Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis

Ilaria Alice Crippa, Carles Subirà, Jean-Louis Vincent, Rafael Fernandez Fernandez, Silvia Cano Hernandez, Federica Zama Cavicchi, Jacques Creteur, Fabio Silvio Taccone, Ilaria Alice Crippa, Carles Subirà, Jean-Louis Vincent, Rafael Fernandez Fernandez, Silvia Cano Hernandez, Federica Zama Cavicchi, Jacques Creteur, Fabio Silvio Taccone

Abstract

Background: Sepsis-associated brain dysfunction (SABD) is associated with high morbidity and mortality. The pathophysiology of SABD is multifactorial. One hypothesis is that impaired cerebral autoregulation (CAR) may result in brain hypoperfusion and neuronal damage leading to SABD.

Methods: We studied 100 adult patients with sepsis (July 2012-March 2017) (age = 62 [52-71] years; Acute Physiology and Chronic Health Evaluation II score on admission = 21 [15-26]). Exclusion criteria were acute or chronic intracranial disease, arrhythmias, extracorporeal membrane oxygenation, and known intra- or extracranial supra-aortic vessel disease. The site of infection was predominantly abdominal (46%) or pulmonary (28%). Transcranial Doppler was performed, insonating the left middle cerebral artery with a 2-MHz probe. Middle cerebral artery blood flow velocity (FV) and arterial blood pressure (ABP) signals were recorded simultaneously; Pearson's correlation coefficient (mean flow index [Mxa]) between ABP and FV was calculated using MATLAB. Impaired CAR was defined as Mxa > 0.3.

Results: Mxa was 0.29 [0.05-0.62]. CAR was impaired in 50 patients (50%). In a multiple linear regression analysis, low mean arterial pressure, history of chronic kidney disease and fungal infection were associated with high Mxa. SABD was diagnosed in 57 patients (57%). In a multivariable analysis, altered cerebral autoregulation, mechanical ventilation and history of vascular disease were independent predictors of SABD.

Conclusions: Cerebral autoregulation was altered in half of the patients with sepsis and was associated with the development of SABD. These findings support the concept that cerebral hypoxia could contribute to the development of SABD.

Keywords: Brain dysfunction; Cerebral blood flow; Cerebrovascular circulation; Doppler sonography; Transcranial.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol was approved by local ethics committees, and informed consent was obtained from the patients or their legal representatives.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Correlation between mean flow index and mean arterial blood pressure
Fig. 2
Fig. 2
Mean flow index (Mxa) in patients with and without sepsis-associated encephalopathy (sepsis-associated brain dysfunction [SABD]). Mxa is higher in patients with SABD (0.37 ± 0.05 vs 0.18 ± 0.06; p = 0.03)

References

    1. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, Rubenfeld G, Kahn JM, Shankar-Hari M, Singer M, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):762–774. doi: 10.1001/jama.2016.0288.
    1. Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8(10):557–566. doi: 10.1038/nrneurol.2012.183.
    1. Bolton CF, Young GB. Managing the nervous system effects of sepsis. Chest. 2007;131(5):1273–1274. doi: 10.1378/chest.07-0367.
    1. Semmler A, Widmann CN, Okulla T, Urbach H, Kaiser M, Widman G, Mormann F, Weide J, Fliessbach K, Hoeft A, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013;84(1):62–69. doi: 10.1136/jnnp-2012-302883.
    1. Heming N, Mazeraud A, Verdonk F, Bozza FA, Chrétien F, Sharshar T. Neuroanatomy of sepsis-associated encephalopathy. Crit Care. 2017;21:65. doi: 10.1186/s13054-017-1643-z.
    1. Polito A, Eischwald F, Le Maho AL, Polito A, Azabou E, Chrétien F, Stevens RD, Carlier R. Pattern of brain injury in the acute setting of human septic shock. Crit Care. 2013;17:R204. doi: 10.1186/cc12899.
    1. Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland JP, Nardi O, et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 2007;33(5):798–806. doi: 10.1007/s00134-007-0598-y.
    1. Taccone FS, Su F, Pierrakos C, He X, James S, Dewitte O, Vincent JL, De Backer D. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14(4):R140. doi: 10.1186/cc9205.
    1. Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, Donadello K, Dewitte O, Vincent JL, De Backer D. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. 2014;42(2):e114–e122. doi: 10.1097/CCM.0b013e3182a641b8.
    1. Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med. 2011;2011:823525.
    1. Pfister David, Siegemund Martin, Dell-Kuster Salome, Smielewski Peter, Rüegg Stephan, Strebel Stephan P, Marsch Stephan CU, Pargger Hans, Steiner Luzius A. Cerebral perfusion in sepsis-associated delirium. Critical Care. 2008;12(3):R63. doi: 10.1186/cc6891.
    1. Berg RMG, Plovsing RR, Bailey DM, Holstein-Rathlou NH, Møller K. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis. Clin Physiol Funct Imaging. 2015;36(6):490–496. doi: 10.1111/cpf.12256.
    1. Schramm P, Klein KU, Falkenberg L, Berres M, Closhen D, Werhahn KJ, David M. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit Care. 2012;16(5):R181. doi: 10.1186/cc11665.
    1. Matta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth. 1996;76(6):790–794. doi: 10.1093/bja/76.6.790.
    1. Taccone FS, Castanares-Zapatero D, Peres-Bota D, Vincent JL, Berré J, Melot C. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care. 2010;12(1):35–42. doi: 10.1007/s12028-009-9289-6.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31(4):1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM. Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol. 1990;16:745–761. doi: 10.1016/0301-5629(90)90039-F.
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–1834. doi: 10.1161/01.STR.27.10.1829.
    1. Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 2017;43(8):1075–1084. doi: 10.1007/s00134-017-4807-z.
    1. Berg RM, Plovsing RR, Ronit A, Bailey DM, Holstein-Rathlou NH, Møller K. Disassociation of static and dynamic cerebral autoregulatory performance in healthy volunteers after lipopolysaccharide infusion and in patients with sepsis. Am J Physiol Regul Integr Comp Physiol. 2012;303(11):R1127–R1135. doi: 10.1152/ajpregu.00242.2012.
    1. Dawson SL, Blake MJ, Panerai RB, Potter JF. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis. 2000;10(2):126–132. doi: 10.1159/000016041.
    1. Wang DW, Yin YM, Yao YM. Vagal modulation of the inflammatory response in sepsis. Int Rev Immunol. 2016;35(5):415–433. doi: 10.3109/08830185.2015.1127369.
    1. Turon M, Fernández-Gonzalo S, de Haro C, Magrans R, López-Aguilar J, Blanch L. Mechanisms involved in brain dysfunction in mechanically ventilated critically ill patients: implications and therapeutics. Ann Transl Med. 2018;6(2):30. doi: 10.21037/atm.2017.12.10.
    1. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med. 1989;17(5):399–403. doi: 10.1097/00003246-198905000-00004.
    1. Lavi S, Egbarya R, Lavi R, Jacob G. Role of nitric oxide in the regulation of cerebral blood flow in humans: chemoregulation versus mechanoregulation. Circulation. 2003;107(14):1901–1905. doi: 10.1161/01.CIR.0000057973.99140.5A.
    1. Danielski LG, Giustina AD, Badawy M, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. Mol Neurobiol. 2018;55(2):1045–1053. doi: 10.1007/s12035-016-0356-7.
    1. Lau WL, Huisa BN, Fisher M. The cerebrovascular-chronic kidney disease connection: perspectives and mechanisms. Transl Stroke Res. 2017;8(1):67–76. doi: 10.1007/s12975-016-0499-x.
    1. Liu HS, Hartung EA, Jawad AF, Ware JB, Laney N, Port AM, et al. Regional cerebral blood flow in children and young adults with chronic kidney disease. Radiology. 2018;288(\):849–858. doi: 10.1148/radiol.2018171339.
    1. Schramm P, Closhen D, Wojciechowski J, Berres M, Klein KU, Bodenstein M, Werner C, Engelhard K. Cerebrovascular autoregulation in critically ill patients during continuous hemodialysis. Can J Anaesth. 2013;60(6):564–569. doi: 10.1007/s12630-013-9912-z.
    1. Muskett H, Shahin J, Eyres G, Harvey S, Rowan K, Harrison D. Risk factors for invasive fungal disease in critically ill adult patients: a systematic review. Crit Care. 2011;15(6):R287. doi: 10.1186/cc10574.
    1. Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–1593. doi: 10.1056/NEJMoa1312173.
    1. Pedersen M, Brandt CT, Knudsen GM, Ostergaard C, Skinhøj P, Skovsted IC, Frimodt-Møller N, Møller K. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats. J Cereb Blood Flow Metab. 2008;28(1):126–134. doi: 10.1038/sj.jcbfm.9600514.
    1. de Azevedo DS, ASM S, de Lima Oliveira M, Teixeira MJ, Bor-Seng-Shu E, de Carvalho Nogueira R. Cerebral hemodynamics in sepsis assessed by transcranial Doppler: a systematic review and meta-analysis. J Clin Monit Comput. 2017;31(6):1123–1132. doi: 10.1007/s10877-016-9945-2.
    1. Bindra J, Pham P, Chuan A, Jaeger M, Åneman A. Is impaired cerebrovascular autoregulation associated with outcome in patients admitted to the ICU with early septic shock? Crit Care Res. 2016;18(2):95–101.
    1. Lang EW, Diehl RR, Timmermann L, Baron R, Deuschl G, Mehdorn HM, et al. Spontaneous oscillations of arterial blood pressure, cerebral and peripheral blood flow in healthy and comatose subjects. Neurol Res. 1999;21(7):665–669. doi: 10.1080/01616412.1999.11740995.
    1. Lang EW, Lagopoulos J, Griffith J, Yip K, Mudaliar Y, Mehdorn HM. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility. J Neurotrauma. 2003;20(1):69–75. doi: 10.1089/08977150360517191.
    1. Zeiler FA, Donnelly J, Calviello L, Smielewski P, Menon DK, Czosnyka M. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J Neurotrauma. 2017;34(23):3224–3237. doi: 10.1089/neu.2017.5086.
    1. Zampieri FG, Park M, Machado FS, Azevedo LC. Sepsis-associated encephalopathy: not just delirium. Clinics (Sao Paulo) 2011;66(10):1825–1831. doi: 10.1590/S1807-59322011001000024.
    1. Reade MC, Eastwood GM, Peck L, Bellomo R, Baldwin I. Routine use of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) by bedside nurses may underdiagnose delirium. Crit Care Resusc. 2011;13(4):217–224.
    1. Oddo M, Taccone FS. How to monitor the brain in septic patients? Minerva Anestesiol. 2015;81(7):776–788.
    1. Ogawa Y, Iwasaki K, Aoki K, Gokan D, Hirose N, Kato J, Ogawa S. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg. 2010;111(5):1279–1284. doi: 10.1213/ANE.0b013e3181f42fc0.

Source: PubMed

3
Abonneren