Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID

Giuseppe Ancona, Laura Alagna, Claudia Alteri, Emanuele Palomba, Anna Tonizzo, Andrea Pastena, Antonio Muscatello, Andrea Gori, Alessandra Bandera, Giuseppe Ancona, Laura Alagna, Claudia Alteri, Emanuele Palomba, Anna Tonizzo, Andrea Pastena, Antonio Muscatello, Andrea Gori, Alessandra Bandera

Abstract

The gut microbiota plays a crucial role in human health and disease. Gut dysbiosis is known to be associated with increased susceptibility to respiratory diseases and modifications in the immune response and homeostasis of the lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted the possible role of dysbiosis in neurological disturbances, introducing the notion of the "gut-brain axis." During the last 2 years, several studies have described the presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and immune inflammation. Moreover, the possible persistence of gut dysbiosis after disease resolution may be linked to long-COVID syndrome and particularly to its neurological manifestations. We reviewed recent evidence on the association between dysbiosis and COVID-19, investigating the possible epidemiologic confounding factors like age, location, sex, sample size, the severity of disease, comorbidities, therapy, and vaccination status on gut and airway microbial dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover, we analyzed the confounding factors strictly related to microbiota, specifically diet investigation and previous use of antibiotics/probiotics, and the methodology used to study the microbiota (α- and β-diversity parameters and relative abundance tools). Of note, only a few studies focused on longitudinal analyses, especially for long-term observation in long-COVID. Lastly, there is a lack of knowledge regarding the role of microbiota transplantation and other therapeutic approaches and their possible impact on disease progression and severity. Preliminary data seem to suggest that gut and airway dysbiosis might play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the development and interpretation of these data could have important implications for future preventive and therapeutic strategies.

Keywords: COVID-19; SARS-CoV-2; dysbiosis; gut-brain-axis; gut-lung-axis; long Covid; microbiome; microbiota.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Ancona, Alagna, Alteri, Palomba, Tonizzo, Pastena, Muscatello, Gori and Bandera.

Figures

Figure 1
Figure 1
Gut-lung axis microbiota in COVID-19. This figure shows a summary of the gut-lung axis and its alterations during COVID-19. Left: the gut microbiota taxa obligately anaerobic short-chain fatty acids (propionate and butyrate) producers and anti-inflammatory taxa, not propionate and butyrate producers. Upper: facultatively anaerobic bacteria. Right: the homeostasis of the lung microbiota, resulting from acquisition (blue arrow) and elimination (red arrow) clearance. Bottom: the most significant alterations detected in gut and lung microbiota during COVID-19. All around, the confounding factors are strictly related to Microbiota. BMI: Body Mass Index; ° indicates propionate-producing bacteria, * indicates butyrate-producing bacteria, Upward arrows “↑”: increase; Downward arrows “↓”: decrease.

References

    1. World Health Organisation . WHO coronavirus disease (COVID-19) dash-board. (2022) 2022:2022.
    1. National Institutes of Health . Treatment guidelines panel. Coronavirus disease 2019 (COVID-19). (2021) 2019:1–243.
    1. Rosenthal N, Cao Z, Gundrum J, Sianis J, Safo S. Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19. JAMA Netw Open (2020) 3(12):1–14. doi: 10.1001/jamanetworkopen.2020.29058
    1. Centers for Disease Control and Prevention . Long COVID or post-COVID conditions. (2022) 2022:.
    1. Sykes DL, Holdsworth L, Jawad N, Gunasekera P, Morice AH, Crooks MG. Post-COVID-19 symptom burden: What is long-COVID and how should we manage it? Lung (2021) 199(2):113–9. doi: 10.1007/s00408-021-00423-z
    1. Stefanou M-I, Palaiodimou L, Bakola E, Smyrnis N, Papadopoulou M, Paraskevas GP, et al. . Neurological manifestations of long-COVID syndrome: A narrative review. Ther Adv Chronic Dis. Tsivgoulis MG and G. (2022) 13:20406223221076890. doi: 10.1177/20406223221076890
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. . Clinical features of patients infected with 2019 novel coronavirus in wuhan, China. Lancet (2020) 395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
    1. Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, et al. . Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology (2020) 159(1):81–95. doi: 10.1053/j.gastro.2020.03.065
    1. Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. . Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology (2020) 159(3):944–955.e8. doi: 10.1053/j.gastro.2020.05.048
    1. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev (2014) 38(5):996–1047. doi: 10.1111/1574-6976.12075
    1. Lee JY, Tsolis RM, Bäumler AJ. The microbiome and gut homeostasis. Sci (80- ). (2022) 377(6601). doi: 10.1126/science.abp9960
    1. Macpherson AJ, McCoy KD. Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Semin Immunol (2013) 25(5):358–63. doi: 10.1016/j.smim.2013.09.004
    1. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol (2017) 19(1):29–41. doi: 10.1111/1462-2920.13589
    1. Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med (2019) 216(1):20–40. doi: 10.1084/jem.20180448
    1. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci (2019) 76(3):473–93. doi: 10.1007/s00018-018-2943-4
    1. Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, et al. . Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell (2022) 185(18):3307–3328.e19. doi: 10.1016/j.cell.2022.07.016
    1. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. In: Nature. (2016) p:212–5. doi: 10.1038/nature16504
    1. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, Charles T, et al. . Microbiome definition re-visited: Old concepts and new challenges. Microbiome (2020) 8(1):1–22. doi: 10.1186/s40168-020-00875-0
    1. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. . Microbiota in health and diseases. Signal Transduct Target Ther (2022) 7(1):135. doi: 10.1038/s41392-022-00974-4
    1. Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P, Riffault S, et al. . Paradigms of lung microbiota functions in health and disease, particularly, in asthma. Front Physiol (2018) 9:1168. doi: 10.3389/fphys.2018.01168
    1. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol (2019) 20(10):1279–90. doi: 10.1038/s41590-019-0451-9
    1. Mouraux S, Bernasconi E, Pattaroni C, Koutsokera A, Aubert JD, Claustre J, et al. . Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin Immunol (2018) 141(2):718–729.e7. doi: 10.1016/j.jaci.2017.06.022
    1. Sze MA, Tsuruta M, Yang SWJ, Oh Y, Man SFP, Hogg JC, et al. . Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PloS One (2014) 9(10):e111228. doi: 10.1371/journal.pone.0111228
    1. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. . Microbiota regulates immune defense against respiratory tract influenza a virus infection. Proc Natl Acad Sci USA 2011. 108(13):5354–9. doi: 10.1073/pnas.1019378108
    1. Huang Y, Mao K, Chen X, Sun MA, Kawabe T, Li W, et al. . S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science (2018) 359(6371):114–9. doi: 10.1126/science.aam5809
    1. Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science (2015) 350(6263):981–5. doi: 10.1126/science.aac9593
    1. Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. . Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun (2019) 10(1):1–18. doi: 10.1038/s41467-018-07859-7
    1. Zelante T, Iannitti RG, Cunha C, DeLuca A, Giovannini G, Pieraccini G, et al. . Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity (2013) 39(2):372–85. doi: 10.1016/j.immuni.2013.08.003
    1. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: A review. Antonie van Leeuwenhoek Int J Gen Mol Microbiol (2020) 113(12):2019–40. doi: 10.1007/s10482-020-01474-7
    1. Ratto D, Roda E, Romeo M, Venuti MT, Desiderio A, Lupo G, et al. . The many ages of microbiome–Gut–Brain axis. Nutrients (2022) 14(14):1–22. doi: 10.3390/nu14142937
    1. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol (2017) 595(2):489–503. doi: 10.1113/JP273106
    1. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med (2016) 22(10):1079–89. doi: 10.1038/nm.4185
    1. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. . Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell (2014) 159(3):514–29. doi: 10.1016/j.cell.2014.09.048
    1. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev (2020) 53:101340. doi: 10.1016/j.smrv.2020.101340
    1. Kaczmarek JL, Musaad SMA, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr (2017) 106(5):1220–31. doi: 10.3945/ajcn.117.156380
    1. Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, et al. . Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol (2019) 71(6):1216–28. doi: 10.1016/j.jhep.2019.08.005
    1. Spadoni I, Zagato E, Bertocchi A, Paolinelli R, Hot E, Di Sabatino A, et al. . A gut-vascular barrier controls the systemic dissemination of bacteria. Sci (80- ). (2015) 350(6262):830–4. doi: 10.1126/science.aad0135
    1. Yu L, Tong Y, Shen G, Fu A, Lai Y, Zhou X, et al. . Immunodepletion with hypoxemia: A potential high risk subtype of coronavirus disease 2019. medRxiv (2020). doi: 10.1101/2020.03.03.20030650v1.abstract
    1. Tang L, Gu S, Gong Y, Li B, Lu H, Li Q, et al. . Clinical significance of the correlation between changes in the major intestinal bacteria species and COVID-19 severity. Engineering (2020) 6(10):1178–84. doi: 10.1016/j.eng.2020.05.013
    1. Zuo T, Liu Q, Zhang F, Lui GCY, Tso EYK, Yeoh YK, et al. . Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut (2021) 70(2):276–84. doi: 10.1136/gutjnl-2020-322294
    1. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. . Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza silan. Journals Gerontol Ser A Biol Sci Med Sci (2020) 0813:1–11. doi: 10.1093/cid/ciaa709
    1. Tao W, Zhang G, Wang X, Guo M, Zeng W, Xu Z, et al. . Analysis of the intestinal microbiota in COVID-19 patients and its correlation with the inflammatory factor IL-18. Med Microecol (2020) 5(September):100023. doi: 10.1016/j.medmic.2020.100023
    1. Yeoh YK, Zuo T, Lui GCY, Zhang F, Liu Q, Li AYL, et al. . Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut (2021) 70(4):698–706. doi: 10.1136/gutjnl-2020-323020
    1. Mazzarelli A, Giancola ML, Farina A, Marchioni L, Rueca M, Gruber CEM, et al. . 16S rRNA gene sequencing of rectal swab in patients affected by COVID-19. PloS One (2021) 16:1–15. doi: 10.1371/journal.pone.0247041
    1. Liu F, Ye S, Zhu X, He X, Wang S, Li Y, et al. . Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. J Med Case Rep (2021) 15(1):1–9. doi: 10.1186/s13256-020-02583-7
    1. Xu R, Lu R, Zhang T, Wu Q, Cai W, Han X, et al. . Temporal association between human upper respiratory and gut bacterial microbiomes during the course of COVID-19 in adults. Commun Biol (2021) 4(1):1–11. doi: 10.1038/s42003-021-01796-w
    1. Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, et al. . Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut (2021) 70(7):1253–65. doi: 10.1136/gutjnl-2020-323826
    1. Chen Y, Gu S, Chen Y, Lu H, Shi D, Guo J, et al. . Six-month follow-up of gut microbiota richness in patients with COVID-19. Gut (2022) 71(1):222–5. doi: 10.1136/gutjnl-2021-324090
    1. Gaibani P, D’Amico F, Bartoletti M, Lombardo D, Rampelli S, Fornaro G, et al. . The gut microbiota of critically ill patients with COVID-19. Front Cell Infect Microbiol (2021) 11(June):1–11. doi: 10.3389/fcimb.2021.670424
    1. Zhou Y, Shi X, Fu W, Xiang F, He X, Yang B, et al. . Gut microbiota dysbiosis correlates with abnormal immune response in moderate covid-19 patients with fever. J Inflammation Res (2021) 14:2619–31. doi: 10.2147/JIR.S311518
    1. Kim HN, Joo EJ, Lee CW, Ahn KS, Kim HL, Park D, et al. . Reversion of gut microbiota during the recovery phase in patients with asymptomatic or mild covid-19: Longitudinal study. Microorganisms (2021) 9(6):1–16. doi: 10.3390/microorganisms9061237
    1. Zhou Y, Zhang J, Zhang D, Ma WL, Wang X. Linking the gut microbiota to persistent symptoms in survivors of COVID-19 after discharge. J Microbiol (2021) 59(10):941–8. doi: 10.1007/s12275-021-1206-5
    1. Moreira-Rosário A, Marques C, Pinheiro H, Araújo JR, Ribeiro P, Rocha R, et al. . Gut microbiota diversity and c-reactive protein are predictors of disease severity in COVID-19 patients. Front Microbiol (2021) 12:1–13. doi: 10.3389/fmicb.2021.705020
    1. Wu Y, Cheng X, Jiang G, Tang H, Ming S, Tang L, et al. . Altered oral and gut microbiota and its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes (2021) 7(1):90. doi: 10.1038/s41522-021-00262-z
    1. He F, Zhang T, Xue K, Fang Z, Jiang G, Huang S, et al. . Fecal multi-omics analysis reveals diverse molecular alterations of gut ecosystem in COVID-19 patients. Anal Chim Acta (2021) 1180:338881. doi: 10.1016/j.aca.2021.338881
    1. Li S, Yang S, Zhou Y, Disoma C, Dong Z, Du A, et al. . Microbiome profiling using shotgun metagenomic sequencing identified unique microorganisms in COVID-19 patients with altered gut microbiota. Front Microbiol (2021) 12(October). doi: 10.3389/fmicb.2021.712081
    1. Liu Q, Mak JWY, Su Q, Yeoh YK, Lui GCY, Ng SSS, et al. . Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut (2022) 71(3):544–52. doi: 10.1136/gutjnl-2021-325989
    1. Ng SC, Peng Y, Zhang L, Mok CK, Zhao S, Li A, et al. . Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut (2022) 71(6):1106–16. doi: 10.1136/gutjnl-2021-326563
    1. Zmora N, Suez J, Elinav E. You are what you eat: Diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol (2019) 16(1):35–56. doi: 10.1038/s41575-018-0061-2
    1. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, et al. . Influence of diet on the gut microbiome and implications for human health. J Transl Med (2017) 15(1):1–17. doi: 10.1186/s12967-017-1175-y
    1. Noguera-Julian M, Rocafort M, Guillén Y, Rivera J, Casadellà M, Nowak P, et al. . Gut microbiota linked to sexual preference and HIV infection. EBioMedicine (2016) 5:135–46. doi: 10.1016/j.ebiom.2016.01.032
    1. Neff CP, Krueger O, Xiong K, Arif S, Nusbacher N, Schneider JM, et al. . Fecal microbiota composition drives immune activation in HIV-infected individuals. EBioMedicine (2018) 30:192–202. doi: 10.1016/j.ebiom.2018.03.024
    1. Hill TCJ, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol (2003) 43(1):1–11. doi: 10.1111/j.1574-6941.2003.tb01040.x
    1. He Y, Zhou BJ, Deng GH, Jiang XT, Zhang H, Zhou HW. Comparison of microbial diversity determined with the same variable tag sequence extracted from two different PCR amplicons. BMC Microbiol (2013) 13(1):1. doi: 10.1186/1471-2180-13-208
    1. Gregorius HR. Effective numbers in the partitioning of biological diversity. J Theor Biol (2016) 409:133–47. doi: 10.1016/j.jtbi.2016.08.037
    1. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol (2007) 73(5):1576–85. doi: 10.1128/AEM.01996-06
    1. Hirayama M, Nishiwaki H, Hamaguchi T, Ito M, Ueyama J, Maeda T, et al. . Intestinal collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PloS One (2021) 16(11 November):1–11. doi: 10.1371/journal.pone.0260451
    1. De Maio F, Posteraro B, Ponziani FR, Cattani P, Gasbarrini A, Sanguinetti M. Nasopharyngeal microbiota profiling of SARS-CoV-2 infected patients. Biol Proced Online. (2020) 22(1):20–3. doi: 10.1186/s12575-020-00131-7
    1. Rueca M, Fontana A, Bartolini B, Piselli P, Mazzarelli A, Copetti M, et al. . Investigation of nasal/oropharyngeal microbial community of covid-19 patients by 16s rdna sequencing. Int J Environ Res Public Health (2021) 18(4):1–12. doi: 10.3390/ijerph18042174
    1. Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. . Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. Clin Infect Dis (2020) 71(15):713–20. doi: 10.1093/cid/ciaa203
    1. Nardelli C, Gentile I, Setaro M, Di Domenico C, Pinchera B, Buonomo AR, et al. . Nasopharyngeal microbiome signature in COVID-19 positive patients: Can we definitively get a role to fusobacterium periodonticum? Front Cell Infect Microbiol (2021) 11:1–7. doi: 10.3389/fcimb.2021.625581
    1. Budding A, Sieswerda E, Wintermans B, Bos M. An Age Dependent Pharyngeal Microbiota Signature Associated with SARS-CoV-2 Infection. (2020). doi: 10.2139/ssrn.3582780
    1. Ventero MP, Cuadrat RRC, Vidal I, Andrade BGN, Molina-Pardines C, Haro-Moreno JM, et al. . Nasopharyngeal microbial communities of patients infected with SARS-CoV-2 that developed COVID-19. Front Microbiol (2021) 12:1–10. doi: 10.3389/fmicb.2021.637430
    1. Rosas-Salazar C, Kimura KS, Shilts MH, Strickland BA, Freeman MH, Wessinger BC, et al. . SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome. J Allergy Clin Immunol (2021) 147(4):1226–1233.e2. doi: 10.1016/j.jaci.2021.02.001
    1. Miao Q, Ma Y, Ling Y, Jin W, Su Y, Wang Q, et al. . Evaluation of superinfection, antimicrobial usage, and airway microbiome with metagenomic sequencing in COVID-19 patients: A cohort study in shanghai. J Microbiol Immunol Infect (2021) 54(5):808–15. doi: 10.1016/j.jmii.2021.03.015
    1. Braun T, Halevi S, Hadar R, Efroni G, Glick Saar E, Keller N, et al. . SARS-CoV-2 does not have a strong effect on the nasopharyngeal microbial composition. Sci Rep [Internet]. (2021) 11(1):8922. doi: 10.1038/s41598-021-88536-6
    1. Zhang H, Ai JW, Yang W, Zhou X, He F, Xie S, et al. . Metatranscriptomic characterization of coronavirus disease 2019 identified a host transcriptional classifier associated with immune signaling. Clin Infect Dis (2021) 73(3):376–85. doi: 10.1093/cid/ciaa663
    1. Mostafa HH, Fissel JA, Fanelli B, Bergman Y, Gniazdowski V, Dadlani M, et al. . Metagenomic next-generation sequencing of nasopharyngeal specimens collected from confirmed and suspect covid-19 patients. MBio (2020) 11(6):1–13. doi: 10.1128/mBio.01969-20
    1. Merenstein C, Liang G, Whiteside SA, Cobián-Güemes AG, Merlino MS, Taylor LJ, et al. . Signatures of COVID-19 severity and immune response in the respiratory tract microbiome. ASM J MBio (2021) 12(4). doi: 10.1128/mBio.01777-21
    1. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. . Mining the human gut microbiota for immunomodulatory organisms. Cell (2017) 168(5):928–943.e11. doi: 10.1016/j.cell.2017.01.022
    1. Ramanan P, Barreto JN, Osmon DR, Tosh PK. Rothia bacteremia: A 10-year experience at Mayo clinic, Rochester, Minnesota. J Clin Microbiol (2014) 52(9):3184–9. doi: 10.1128/JCM.01270-14
    1. Bernard-Raichon L, Venzon M, Klein J, Axelrad JE, Zhang C, Sullivan AP, et al. . Gut microbiome dysbiosis in antibiotic-treated COVID-19 patients is associated with microbial translocation and bacteremia. Nat Commun (2022) 13(1):1–13. doi: 10.1038/s41467-022-33395-6
    1. Seibert B, Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Geiger G, Rajao DS, et al. . Mild and severe SARS-CoV-2 infection induces respiratory and intestinal microbiome changes in the K18-hACE2 transgenic mouse model. Microbiol Spectr (2021) 9(1):e00536-21. doi: 10.1128/Spectrum.00536-21
    1. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. . The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology (2011) 141(2):599–609. doi: 10.1053/j.gastro.2011.04.052
    1. Carloni S, Bertocchi A, Mancinelli S, Bellini M, Erreni M, Borreca A, et al. . Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science (2021) 374(6566):439–48. doi: 10.1126/science.abc6108
    1. Agirman G, Yu KB, Hsiao EYT. Signaling inflammation across the gut-brain axis. (2021) 1092:1087–92.
    1. Sajdel-Sulkowska EM. Neuropsychiatric ramifications of COVID-19: Short-chain fatty acid deficiency and disturbance of microbiota-Gut-Brain axis signaling. BioMed Res Int (2021) 2021:7880448. doi: 10.1155/2021/7880448
    1. Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, et al. . Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat Commun (2021) 12(1):1–13. doi: 10.1038/s41467-021-21907-9
    1. Nataf S, Pays L. Molecular insights into sars-cov2-induced alterations of the gut/brain axis. Int J Mol Sci (2021) 22(19):10440. doi: 10.3390/ijms221910440
    1. Drakopanagiotakis F, Stavropoulou E, Tsigalou C, Nena E, Steiropoulos P. The role of the microbiome in connective-Tissue-Associated interstitial lung disease and pulmonary vasculitis. Biomed (2022) 10(12):3195. doi: 10.3390/biomedicines10123195
    1. Din AU, Mazhar M, Wasim M, Ahmad W, Bibi A, Hassan A, et al. . SARS-CoV-2 microbiome dysbiosis linked disorders and possible probiotics role. BioMed Pharmacother (2021) 133:110947. doi: 10.1016/j.biopha.2020.110947

Source: PubMed

3
Abonneren