-sponsored review. Clin. Neurophysiol. 2019;130:1833–1858. doi: 10.1016/j.clinph.2019.06.006.
    1. Biswal B.B., Yetkin F.Z., Haughton V.M., Hyde J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409.
    1. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007;8:700–711. doi: 10.1038/nrn2201.
    1. Sporns O., Honey C.J., Kötter R. Identification and classification of hubs in brain networks. PLoS ONE. 2007;2:e1049. doi: 10.1371/journal.pone.0001049.
    1. Van den Heuvel M.P., Sporns O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 2013;33:14489–14500. doi: 10.1523/JNEUROSCI.2128-13.2013.
    1. Barabasi A.L., Albert R. Emergence of scaling in random networks. Science. 1999;286:509–512. doi: 10.1126/science.286.5439.509.
    1. Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 2006;26:63–72. doi: 10.1523/JNEUROSCI.3874-05.2006.
    1. Crossley N.A., Mechelli A., Scott J., Carletti F., Fox P.T., McGuire P., Bullmore E.T. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. 2014;137:2382–2395. doi: 10.1093/brain/awu132.
    1. Turrigiano G.G., Nelson S.B. Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 2004;5:97–107. doi: 10.1038/nrn1327.
    1. Citri A., Malenka R.C. Synaptic plasticity: Multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41. doi: 10.1038/sj.npp.1301559.
    1. Bliss T.V., Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973;232:331–356. doi: 10.1113/jphysiol.1973.sp010273.
    1. Mori F., Kusayanagi H., Nicoletti C.G., Weiss S., Marciani M.G., Centonze D. Cortical plasticity predicts recovery from relapse in multiple sclerosis. Mult. Scler. 2014;20:451–457. doi: 10.1177/1352458513512541.
    1. Bliss T.V., Collingridge G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature. 1993;361:31–39. doi: 10.1038/361031a0.
    1. Harris E.W., Ganong A.H., Cotman C.W. Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors. Brain Res. 1984;323:132–137. doi: 10.1016/0006-8993(84)90275-0.
    1. Malenka R.C., Bear M.F. LTP and LTD: An embarrassment of riches. Neuron. 2004;44:5–21. doi: 10.1016/j.neuron.2004.09.012.
    1. Turrigiano G.G., Leslie K.R., Desai N.S., Rutherford L.C., Nelson S.B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–896. doi: 10.1038/36103.
    1. Turrigiano G.G., Nelson S.B. Hebb and homeostasis in neuronal plasticity. Curr. Opin. Neurobiol. 2000;10:358–364. doi: 10.1016/S0959-4388(00)00091-X.
    1. Lissin D.V., Gomperts S.N., Carroll R.C., Christine C.W., Kalman D., Kitamura M., Hardy S., Nicoll R.A., Malenka R.C., von Zastrow M. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl. Acad. Sci. USA. 1998;95:7097–7102. doi: 10.1073/pnas.95.12.7097.
    1. Desai N.S., Cudmore R.H., Nelson S.B., Turrigiano G.G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 2002;5:783–789. doi: 10.1038/nn878.
    1. Turrigiano G.G. Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold. Spring Harb. Perspect. Biol. 2012;4:a005736. doi: 10.1101/cshperspect.a005736.
    1. Stampanoni Bassi M., Mori F., Buttari F., Marfia G.A., Sancesario A., Centonze D., Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin. Neurophysiol. 2017;128:1148–1157. doi: 10.1016/j.clinph.2017.04.006.
    1. Rossi S., Studer V., Motta C., De Chiara V., Barbieri F., Bernardi G., Centonze D. Inflammation inhibits GABA transmission in multiple sclerosis. Mult. Scler. 2012;18:1633–1635. doi: 10.1177/1352458512440207.
    1. Rossi S., Furlan R., De Chiara V., Motta C., Studer V., Mori F., Musella A., Bergami A., Muzio L., Bernardi G., et al. Interleukin-1 β causes synaptic hyperexcitability in multiple sclerosis. Ann. Neurol. 2012;71:76–83. doi: 10.1002/ana.22512.
    1. Mori F., Kusayanagi H., Buttari F., Centini B., Monteleone F., Nicoletti C.G., Bernardi G., Verdun Di Cantogno E., Marciani M.G., Centonze D. Early treatment with high-dose interferon beta-1a reverses cognitive and cortical plasticity deficits in multiple sclerosis. Funct. Neurol. 2012;27:163–168.
    1. Mori F., Nisticò R., Mandolesi G., Piccinin S., Mango D., Kusayanagi H., Berretta N., Bergami A., Gentile A., Musella A., et al. Interleukin-1β promotes long-term potentiation in patients with multiple sclerosis. Neuromolecular. Med. 2014;16:38–51. doi: 10.1007/s12017-013-8249-7.
    1. Di Filippo M., Chiasserini D., Gardoni F., Viviani B., Tozzi A., Giampà C., Costa C., Tantucci M., Zianni E., Boraso M., et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol. Dis. 2013;52:229–236. doi: 10.1016/j.nbd.2012.12.009.
    1. Nisticò R., Mango D., Mandolesi G., Piccinin S., Berretta N., Pignatelli M., Feligioni M., Musella A., Gentile A., Mori F., et al. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE. 2013;8:e54666. doi: 10.1371/journal.pone.0054666.
    1. Bellinger F.P., Madamba S.G., Campbell I.L., Siggins G.R. Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci. Lett. 1995;198:95–98. doi: 10.1016/0304-3940(95)11976-4.
    1. Li A.J., Katafuchi T., Oda S., Hori T., Oomura Y. Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain. Res. 1997;748:30–38. doi: 10.1016/S0006-8993(96)01283-8.
    1. Schneider H., Pitossi F., Balschun D., Wagner A., del Rey A., Besedovsky H.O. A neuromodulatory role of interleukin- 1β in the hippocampus. Proc. Natl. Acad. Sci. USA. 1998;95:7778–7783. doi: 10.1073/pnas.95.13.7778.
    1. Coogan A.N., O’Neill L.A., O’Connor J.J. The P38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-1β on long-term potentiation in the rat dentate gyrus in vitro. Neuroscience. 1999;93:57–69. doi: 10.1016/S0306-4522(99)00100-1.
    1. Avital A., Goshen I., Kamsler A., Segal M., Iverfeldt K., Richter-Levin G., Yirmiya R. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13:826–834. doi: 10.1002/hipo.10135.
    1. Stampanoni Bassi M., Iezzi E., Mori F., Simonelli I., Gilio L., Buttari F., Sica F., De Paolis N., Mandolesi G., Musella A., et al. Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehab. Neural. Rep. 2019;33:825–835. doi: 10.1177/1545968319868713.
    1. Mori F., Rossi S., Sancesario G., Codecà C., Mataluni G., Monteleone F., Buttari F., Kusayanagi H., Castelli M., Motta C., et al. Cognitive and cortical plasticity deficits correlate with altered amyloidβ CSF levels in multiple sclerosis. Neuropsychopharmacology. 2011;36:559–568. doi: 10.1038/npp.2010.187.
    1. Stampanoni Bassi M., Garofalo S., Marfia G.A., Gilio L., Simonelli I., Finardi A., Furlan R., Sancesario G.M., Di Giandomenico J., Storto M., et al. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Front. Mol. Neurosci. 2017;10:390. doi: 10.3389/fnmol.2017.00390.
    1. Stellwagen D., Malenka L.C. Synaptic scaling mediated by glial TNF-α. Nature. 2006;440:1054–1059. doi: 10.1038/nature04671.
    1. Becker D., Deller T., Vlachos A. Tumor necrosis factor (TNF)-receptor 1 and 2 mediate homeostatic synaptic plasticity of denervated mouse dentate granule cells. Sci. Rep. 2015;5:12726. doi: 10.1038/srep12726.
    1. Lewitus G.M., Pribiag H., Duseja R., St-Hilaire M., Stellwagen D. An adaptive role of TNFα in the regulation of striatal synapses. J. Neurosci. 2014;34:6146–6155. doi: 10.1523/JNEUROSCI.3481-13.2014.
    1. Ren W., Lui Y., Zhou L., Li W., Zhong Y., Pang R., Xin W., Wei X., Wang J., Zhuet H., et al. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-α in rodents. Neuropsychopharmacology. 2011;36:979–992. doi: 10.1038/npp.2010.236.
    1. Haji N., Mandolesi G., Gentile A., Sacchetti L., Fresegna D., Rossi S., Musella A., Sepman H., Motta C., Studer V., et al. TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp. Neurol. 2012;237:296–303. doi: 10.1016/j.expneurol.2012.07.010.
    1. Rossi S., Motta C., Studer V., Barbieri F., Buttari F., Bergami A., Sancesario G., Bernardini S., De Angelis G., Martino G., et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult. Scler. 2014;20:304–312. doi: 10.1177/1352458513498128.
    1. Valentin-Torres A., Savarin C., Hinton D.R., Phares T.W., Bergmann C.C., Stohlman S.A. Sustained TNF production by central nervous system infiltrating macrophages promotes progressive autoimmune encephalomyelitis. J. Neuroinflamm. 2016;13:46. doi: 10.1186/s12974-016-0513-y.
    1. He Y., Dagher A., Chen Z., Charil A., Zijdenbos A., Worsley K., Evans A. Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain. 2009;132:3366–3379. doi: 10.1093/brain/awp089.
    1. Filippi M., van den Heuvel M.P., Fornito A., He Y., Hulshoff Pol H.E., Agosta F., Comi G., Rocca M.A. Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurol. 2013;12:1189–1199. doi: 10.1016/S1474-4422(13)70144-3.
    1. Schoonheim M.M., Geurts J.J., Landi D., Douw L., van der Meer M.L., Vrenken H., Polman C.H., Barkhof F., Stam C.J. Functional connectivity changes in multiple sclerosis patients: A graph analytical study of MEG resting state data. Hum. Brain Mapp. 2013;34:52–61. doi: 10.1002/hbm.21424.
    1. Tewarie P., Schoonheim M.M., Stam C.J., van der Meer M.L., van Dijk B.W., Barkhof F., Polman C.H., Hillebrand A. Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS ONE. 2014;8:e69318. doi: 10.1371/journal.pone.0069318.
    1. Rocca M.A., Valsasina P., Meani A., Falini A., Comi G., Filippi M. Impaired functional integration in multiple sclerosis: A graph theory study. Brain Struct. Funct. 2016;221:115–131. doi: 10.1007/s00429-014-0896-4.
    1. Liu Y., Dai Z., Duan Y., Huang J., Ren Z., Liu Z., Dong H., Shu N., Vrenken H., Wattjes M.P., et al. Whole brain functional connectivity in clinically isolated syndrome without conventional brain MRI lesions. Eur. Radiol. 2016;26:2982–2991. doi: 10.1007/s00330-015-4147-8.
    1. Shu N., Duan Y., Xia M., Schoonheim M.M., Huang J., Ren Z., Sun Z., Ye J., Dong H., Shi F., et al. Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Sci. Rep. 2016;6:29383. doi: 10.1038/srep29383.
    1. Fleischer V., Radetz A., Ciolac D., Muthuraman M., Gonzalez-Escamilla G., Zipp F., Groppa S. Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts. Neuroscience. 2019;403:35–53. doi: 10.1016/j.neuroscience.2017.10.033.
    1. Roosendaal S.D., Schoonheim M.M., Hulst H.E., Sanz-Arigita E.J., Smith S.M., Geurts J.J., Barkhof G. Resting state networks change in clinically isolated syndrome. Brain. 2010;133:1612–1621. doi: 10.1093/brain/awq058.
    1. Faivre A., Rico A., Zaaraoui W., Crespy L., Reuter F., Wybrecht D., Soulier E., Malikova I., Confort-Gouny S., Cozzone P.J., et al. Assessing brain connectivity at rest is clinically relevant in early multiple sclerosis. Mult. Scler. 2012;18:1251–1258. doi: 10.1177/1352458511435930.
    1. Liu Y., Wang H., Duan Y., Huang J., Ren Z., Ye J., Dong H., Shi F., Li K., Wang J. Functional brain network alterations in clinically isolated syndrome and multiple sclerosis: A graph-based connectome study. Radiology. 2017;282:534–541. doi: 10.1148/radiol.2016152843.
    1. Hawellek D.J., Hipp J.F., Lewis C.M., Corbetta M., Engel A.K. Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2011;108:19066–19071. doi: 10.1073/pnas.1110024108.
    1. Liu Y., Duan Y., Dong H., Barkhof F., Li K., Shu N. Disrupted Module Efficiency of Structural and Functional Brain Connectomes in Clinically Isolated Syndrome and Multiple Sclerosis. Front. Hum. Neurosci. 2018;12:138. doi: 10.3389/fnhum.2018.00138.
    1. Ciccarelli O., Barkhof F., Bodini B., De Stefano N., Golay X., Nicolay K., Pelletier D., Pouwels P.J., Smith S.A., Wheeler-Kingshott C.A., et al. Pathogenesis of multiple sclerosis: Insights from molecular and metabolic imaging. Lancet Neurol. 2014;13:807–822. doi: 10.1016/S1474-4422(14)70101-2.
    1. Rocca M.A., Valsasina P., Martinelli V., Misci P., Falini A., Comi G., Filippi M. Large-scale neuronal network dysfunction in relapsing-remitting multiple sclerosis. Neurology. 2012;79:1449–1457. doi: 10.1212/WNL.0b013e31826d5f10.
    1. Rocca M.A., Valsasina P., Leavitt V.M., Rodegher M., Radaelli M., Riccitelli G.C., Martinelli V., Martinelli-Boneschi F., Falini A., Comi G., et al. Functional network connectivity abnormalities in multiple sclerosis: Correlations with disability and cognitive impairment. Mult. Scler. 2018;24:459–471. doi: 10.1177/1352458517699875.
    1. Cruz-Gómez Á.J., Ventura-Campos N., Belenguer A., Ávila C., Forn C. The link between resting-state functional connectivity and cognition in MS patients. Mult. Scler. 2014;20:338–348. doi: 10.1177/1352458513495584.
    1. Zhou F., Zhuang Y., Gong H., Wang B., Wang X., Chen Q., Wu L., Wan H. Altered inter-subregion connectivity of the default mode network in relapsing remitting multiple sclerosis: A functional and structural connectivity study. PLoS ONE. 2014;9:e101198. doi: 10.1371/journal.pone.0101198.
    1. Filippi M., Cercignani M., Inglese M., Horsfield M.A., Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology. 2001;56:304–311. doi: 10.1212/WNL.56.3.304.
    1. Kocevar G., Stamile C., Hannoun S., Cotton F., Vukusic S., Durand-Dubief F., Sappey-Marinier D. Graph theory-based brain connectivity for automatic classification of multiple sclerosis clinical courses. Front. Neurosci. 2016;10:478. doi: 10.3389/fnins.2016.00478.
    1. Wu G.F., Matthew R., Parks C.A.L., Ances B.M., Van Stavern G.P. An eye on brain integrity: Acute optic neuritis affects resting state functional connectivity impact of acute on on rs-fcMRI. Investig. Ophthalmol. Vis. Sci. 2015;56:2541–2546. doi: 10.1167/iovs.14-16315.
    1. Hannestad J., Gallezot J.D., Schafbauer T., Lim K., Kloczynski T., Morris E.D., Carson R.E., Ding Y., Cosgrove K.P. Cosgrove Endotoxin-induced systemic inflammation activates microglia:[11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage. 2012;63:232–239. doi: 10.1016/j.neuroimage.2012.06.055.
    1. Dipasquale O., Cooper E.A., Tibble J., Voon V., Baglio F., Baselli G., Cercignani M., Harrison N.A. Interferon-α acutely impairs whole-brain functional connectivity network architecture–A preliminary study. Brain Behav. Immun. 2016;58:31–39. doi: 10.1016/j.bbi.2015.12.011.
    1. Labrenz F., Wrede K., Forsting M., Engler H., Schedlowski M., Elsenbruch S., Benson S. Alterations in functional connectivity of resting state networks during experimental endotoxemia–an exploratory study in healthy men. Brain Behav. Immun. 2016;54:17–26. doi: 10.1016/j.bbi.2015.11.010.
    1. Lekander M., Karshikoff B., Johansson E., Soop A., Fransson P., Lundström J.N., Andreasson A., Ingvar M., Petrovic P., Axelsson J., et al. Intrinsic functional connectivity of insular cortex and symptoms of sickness during acute experimental inflammation. Brain Behav. Immun. 2016;56:34–41. doi: 10.1016/j.bbi.2015.12.018.
    1. Capuron L., Pagnoni G., Demetrashvili M., Woolwine B.J., Nemeroff C.B., Berns G.S., Miller A.H. Anterior cingulate activation and error processing during interferon-alpha treatment. Biol. Psychiatry. 2005;58:190–196. doi: 10.1016/j.biopsych.2005.03.033.
    1. Harrison N.A., Brydon L., Walker C., Gray M.A., Steptoe A., Dolan R.J., Critchley H.D. Neural origins of human sickness in interoceptive responses to inflammation. Biol. Psychiatry. 2009;66:415–422. doi: 10.1016/j.biopsych.2009.03.007.
    1. Marsland A.L., Kuan D.C.H., Sheu L.K., Krajina K., Kraynak T.E., Manuck S.B., Gianaros P.J. Systemic inflammation and resting state connectivity of the default mode network. Brain Behav. Immun. 2017;62:162–170. doi: 10.1016/j.bbi.2017.01.013.
    1. Tona F., Petsas N., Sbardella E., Prosperini L., Carmellini M., Pozzilli C., Pantano P. Multiple sclerosis: Altered thalamic resting-state functional connectivity and its effect on cognitive function. Radiology. 2014;271:814–821. doi: 10.1148/radiol.14131688.
    1. Muthuraman M., Fleischer V., Kolber P., Luessi F., Zipp F., Groppa S. Structural brain network characteristics can differentiate CIS from early RRMS. Front. Neurosci. 2016;10:14. doi: 10.3389/fnins.2016.00014.
    1. Fleischer V., Koirala N., Droby A., Gracien R.M., Deichmann R., Ziemann U., Meuth S.G., Muthuraman M., Zipp F., Groppa S. Longitudinal cortical network reorganization in early relapsing-remitting multiple sclerosis. Ther. Adv. Neurol. Disord. 2019;12:1–15. doi: 10.1177/1756286419838673.
    1. Latora V., Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001;87:198701. doi: 10.1103/PhysRevLett.87.198701.
    1. Kashtan N., Alon U. Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. USA. 2005;102:13773–13778. doi: 10.1073/pnas.0503610102.
    1. Shu N., Duan Y., Huang J., Ren Z., Liu Z., Dong H., Barkhof F., Li K., Liu Y. Progressive brain rich-club network disruption from clinically isolated syndrome towards multiple sclerosis. Neuroimage Clin. 2018;19:232–239. doi: 10.1016/j.nicl.2018.03.034.
    1. Koubiyr I., Deloire M., Besson P., Coupé P., Dulau C., Pelletier J., Tourdias T., Audoin B., Brochet B., Ranjeva J.P., et al. Longitudinal study of functional brain network reorganization in clinically isolated syndrome. Mult. Scler. 2018;27:1–13. doi: 10.1177/1352458518813108.
    1. Termenon M., Achard S., Jaillard A., Delon-Martin C. The “Hub Disruption Index,” a Reliable Index Sensitive to the Brain Networks Reorganization. A Study of the Contralesional Hemisphere in Stroke. Front. Comput. Neurosci. 2016;10:84. doi: 10.3389/fncom.2016.00084.
    1. Achard S., Delon-Martin C., Vértes P.E., Renard F., Schenck M., Schneider F., Heinrich C., Kremer S., Bullmore E.T. Hubs of brain functional networks are radically reorganized in comatose patients. Proc. Natl. Acad. Sci. USA. 2012;109:20608–20613. doi: 10.1073/pnas.1208933109.
    1. Stellmann J.P., Hodecker S., Cheng B., Wanke N., Young K.L., Hilgetag C., Gerloff C., Heesen C., Thomalla G., Siemonsen S. Reduced rich-club connectivity is related to disability in primary progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 2017;4:e375. doi: 10.1212/NXI.0000000000000375.
    1. Mori F., Rossi S., Piccinin S., Motta C., Mango D., Kusayanagi H., Bergami A., Studer V., Nicoletti C.G., Buttari F., et al. Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J. Neurosci. 2013;33:19112–19119. doi: 10.1523/JNEUROSCI.2536-13.2013.
    1. Nicoletti C.G., Monteleone F., Marfia G.A., Usiello A., Buttari F., Centonze D., Mori F. Oral D-Aspartate enhances synaptic plasticity reserve in progressive multiple sclerosis. Mult. Scler. 2019;7:1–8. doi: 10.1177/1352458519828294.
    1. Stampanoni Bassi M., Iezzi E., Marfia G.A., Simonelli I., Musella A., Mandolesi G., Fresegna D., Pasqualetti P., Furlan R., Finardi A., et al. Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. J. Neuroinflamm. 2018;15:108. doi: 10.1186/s12974-018-1150-4.

Source: PubMed

3
Abonneren