Dilated cardiomyopathy

Heinz-Peter Schultheiss, DeLisa Fairweather, Alida L P Caforio, Felicitas Escher, Ray E Hershberger, Steven E Lipshultz, Peter P Liu, Akira Matsumori, Andrea Mazzanti, John McMurray, Silvia G Priori, Heinz-Peter Schultheiss, DeLisa Fairweather, Alida L P Caforio, Felicitas Escher, Ray E Hershberger, Steven E Lipshultz, Peter P Liu, Akira Matsumori, Andrea Mazzanti, John McMurray, Silvia G Priori

Abstract

Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.

Conflict of interest statement

All authors declare no competing interests.

Figures

Fig. 1. Epidemiology of cardiomyopathy.
Fig. 1. Epidemiology of cardiomyopathy.
The map shows the annual percentage change in number of deaths (per 100,000 individuals) due to cardiomyopathy or myocarditis. Data include all ages and both sexes between 1990 and 2017. A decrease in deaths from cardiomyopathy is probably due to improvements in medication and health care; the reasons for the increase in deaths are less clear. Data from https://vizhub.healthdata.org/gbd-compare/. Accessed 21 February 2019.
Fig. 2. Genetic causes of dilated cardiomyopathy.
Fig. 2. Genetic causes of dilated cardiomyopathy.
The ‘defective force transmission’ hypothesis postulates that the cytoskeleton provides an intracellular scaffolding that is important for transmission of force from the sarcomere to the extracellular matrix and for protection of the myocyte from external mechanical stress. Thus, defects in cytoskeletal proteins could predispose to dilated cardiomyopathy (DCM) by reducing force transmission and/or resistance to mechanical stress. Contractile dysfunction of myofibrils plays a central part in initiation and progression of DCM. The sarcomere is composed of numerous proteins, and mutations in several of them have been associated with DCM, including actin, α-cardiac muscle 1 (encoded by ACTC1), myosin-binding protein C, cardiac type (encoded by MYBPC3), myosin chains (encoded by MYL2, MYL3, MYH6 and MYH7) and tropomyosin-α1 chain (encoded by TPM1) (see Table 1). Mutations in genes encoding cardiac troponins (encoded by TNNT2, TNNC1 and TNNI3) are also linked directly to disordered force generation,. MYH7 mutations have been predicted to disrupt the actin–myosin binding and crossbridge function, whereas mutations in TTN change viscoelasticity properties. Mutations in other non-contractile proteins (for example, a co-chaperone for heat shock protein 70 (HSP70) and heat shock cognate 70 chaperone proteins, encoded by BAG3) may induce defects in cell signalling pathways that modify cardiac response,. Mutations in phospholamban (encoded by PLN), a key calcium signalling protein, have been directly linked to abnormal contractility. Variants in desmosomal proteins including desmin (encoded by DES) desmocollin 2 (encoded by DSC2), desmoglein 2 (encoded by DSG2), desmoplakin (encoded by DSP) and plakophilin 2 (encoded by PKP2) are most commonly associated with arrhythmogenic right ventricular cardiomyopathy, but mutations in these genes have also been implicated in DCM. In some patients with genetic DCM, a particular gene defect may be suggested by cardiac conduction abnormalities. For example, variants of lamin A/C (LMNA; which is part of a protein structure associated with the inner nuclear membrane) are associated with high rates of conduction system disease, ventricular arrhythmias and sudden cardiac death. However, in most cases of DCM, there are no specific distinguishing phenotype features. SERCA2a, sarcoplasmic/endoplasmic reticulum calcium ATPase 2a. Adapted from ref., Springer Nature Limited.
Fig. 3. Echocardiography and endomyocardial biopsy in…
Fig. 3. Echocardiography and endomyocardial biopsy in dilated cardiomyopathy.
a,b | Speckle-tracking echocardiographic images in a patient with active myocarditis show reduced global longitudinal strain at baseline (before treatment). Analysis of the left ventricular longitudinal strain from the left two chambers before immunosuppressive treatment. The value of the peak longitudinal systolic strain for each segment being examined is superimposed on the colour 2D image. The curves of longitudinal strain (%) as a function of time are also shown (part a). Peak systolic strain in each segment before immunosuppressive treatment (part b). c,d | Immunohistological staining of an endomyocardial biopsy sample from the same patient shows active myocarditis with evidence of massive enhanced CD3+ T cell infiltration at baseline (red-brown staining) (part c), myocytolysis and extensive infiltration of immunocompetent cells (purple staining) (part d). e,f | Speckle-tracking imaging of the same patient after 6 months of immunosuppressive treatment shows substantial increase in global longitudinal strain. g,h | After treatment, immunohistological staining showed reduced CD3+ T cell infiltration (absence of red-brown staining) (part g) and no active myocardial inflammation (reduced purple staining) (part h). ANT, anterior; ANT_SEPT, anteroseptal; INF, inferior; LAT, lateral; POST, posterior; SEPT, septal.
Fig. 4. Cardiac MRI.
Fig. 4. Cardiac MRI.
Cardiac MRI of patients with endomyocardial-biopsy-proven active myocarditis shows evidence of late gadolinium enhancement (LGE) (white arrows), indicating fibrosis and oedema (red arrowheads). LV, left ventricle; RV, right ventricle.
Fig. 5. Differential diagnosis of the underlying…
Fig. 5. Differential diagnosis of the underlying causes of dilated cardiomyopathy.
Endomyocardial biopsy is important to determine the underlying cause of dilated cardiomyopathy. a | Active myocarditis with immune cell infiltration and myocytolysis (arrows), histological azan staining. b | Giant cell myocarditis with massive immune cell infiltration around multinuclear giant cells (arrows), histological haematoxylin and eosin (H&E) staining. c | Eosinophilic myocarditis with immune cell infiltration and eosinophils (arrows), histological H&E staining. d | Immunohistochemical staining depicting CD3+ T cells (red-brown staining) in a focal pattern in borderline myocarditis. e | Immunohistochemical staining of increased perforin-positive cytotoxic cells (arrows) in inflammatory cardiomyopathy. f | Immunohistochemical staining of increased cell-adhesion molecule HLA1 (red-brown staining) in inflammatory cardiomyopathy.
Fig. 6. Algorithm for the management of…
Fig. 6. Algorithm for the management of dilated cardiomyopathy.
Clinical management of a patient with symptomatic dilated cardiomyopathy starts with standard heart failure medications. If there is haemodynamic improvement, the treatment will be continued with careful follow-up to monitor for progressive left ventricular dysfunction. If left ventricular dysfunction is noted or there is a lack of haemodynamic improvement, an endomyocardial biopsy should be performed. If viral infection is detected by reverse transcriptase–PCR or immunohistochemistry staining, the patient may receive antiviral therapy. If certain inflammatory cells are discovered, a tailored immunosuppressive therapy may be administered. If there is no haemodynamic improvement, additional treatment options for heart failure should be explored.

References

    1. Hershberger RE, Morales A, Siegfried JD. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 2010;12:655–667. doi: 10.1097/GIM.0b013e3181f2481f.
    1. McKenna WJ, Maron BJ, Thiene G. Classification, epidemiology, and global burden of cardiomyopathies. Circ. Res. 2017;121:722–730. doi: 10.1161/CIRCRESAHA.117.309711.
    1. Maron BJ. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113:1807–1816. doi: 10.1161/CIRCULATIONAHA.106.174287.
    1. Elliott P, et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2007;29:270–276. doi: 10.1093/eurheartj/ehm342.
    1. Richardson P, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–842. doi: 10.1161/01.CIR.93.5.841.
    1. Pollack A, Kontorovich AR, Fuster V, Dec GW. Viral myocarditis — diagnosis, treatment options and current controversies. Nat. Rev. Cardiol. 2015;12:670–680. doi: 10.1038/nrcardio.2015.108.
    1. Sagar S, Liu PP, Cooper LT. Myocarditis. Lancet. 2012;379:738–747. doi: 10.1016/S0140-6736(11)60648-X.
    1. Caforio ALP, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013;34:2636–2648. doi: 10.1093/eurheartj/eht210.
    1. Braunwald E. Cardiomyopathies. Circ. Res. 2017;121:711–721. doi: 10.1161/CIRCRESAHA.117.311812.
    1. Codd MB, Sugrue DD, Gersh BJ, Melton LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975–1984. Circulation. 1989;80:564–572. doi: 10.1161/01.CIR.80.3.564.
    1. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013;10:531–547. doi: 10.1038/nrcardio.2013.105.
    1. Maron BJ, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary artery risk development in (young) adults. Circulation. 1995;92:785–789. doi: 10.1161/01.CIR.92.4.785.
    1. Vos T, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Lozano R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0.
    1. Ehlert FA, et al. Comparison of dilated cardiomyopathy and coronary artery disease in patients with life-threatening ventricular arrhythmias: differences in presentation and outcome in the AVID registry. Am. Heart J. 2001;142:816–822. doi: 10.1067/mhj.2001.119137.
    1. Saxon LA, et al. Predicting death from progressive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1993;72:62–65. doi: 10.1016/0002-9149(93)90220-7.
    1. Saxon LA, De Marco T. Arrhythmias associated with dilated cardiomyopathy. Card. Electrophysiol. Rev. 2002;6:18–25. doi: 10.1023/A:1017914517113.
    1. Fairweather D, Cooper LT, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr. Probl. Cardiol. 2013;38:7–46. doi: 10.1016/j.cpcardiol.2012.07.003.
    1. McGoon MD, Miller DP. REVEAL: a contemporary US pulmonary arterial hypertension registry. Eur. Respir. Rev. 2012;21:8–18. doi: 10.1183/09059180.00008211.
    1. Halliday BP, et al. Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy. Eur. J. Heart Fail. 2018;20:1392–1400. doi: 10.1002/ejhf.1216.
    1. Kubo T, et al. Improvement in prognosis of dilated cardiomyopathy in the elderly over the past 20 years. J. Cardiol. 2008;52:111–117. doi: 10.1016/j.jjcc.2008.06.001.
    1. Binkley PF, et al. Recovery of normal ventricular function in patients with dilated cardiomyopathy: predictors of an increasingly prevalent clinical event. Am. Heart J. 2008;155:69–74. doi: 10.1016/j.ahj.2007.08.010.
    1. Castelli G, et al. Improving survival rates of patients with idiopathic dilated cardiomyopathy in Tuscany over 3 decades. Circ. Heart Fail. 2013;6:913–921. doi: 10.1161/CIRCHEARTFAILURE.112.000120.
    1. Dries DL, et al. Racial differences in the outcome of left ventricular dysfunction. N. Engl. J. Med. 1999;340:609–616. doi: 10.1056/NEJM199902253400804.
    1. Coughlin SS, et al. Black-white differences in mortality in idiopathic dilated cardiomyopathy: the Washington, DC, dilated cardiomyopathy study. J. Natl Med. Assoc. 1994;86:583–591.
    1. McNamara DM, et al. Clinical and demographic predictors of outcomes in recent onset dilated cardiomyopathy. J. Am. Coll. Cardiol. 2011;58:1112–1118. doi: 10.1016/j.jacc.2011.05.033.
    1. Dec GW. The natural history of acute dilated cardiomyopathy. Trans. Am. Clin. Climatol. Assoc. 2014;125:76–86.
    1. Nieminen MS, et al. Gender related differences in patients presenting with acute heart failure. Results from EuroHeart Failure Survey II. Eur. J. Heart Fail. 2008;10:140–148. doi: 10.1016/j.ejheart.2007.12.012.
    1. Benjamin EJ, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Towbin JA, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867. doi: 10.1001/jama.296.15.1867.
    1. Nugent AW, et al. The epidemiology of childhood cardiomyopathy in Australia. N. Engl. J. Med. 2003;348:1639–1646. doi: 10.1056/NEJMoa021737.
    1. Lipshultz SE, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med. 2003;348:1647–1655. doi: 10.1056/NEJMoa021715.
    1. Lipshultz SE, et al. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013;9:817–848. doi: 10.2217/fca.13.66.
    1. Alvarez JA, et al. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the Pediatric Cardiomyopathy Registry. Circulation. 2011;124:814–823. doi: 10.1161/CIRCULATIONAHA.110.973826.
    1. Arola A, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents: a nationwide study in Finland. Am. J. Epidemiol. 1997;146:385–393. doi: 10.1093/oxfordjournals.aje.a009291.
    1. Rusconi P, et al. Differences in presentation and outcomes between children with familial dilated cardiomyopathy and children with idiopathic dilated cardiomyopathy. Circ. Heart Fail. 2017;10:e002637. doi: 10.1161/CIRCHEARTFAILURE.115.002637.
    1. Ashley EA. Towards precision medicine. Nat. Rev. Genet. 2016;17:507–522. doi: 10.1038/nrg.2016.86.
    1. Piran S, Liu P, Morales A, Hershberger RE. Where genome meets phenome: rationale for integrating genetic and protein biomarkers in the diagnosis and management of dilated cardiomyopathy and heart failure. J. Am. Coll. Cardiol. 2012;60:283–289. doi: 10.1016/j.jacc.2012.05.005.
    1. Ware JS, et al. Genetic etiology for alcohol-induced cardiac toxicity. J. Am. Coll. Cardiol. 2018;71:2293–2302. doi: 10.1016/j.jacc.2018.03.462.
    1. McNally EM, Golbus JR, Puckelwartz MJ. Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 2013;123:19–26. doi: 10.1172/JCI62862.
    1. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK. The diagnosis and evaluation of dilated cardiomyopathy. J. Am. Coll. Cardiol. 2016;67:2996–3010. doi: 10.1016/j.jacc.2016.03.590.
    1. Morales A, Hershberger RE. The rationale and timing of molecular genetic testing for dilated cardiomyopathy. Can. J. Cardiol. 2015;31:1309–1312. doi: 10.1016/j.cjca.2015.06.034.
    1. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2005;45:969–981. doi: 10.1016/j.jacc.2004.11.066.
    1. Fatkin D, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 1999;341:1715–1724. doi: 10.1056/NEJM199912023412302.
    1. Kamisago M, et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 2000;343:1688–1696. doi: 10.1056/NEJM200012073432304.
    1. Gerull B, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002;30:201–204. doi: 10.1038/ng815.
    1. Brauch KM, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2009;54:930–941. doi: 10.1016/j.jacc.2009.05.038.
    1. Norton N, et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 2011;88:273–282. doi: 10.1016/j.ajhg.2011.01.016.
    1. Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012;366:619–628. doi: 10.1056/NEJMoa1110186.
    1. Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 2011;57:1641–1649. doi: 10.1016/j.jacc.2011.01.015.
    1. Harakalova M, et al. A systematic analysis of genetic dilated cardiomyopathy reveals numerous ubiquitously expressed and muscle-specific genes. Eur. J. Heart Fail. 2015;17:484–493. doi: 10.1002/ejhf.255.
    1. Hershberger, R. E. & Morales, A. Dilated cardiomyopathy overview. GeneReviews (updated 23 Aug 2018).
    1. Kinnamon DD, et al. Toward genetics-driven early intervention in dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2017;10:e001826. doi: 10.1161/CIRCGENETICS.117.001826.
    1. Walsh R, et al. Defining the genetic architecture of hypertrophic cardiomyopathy: re-evaluating the role of non-sarcomeric genes. Eur. Heart J. 2017;38:3461–3468.
    1. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. doi: 10.1038/nature19057.
    1. Strande NT, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am. J. Hum. Genet. 2017;100:895–906. doi: 10.1016/j.ajhg.2017.04.015.
    1. Rehm HL, et al. ClinGen — the clinical genome resource. N. Engl. J. Med. 2015;372:2235–2242. doi: 10.1056/NEJMsr1406261.
    1. Ingles J, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ. Genom. Precis. Med. 2019;12:e002460.
    1. Shendure J. A deep dive into genetic variation. Nature. 2016;536:277–278. doi: 10.1038/536277a.
    1. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30.
    1. Landrum MJ, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2015;44:D862–D868. doi: 10.1093/nar/gkv1222.
    1. Pinto YM, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016;37:1850–1858. doi: 10.1093/eurheartj/ehv727.
    1. Noutsias M, et al. Expression of functional T cell markers and T cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur. J. Heart Fail. 2011;13:611–618. doi: 10.1093/eurjhf/hfr014.
    1. Liu P, et al. The tyrosine kinase p56lck is essential in coxsackievirus B3-mediated heart disease. Nat. Med. 2000;6:429–434. doi: 10.1038/74689.
    1. Irie-Sasaki J, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001;409:349–354. doi: 10.1038/35053086.
    1. Fairweather D, et al. Mast cells and innate cytokines are associated with susceptibility to autoimmune heart disease following coxsackievirus B3 infection. Autoimmunity. 2004;37:131–145. doi: 10.1080/0891693042000196200.
    1. Frisancho-Kiss S, et al. Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J. Immunol. 2007;178:6710–6714. doi: 10.4049/jimmunol.178.11.6710.
    1. Tschöpe C, et al. NOD2 (nucleotide-binding oligomerization domain 2) is a major pathogenic mediator of coxsackievirus B3-induced myocarditis. Circ. Heart Fail. 2017;10:e003870. doi: 10.1161/CIRCHEARTFAILURE.117.003870.
    1. Fuse K. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation. 2005;112:2276–2285. doi: 10.1161/CIRCULATIONAHA.105.536433.
    1. Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 2015;15:117–129. doi: 10.1038/nri3800.
    1. Li A-H, Liu PP, Villarreal FJ, Garcia RA. Dynamic changes in myocardial matrix and relevance to disease: translational perspectives. Circ. Res. 2014;114:916–927. doi: 10.1161/CIRCRESAHA.114.302819.
    1. Cabrerizo M, et al. Molecular epidemiology of enterovirus and parechovirus infections according to patient age over a 4-year period in Spain. J. Med. Virol. 2016;89:435–442. doi: 10.1002/jmv.24658.
    1. Pauschinger M, et al. Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation. 1999;99:1348–1354. doi: 10.1161/01.CIR.99.10.1348.
    1. Tschope C. High prevalence of cardiac parvovirus B19 infection in patients with isolated left ventricular diastolic dysfunction. Circulation. 2005;111:879–886. doi: 10.1161/01.CIR.0000155615.68924.B3.
    1. Pauschinger M, et al. Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation. 1999;99:889–895. doi: 10.1161/01.CIR.99.7.889.
    1. Caforio ALP, et al. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur. Heart J. 2007;28:1326–1333. doi: 10.1093/eurheartj/ehm076.
    1. Kuhl U. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation. 2005;112:1965–1970. doi: 10.1161/CIRCULATIONAHA.105.548156.
    1. Maekawa Y, Ouzounian M, Opavsky MA, Liu PP. Connecting the missing link between dilated cardiomyopathy and viral myocarditis: virus, cytoskeleton, and innate immunity. Circulation. 2006;115:5–8. doi: 10.1161/CIRCULATIONAHA.106.670554.
    1. Kindermann I, et al. Predictors of outcome in patients with suspected myocarditis. Circulation. 2008;118:639–648. doi: 10.1161/CIRCULATIONAHA.108.769489.
    1. Mahon NG, et al. Immunohistologic evidence of myocardial disease in apparently healthy relatives of patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2002;39:455–462. doi: 10.1016/S0735-1097(01)01762-4.
    1. Caforio AL, et al. Evidence from family studies for autoimmunity in dilated cardiomyopathy. Lancet. 1994;344:773–777. doi: 10.1016/S0140-6736(94)92339-6.
    1. Caforio AL, et al. Novel organ-specific circulating cardiac autoantibodies in dilated cardiomyopathy. J. Am. Coll. Cardiol. 1990;15:1527–1534. doi: 10.1016/0735-1097(90)92821-I.
    1. Caforio AL, et al. Identification of alpha- and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation. 1992;85:1734–1742. doi: 10.1161/01.CIR.85.5.1734.
    1. Caforio ALP, et al. Prospective familial assessment in dilated cardiomyopathy: cardiac autoantibodies predict disease development in asymptomatic relatives. Circulation. 2006;115:76–83. doi: 10.1161/CIRCULATIONAHA.106.641472.
    1. Mestroni L, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J. Am. Coll. Cardiol. 1999;34:181–190. doi: 10.1016/S0735-1097(99)00172-2.
    1. Neu N, et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J. Immunol. 1987;139:3630–3636.
    1. Smith SC, Allen PM. Myosin-induced acute myocarditis is a T cell-mediated disease. J. Immunol. 1991;147:2141–2147.
    1. Li Y, Heuser JS, Cunningham LC, Kosanke SD, Cunningham MW. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J. Immunol. 2006;177:8234–8240. doi: 10.4049/jimmunol.177.11.8234.
    1. Kodama M, et al. Rat dilated cardiomyopathy after autoimmune giant cell myocarditis. Circ. Res. 1994;75:278–284. doi: 10.1161/01.RES.75.2.278.
    1. Elliott JF, et al. Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAbeta knockout NOD mice. Proc. Natl Acad. Sci. USA. 2003;100:13447–13452. doi: 10.1073/pnas.2235552100.
    1. Guler ML, et al. Two autoimmune diabetes loci influencing T cell apoptosis control susceptibility to experimental autoimmune myocarditis. J. Immunol. 2005;174:2167–2173. doi: 10.4049/jimmunol.174.4.2167.
    1. Frustaci A. Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation. 2003;107:857–863. doi: 10.1161/01.CIR.0000048147.15962.31.
    1. Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur. Heart J. 2009;30:1995–2002. doi: 10.1093/eurheartj/ehp249.
    1. Escher F, et al. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin. Res. Cardiol. 2016;105:1011–1020. doi: 10.1007/s00392-016-1011-z.
    1. Kazzam E, et al. Non-invasive assessmenty of systolic left ventricular function in systemic sclerosis. Eur. Heart J. 1991;12:151–156. doi: 10.1093/oxfordjournals.eurheartj.a059861.
    1. Goldenberg J, et al. Symptomatic cardiac involvement in juvenile rheumatoid arthritis. Int. J. Cardiol. 1992;34:57–62. doi: 10.1016/0167-5273(92)90082-E.
    1. Paradiso M, et al. Evaluation of myocarial involvement in systemic lupus erythematosus by signal-averaged electrocardiography and echocardiography. Acta Cardiol. 2001;56:381–386. doi: 10.2143/AC.56.6.2005702.
    1. Caforio ALP, et al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008;41:35–45. doi: 10.1080/08916930701619235.
    1. Meder B, et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur. Heart J. 2014;35:1069–1077. doi: 10.1093/eurheartj/eht251.
    1. Arbustini E, et al. The MOGE(S) classification for a phenotype–genotype nomenclature of cardiomyopathy. J. Am. Coll. Cardiol. 2013;62:2046–2072. doi: 10.1016/j.jacc.2013.08.1644.
    1. Hazebroek MR, et al. Prognostic relevance of gene-environment interactions in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 2015;66:1313–1323. doi: 10.1016/j.jacc.2015.07.023.
    1. Schulze K, Becker BF, Schultheiss HP. Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ. Res. 1989;64:179–192. doi: 10.1161/01.RES.64.2.179.
    1. Caforio ALP, et al. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. Int. J. Cardiol. 2015;179:166–177. doi: 10.1016/j.ijcard.2014.10.165.
    1. Nikolaev VO, et al. A novel fluorescence method for the rapid detection of functional β1-adrenergic receptor autoantibodies in heart failure. J. Am. Coll. Cardiol. 2007;50:423–431. doi: 10.1016/j.jacc.2007.03.051.
    1. Jahns R, et al. Direct evidence for a β1-adrenergic receptor–directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Invest. 2004;113:1419–1429. doi: 10.1172/JCI200420149.
    1. Nishimura H. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–322. doi: 10.1126/science.291.5502.319.
    1. Okazaki T, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat. Med. 2003;9:1477–1483. doi: 10.1038/nm955.
    1. Kaya Z, Leib C, Katus HA. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res. 2012;110:145–158. doi: 10.1161/CIRCRESAHA.111.243360.
    1. Blyszczuk P, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur. Heart J. 2016;38:1413–1425.
    1. Piano MR. Alcoholic cardiomyopathy. Chest. 2002;121:1638–1650. doi: 10.1378/chest.121.5.1638.
    1. Manthey J, Imtiaz S, Neufeld M, Rylett M, Rehm J. Quantifying the global contribution of alcohol consumption to cardiomyopathy. Popul. Health Metr. 2017;15:20. doi: 10.1186/s12963-017-0137-1.
    1. Lang RM. Adverse cardiac effects of acute alcohol ingestion in young adults. Ann. Intern. Med. 1985;102:742. doi: 10.7326/0003-4819-102-6-742.
    1. Hantson P. Mechanisms of toxic cardiomyopathy. Clin. Toxicol. (Phila.) 2018;57:1–9. doi: 10.1080/15563650.2018.1497172.
    1. Waszkiewicz N, Szulc A, Zwierz K. Binge drinking-induced subtle myocardial injury. Alcohol. Clin. Exp. Res. 2013;37:1261–1263. doi: 10.1111/acer.12208.
    1. Havakuk O, Rezkalla SH, Kloner RA. The cardiovascular effects of cocaine. J. Am. Coll. Cardiol. 2017;70:101–113. doi: 10.1016/j.jacc.2017.05.014.
    1. Om A, Warner M, Sabri N, Cecich L, Vetrovec G. Frequency of coronary artery disease and left ventricular dysfunction in cocaine users. Am. J. Cardiol. 1992;69:1549–1552. doi: 10.1016/0002-9149(92)90701-Y.
    1. Chakko S, Myerburg RJ. Cardiac complications of cocaine abuse. Clin. Cardiol. 1995;18:67–72. doi: 10.1002/clc.4960180206.
    1. Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H1453–H1467. doi: 10.1152/ajpheart.00554.2015.
    1. Virmani R, Robinowitz M, Smialek JE, Smyth DF. Cardiovascular effects of cocaine: an autopsy study of 40 patients. Am. Heart J. 1988;115:1068–1076. doi: 10.1016/0002-8703(88)90078-6.
    1. Bellinger AM, et al. Cardio-oncology: how new targeted cancer therapies and precision medicine can inform cardiovascular discovery. Circulation. 2015;132:2248–2258. doi: 10.1161/CIRCULATIONAHA.115.010484.
    1. Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology. 2010;115:155–162. doi: 10.1159/000265166.
    1. Zhang S, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012;18:1639–1642. doi: 10.1038/nm.2919.
    1. Lipshultz SE, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J. Clin. Oncol. 2005;23:2629–2636. doi: 10.1200/JCO.2005.12.121.
    1. Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J. Clin. Oncol. 2010;28:1276–1281. doi: 10.1200/JCO.2009.26.5751.
    1. Cardinale D, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–2481. doi: 10.1161/CIRCULATIONAHA.106.635144.
    1. Sheppard R, et al. Myocardial expression of fas and recovery of left ventricular function in patients with recent-onset cardiomyopathy. J. Am. Coll. Cardiol. 2005;46:1036–1042. doi: 10.1016/j.jacc.2005.05.067.
    1. Coronado MJ, et al. Testosterone and interleukin-1β increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. Am. J. Physiol. Heart Circ. Physiol. 2012;302:H1726–H1736. doi: 10.1152/ajpheart.00783.2011.
    1. Cocker MS, Abdel-Aty H, Strohm O, Friedrich MG. Age and gender effects on the extent of myocardial involvement in acute myocarditis: a cardiovascular magnetic resonance study. Heart. 2009;95:1925–1930. doi: 10.1136/hrt.2008.164061.
    1. Fairweather D, et al. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am. J. Pathol. 2004;165:1883–1894. doi: 10.1016/S0002-9440(10)63241-5.
    1. Baldeviano GC, et al. Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ. Res. 2010;106:1646–1655. doi: 10.1161/CIRCRESAHA.109.213157.
    1. Myers JM, et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight. 2016;1:85851. doi: 10.1172/jci.insight.85851.
    1. Diny NL, et al. Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J. Exp. Med. 2017;214:943–957. doi: 10.1084/jem.20161702.
    1. Frisancho-Kiss S, et al. Gonadectomy of male BALB/c mice increases Tim-3(+) alternatively activated M2 macrophages, Tim-3(+) T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain Behav. Immun. 2009;23:649–657. doi: 10.1016/j.bbi.2008.12.002.
    1. Fairweather D, et al. Sex differences in translocator protein 18 kDa (TSPO) in the heart: implications for imaging myocardial inflammation. J. Cardiovasc. Transl Res. 2014;7:192–202. doi: 10.1007/s12265-013-9538-0.
    1. Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 2017;97:1–37. doi: 10.1152/physrev.00021.2015.
    1. Abston ED, et al. IL-33 independently induces eosinophilic pericarditis and cardiac dilation: ST2 improves cardiac function. Circ. Heart Fail. 2012;5:366–375. doi: 10.1161/CIRCHEARTFAILURE.111.963769.
    1. Fairweather D, et al. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. J. Immunol. 2006;176:3516–3524. doi: 10.4049/jimmunol.176.6.3516.
    1. Vitale C, Mendelsohn ME, Rosano GMC. Gender differences in the cardiovascular effect of sex hormones. Nat. Rev. Cardiol. 2009;6:532–542. doi: 10.1038/nrcardio.2009.105.
    1. Melchert RB, Welder AA. Cardiovascular effects of androgenic-anabolic steroids. Med. Sci. Sports Exerc. 1995;27:1252–1262. doi: 10.1249/00005768-199509000-00004.
    1. Scheuer J, Malhotra A, Schaible TF, Capasso J. Effects of gonadectomy and hormonal replacement on rat hearts. Circ. Res. 1987;61:12–19. doi: 10.1161/01.RES.61.1.12.
    1. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N. Engl. J. Med. 1994;331:1564–1575. doi: 10.1056/NEJM199412083312307.
    1. Caforio ALP, et al. Diagnosis and management of myocardial involvement in systemic immune-mediated diseases: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Disease. Eur. Heart J. 2017;38:2649–2662. doi: 10.1093/eurheartj/ehx321.
    1. Kuhl U, Melzner B, Schafer B, Schultheiss H-P, Strauer BE. The Ca-channel as cardiac autoantigen. Eur. Heart J. 1991;12:99–104. doi: 10.1093/eurheartj/12.suppl_D.99.
    1. Lauer B, Schannwell M, Kühl U, Strauer B-E, Schultheiss H-P. Antimyosin autoantibodies are associated with deterioration of systolic and diastolic left ventricular function in patients with chronic myocarditis. J. Am. Coll. Cardiol. 2000;35:11–18. doi: 10.1016/S0735-1097(99)00485-4.
    1. Rapezzi C, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2012;34:1448–1458. doi: 10.1093/eurheartj/ehs397.
    1. Fatkin D, Seidman CE, Seidman JG. Genetics and disease of ventricular muscle. Cold Spring Harb. Perspect. Med. 2014;4:a021063. doi: 10.1101/cshperspect.a021063.
    1. Lynch TL, et al. Cardiac inflammation in genetic dilated cardiomyopathy caused by MYBPC3 mutation. J. Mol. Cell. Cardiol. 2017;102:83–93. doi: 10.1016/j.yjmcc.2016.12.002.
    1. Knowlton KU. Myocarditis. J. Am. Coll. Cardiol. 2017;69:1666–1668. doi: 10.1016/j.jacc.2017.02.008.
    1. Poller W, et al. Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy. J. Mol. Med. 2005;83:579–586. doi: 10.1007/s00109-005-0664-2.
    1. Jan MF, Tajik AJ. Modern imaging techniques in cardiomyopathies. Circ. Res. 2017;121:874–891. doi: 10.1161/CIRCRESAHA.117.309600.
    1. Kasner M, et al. Multimodality imaging approach in the diagnosis of chronic myocarditis with preserved left ventricular ejection fraction (MCpEF): the role of 2D speckle-tracking echocardiography. Int. J. Cardiol. 2017;243:374–378. doi: 10.1016/j.ijcard.2017.05.038.
    1. Chimenti C, Frustaci A. Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies: a retrospective study over a 28-year period. Circulation. 2013;128:1531–1541. doi: 10.1161/CIRCULATIONAHA.13.001414.
    1. Holzmann M, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation. 2008;118:1722–1728. doi: 10.1161/CIRCULATIONAHA.107.743427.
    1. Escher F, et al. Analysis of endomyocardial biopsies in suspected myocarditis — diagnostic value of left versus right ventricular biopsy. Int. J. Cardiol. 2014;177:76–78. doi: 10.1016/j.ijcard.2014.09.071.
    1. Lassner D, et al. Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling. Eur. Heart J. 2014;35:2186–2195. doi: 10.1093/eurheartj/ehu101.
    1. Escher F, et al. Presence of perforin in endomyocardial biopsies of patients with inflammatory cardiomyopathy predicts poor outcome. Eur. J. Heart Fail. 2014;16:1066–1072. doi: 10.1002/ejhf.148.
    1. Marchant DJ, et al. Inflammation in myocardial diseases. Circ. Res. 2012;110:126–144. doi: 10.1161/CIRCRESAHA.111.243170.
    1. Heymans S, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2009;11:119–129. doi: 10.1093/eurjhf/hfn043.
    1. Glezeva N, Baugh JA. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail. Rev. 2013;19:681–694. doi: 10.1007/s10741-013-9405-8.
    1. O’Connor CM, et al. Efficacy and safety of exercise training in patients with chronic heart failure. JAMA. 2009;301:1439. doi: 10.1001/jama.2009.454.
    1. McMurray JJV, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. Zannad F, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 2011;364:11–21. doi: 10.1056/NEJMoa1009492.
    1. Abraham WT, et al. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 2002;346:1845–1853. doi: 10.1056/NEJMoa013168.
    1. Packer M. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106:2194–2199. doi: 10.1161/.
    1. Cleland JGF, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005;352:1539–1549. doi: 10.1056/NEJMoa050496.
    1. Cleland JGF, et al. Longer-term effects of cardiac resynchronization therapy on mortality in heart failure [the CArdiac REsynchronization-Heart Failure (CARE-HF) trial extension phase] Eur. Heart J. 2006;27:1928–1932. doi: 10.1093/eurheartj/ehl099.
    1. Moss AJ, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009;361:1329–1338. doi: 10.1056/NEJMoa0906431.
    1. Tang ASL, et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 2010;363:2385–2395. doi: 10.1056/NEJMoa1009540.
    1. Chen Y, et al. Impact of etiology on the outcomes in heart failure patients treated with cardiac resynchronization therapy: a meta-analysis. PLOS ONE. 2014;9:e94614. doi: 10.1371/journal.pone.0094614.
    1. Schultheiss H-P, Kuhl U, Cooper LT. The management of myocarditis. Eur. Heart J. 2011;32:2616–2625. doi: 10.1093/eurheartj/ehr165.
    1. Kuhl U, et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation. 2003;107:2793–2798. doi: 10.1161/01.CIR.0000072766.67150.51.
    1. Kühl U, Lassner D, von Schlippenbach J, Poller W, Schultheiss H-P. Interferon-beta improves survival in enterovirus-associated cardiomyopathy. J. Am. Coll. Cardiol. 2012;60:1295–1296. doi: 10.1016/j.jacc.2012.06.026.
    1. Schultheiss H-P, et al. Betaferon in chronic viral cardiomyopathy (BICC) trial: effects of interferon-β treatment in patients with chronic viral cardiomyopathy. Clin. Res. Cardiol. 2016;105:763–773. doi: 10.1007/s00392-016-0986-9.
    1. Felix SB, et al. Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy. J. Am. Coll. Cardiol. 2000;35:1590–1598. doi: 10.1016/S0735-1097(00)00568-4.
    1. Mobini R, et al. Hemodynamic improvement and removal of autoantibodies against beta1-adrenergic receptor by immunoadsorption therapy in dilated cardiomyopathy. J. Autoimmun. 2003;20:345–350. doi: 10.1016/S0896-8411(03)00042-8.
    1. US National Library of Medicine. (2018).
    1. Priori SG, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2015;36:2793–2867. doi: 10.1093/eurheartj/ehv316.
    1. Desai AS, Fang JC, Maisel WH, Baughman KL. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy. JAMA. 2004;292:2874. doi: 10.1001/jama.292.23.2874.
    1. Køber L, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N. Engl. J. Med. 2016;375:1221–1230. doi: 10.1056/NEJMoa1608029.
    1. Golwala H, Bajaj NS, Arora G, Arora P. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy: an updated meta-analysis. Circulation. 2017;135:201–203. doi: 10.1161/CIRCULATIONAHA.116.026056.
    1. Shi H-W, et al. Prognostic value of late gadolinium enhancement in dilated cardiomyopathy patients. A meta-analysis. Saudi Med. J. 2013;34:719–726.
    1. Matsuo S, Nakajima K, Nakata T. Prognostic value of cardiac sympathetic nerve imaging using long-term follow-up data. Circulation. 2016;80:435–441. doi: 10.1253/circj.CJ-15-0952.
    1. Solomou S, Stavrou M, Marley J. Diagnosis of dilated cardiomyopathy: patient reaction and adaptation—case study and review of the literature. Case Rep. Psychiatry. 2016;2016:1756510.
    1. MacInnes J, Williams L. A review of integrated heart failure care. Prim. Health Care Res. Dev. 2018 doi: 10.1017/S1463423618000312.
    1. Rice H, Say R, Betihavas V. The effect of nurse-led education on hospitalisation, readmission, quality of life and cost in adults with heart failure. A systematic review. Patient Educ. Couns. 2018;101:363–374. doi: 10.1016/j.pec.2017.10.002.
    1. Mehani SHM. Correlation between changes in diastolic dysfunction and health-related quality of life after cardiac rehabilitation program in dilated cardiomyopathy. J. Adv. Res. 2013;4:189–200. doi: 10.1016/j.jare.2012.06.002.
    1. Ohira H, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur. J. Nucl. Med. Mol. Imaging. 2015;43:259–269. doi: 10.1007/s00259-015-3181-8.
    1. Werner RA, et al. Longitudinal 18F-FDG PET imaging in a rat model of autoimmune myocarditis. Eur. Heart J. Cardiovasc. Imaging. 2018;20:467–474. doi: 10.1093/ehjci/jey119.
    1. Klaeboe LG, Edvardsen T. Echocardiographic assessment of left ventricular systolic function. J. Echocardiogr. 2018;17:10–16. doi: 10.1007/s12574-018-0405-5.
    1. Luis SA, Chan J, Pellikka PA. Echocardiographic assessment of left ventricular systolic function: an overview of contemporary techniques, including speckle-tracking echocardiography. Mayo Clin. Proc. 2019;94:125–138. doi: 10.1016/j.mayocp.2018.07.017.
    1. Weinberg EO, et al. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–726. doi: 10.1161/01.CIR.0000047274.66749.FE.
    1. Rehman SU, Mueller T, Januzzi JL. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008;52:1458–1465. doi: 10.1016/j.jacc.2008.07.042.
    1. Binas D, et al. The prognostic value of sST2 and galectin-3 considering different aetiologies in non-ischaemic heart failure. Open Heart. 2018;5:e000750. doi: 10.1136/openhrt-2017-000750.
    1. Coronado MJ, et al. Elevated sera sST 2 is associated with heart failure in men ≤50 years old with myocarditis. J. Am. Heart Assoc. 2019;8:e008968. doi: 10.1161/JAHA.118.008968.
    1. Weinberg EO, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–2966. doi: 10.1161/01.CIR.0000038705.69871.D9.
    1. Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure. Arq. Bras. Cardiol. 2016;106:145–152.
    1. Lichtenauer M, et al. A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur. J. Intern. Med. 2017;44:31–38. doi: 10.1016/j.ejim.2017.05.027.
    1. Jirak P, et al. Influences of Ivabradine treatment on serum levels of cardiac biomarkers sST2, GDF-15, suPAR and H-FABP in patients with chronic heart failure. Acta Pharmacol. Sin. 2018;39:1189–1196. doi: 10.1038/aps.2017.167.
    1. Nair N, Gongora E. Correlations of GDF-15 with sST2, MMPs, and worsening functional capacity in idiopathic dilated cardiomyopathy. J. Circ. Biomark. 2018;7:184945441775173. doi: 10.1177/1849454417751735.
    1. Stojkovic S, et al. GDF-15 is a better complimentary marker for risk stratification of arrhythmic death in non-ischaemic, dilated cardiomyopathy than soluble ST2. J. Cell. Mol. Med. 2018;22:2422–2429. doi: 10.1111/jcmm.13540.
    1. Pascual-Figal DA, et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J. Am. Coll. Cardiol. 2009;54:2174–2179. doi: 10.1016/j.jacc.2009.07.041.
    1. Basile U, et al. Free light chains: eclectic multipurpose biomarker. J. Immunol. Methods. 2017;451:11–19. doi: 10.1016/j.jim.2017.09.005.
    1. Dispenzieri A, et al. Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population. Mayo Clin. Proc. 2012;87:517–523. doi: 10.1016/j.mayocp.2012.03.009.
    1. Jackson CE, et al. Combined free light chains are novel predictors of prognosis in heart failure. JACC Heart Fail. 2015;3:618–625. doi: 10.1016/j.jchf.2015.03.014.
    1. Jackson CE, et al. The incremental prognostic and clinical value of multiple novel biomarkers in heart failure. Eur. J. Heart Fail. 2016;18:1491–1498. doi: 10.1002/ejhf.543.
    1. Saleh A, et al. Assessment of cardiac involvement of hepatitis C virus; tissue Doppler imaging and NTproBNP study. J. Saudi Heart Assoc. 2011;23:217–223. doi: 10.1016/j.jsha.2011.04.005.
    1. Wang L, et al. The biomarker N-terminal pro-brain natriuretic peptide and liver diseases. Clin. Invest. Med. 2011;34:E30–E37. doi: 10.25011/cim.v34i1.14910.
    1. Minton EJ, et al. Association between MHC class II alleles and clearance of circulating hepatitis C virus. Members of the Trent Hepatitis C Virus Study Group. J. Infect. Dis. 1998;178:39–44. doi: 10.1086/515599.
    1. Höhler T, et al. MHC class II genes influence the susceptibility to chronic active hepatitis C. J. Hepatol. 1997;27:259–264. doi: 10.1016/S0168-8278(97)80169-9.
    1. Matsumori, A. et al. in Cardiomyopathies and Heart Failure: Biomolecular, Infectious, and Immune Mechanisms (Kluwer Academic Publishers, 2003).
    1. Shichi D, et al. The haplotype block, NFKBIL1-ATP6V1G2-BAT1-MICB-MICA, within the class III - class I boundary region of the human major histocompatibility complex may control susceptibility to hepatitis C virus-associated dilated cardiomyopathy. Tissue Antigens. 2005;66:200–208. doi: 10.1111/j.1399-0039.2005.00457.x.
    1. Hsu Y-C, et al. Antiviral treatment for hepatitis C virus infection is associated with improved renal and cardiovascular outcomes in diabetic patients. Hepatology. 2014;59:1293–1302. doi: 10.1002/hep.26892.
    1. Ly KN, Hughes EM, Jiles RB, Holmberg SD. Rising mortality associated with hepatitis C virus in the United States, 2003–2013. Clin. Infect. Dis. 2016;62:1287–1288. doi: 10.1093/cid/ciw111.
    1. Kawai C, Matsumori A. Dilated cardiomyopathy update: infectious-immune theory revisited. Heart Fail. Rev. 2013;18:703–714. doi: 10.1007/s10741-013-9401-z.
    1. Matsumori A, Shimada T, Chapman NM, Tracy SM, Mason JW. Myocarditis and heart failure associated with hepatitis C virus infection. J. Card. Fail. 2006;12:293–298. doi: 10.1016/j.cardfail.2005.11.004.
    1. Davidson SM, et al. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovasc. Res. 2018 doi: 10.1093/cvr/cvy314.
    1. Micheu MM, Scarlatescu AI, Scafa-Udriste A, Dorobantu M. The winding road of cardiac regeneration—stem cell omics in the spotlight. Cells. 2018;7:255. doi: 10.3390/cells7120255.
    1. Isomi M, Sadahiro T, Ieda M. Progress and challenge of cardiac regeneration to treat heart failure. J. Cardiol. 2019;73:97–101. doi: 10.1016/j.jjcc.2018.10.002.
    1. Arbustini E, et al. Cardiac phenotypes in hereditary muscle disorders. J. Am. Coll. Cardiol. 2018;72:2485–2506. doi: 10.1016/j.jacc.2018.08.2182.
    1. Stergiopoulos K, Lima FV. Peripartum cardiomyopathy-diagnosis, management, and long term implications. Trends Cardiovasc. Med. 2018;29:164–173. doi: 10.1016/j.tcm.2018.07.012.
    1. Willott RH, et al. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J. Mol. Cell. Cardiol. 2010;48:882–892. doi: 10.1016/j.yjmcc.2009.10.031.
    1. Hershberger RE, et al. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2009;2:306–313. doi: 10.1161/CIRCGENETICS.108.846733.
    1. Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat. Rev. Cardiol. 2018;15:241–252. doi: 10.1038/nrcardio.2017.190.
    1. Knezevic T, et al. BAG3: a new player in the heart failure paradigm. Heart Fail. Rev. 2015;20:423–434. doi: 10.1007/s10741-015-9487-6.
    1. Liu G-S, et al. A novel human R25C-phospholamban mutation is associated with super-inhibition of calcium cycling and ventricular arrhythmia. Cardiovasc. Res. 2015;107:164–174. doi: 10.1093/cvr/cvv127.
    1. Sen-Chowdhry S, et al. Left-dominant arrhythmogenic cardiomyopathy: an under-recognized clinical entity. J. Am. Coll. Cardiol. 2008;52:2175–2187. doi: 10.1016/j.jacc.2008.09.019.
    1. Gerull B, et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J. Mol. Med. 2006;84:478–483. doi: 10.1007/s00109-006-0060-6.
    1. Norton N, et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2013;6:144–153. doi: 10.1161/CIRCGENETICS.111.000062.
    1. Roberts AM, et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl Med. 2015;7:270ra6. doi: 10.1126/scitranslmed.3010134.
    1. Ware JS, et al. Shared genetic predisposition in peripartum and dilated cardiomyopathies. N. Engl. J. Med. 2016;374:233–241. doi: 10.1056/NEJMoa1505517.
    1. Schafer S, et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 2017;49:46–53. doi: 10.1038/ng.3719.
    1. Taylor MRG, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 2003;41:771–780. doi: 10.1016/S0735-1097(02)02954-6.
    1. Parks SB, et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 2008;156:161–169. doi: 10.1016/j.ahj.2008.01.026.
    1. Villard E, et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 2005;26:794–803. doi: 10.1093/eurheartj/ehi193.
    1. Arimura T, Ishikawa T, Nunoda S, Kawai S, Kimura A. Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum. Mutat. 2011;32:1481–1491. doi: 10.1002/humu.21603.
    1. Begay RL, et al. FLNC gene splice mutations cause dilated cardiomyopathy. JACC Basic Transl Sci. 2016;1:344–359. doi: 10.1016/j.jacbts.2016.05.004.
    1. Ortiz-Genga MF, et al. Truncating FLNC mutations are associated with high-risk dilated and arrhythmogenic cardiomyopathies. J. Am. Coll. Cardiol. 2016;68:2440–2451. doi: 10.1016/j.jacc.2016.09.927.
    1. Li D, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl Sci. 2010;3:90–97. doi: 10.1111/j.1752-8062.2010.00198.x.
    1. McNair WP, et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 2004;110:2163–2167. doi: 10.1161/.
    1. Olson TM, et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 2005;293:447–454. doi: 10.1001/jama.293.4.447.
    1. Schmitt JP, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 2003;299:1410–1413. doi: 10.1126/science.1081578.
    1. DeWitt MM, MacLeod HM, Soliven B, McNally EM. Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. Am. J. Coll. Cardiol. 2006;48:1396–1398. doi: 10.1016/j.jacc.2006.07.016.
    1. Hershberger RE, et al. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2010;3:155–161. doi: 10.1161/CIRCGENETICS.109.912345.
    1. Pinto JR, et al. Functional characterization of TNNC1 rare variants identified in dilated cardiomyopathy. J. Biol. Chem. 2011;286:34404–34412. doi: 10.1074/jbc.M111.267211.
    1. Murphy RT, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet. 2004;363:371–372. doi: 10.1016/S0140-6736(04)15468-8.
    1. Carballo S, et al. Identification and functional characterization of cardiac troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ. Res. 2009;105:375–382. doi: 10.1161/CIRCRESAHA.109.196055.
    1. Olson TM, Kishimoto NY, Whitby FG, Michels VV. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 2001;33:723–732. doi: 10.1006/jmcc.2000.1339.
    1. Lakdawala NK, et al. Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy. J. Am. Coll. Cardiol. 2010;55:320–329. doi: 10.1016/j.jacc.2009.11.017.
    1. Garg R. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA. 1995;273:1450–1456. doi: 10.1001/jama.1995.03520420066040.
    1. Granger CB, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-alternative trial. Lancet. 2003;362:772–776. doi: 10.1016/S0140-6736(03)14284-5.
    1. Fauchier L, Pierre B, de Labriolle A, Babuty D. Comparison of the beneficial effect of beta-blockers on mortality in patients with ischaemic or non-ischaemic systolic heart failure: a meta-analysis of randomised controlled trials. Eur. J. Heart Fail. 2007;9:1136–1139. doi: 10.1016/j.ejheart.2007.09.003.
    1. Pitt B, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001.
    1. Taylor AL, et al. Early and sustained benefit on event-free survival and heart failure hospitalization from fixed-dose combination of isosorbide dinitrate/hydralazine: consistency across subgroups in the African-American heart failure trial. Circulation. 2007;115:1747–1753. doi: 10.1161/CIRCULATIONAHA.106.644013.
    1. Swedberg K, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875–885. doi: 10.1016/S0140-6736(10)61198-1.
    1. The Digitalis Investigation Group The effect of digoxin on mortality and morbidity in patients with heart failure. N. Engl. J. Med. 1997;336:525–533. doi: 10.1056/NEJM199702203360801.

Source: PubMed

3
Abonneren