Lurbinectedin reduces tumour-associated macrophages and the inflammatory tumour microenvironment in preclinical models

Cristina Belgiovine, Ezia Bello, Manuela Liguori, Ilaria Craparotta, Laura Mannarino, Lara Paracchini, Luca Beltrame, Sergio Marchini, Carlos M Galmarini, Alberto Mantovani, Roberta Frapolli, Paola Allavena, Maurizio D'Incalci, Cristina Belgiovine, Ezia Bello, Manuela Liguori, Ilaria Craparotta, Laura Mannarino, Lara Paracchini, Luca Beltrame, Sergio Marchini, Carlos M Galmarini, Alberto Mantovani, Roberta Frapolli, Paola Allavena, Maurizio D'Incalci

Abstract

Background: Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells.

Methods: In this study we investigated whether lurbinectedin has the ability to modulate the inflammatory microenvironment and the viability of myeloid cells in tumour-bearing mice.

Results: Administration of lurbinectedin significantly and selectively decreased the number of circulating monocytes and, in tumour tissues, that of macrophages and vessels. Similar findings were observed when a lurbinectedin-resistant tumour variant was used, indicating a direct effect of lurbinectedin on the tumour microenviroment. In vitro, lurbinectedin induced caspase-8-dependent apoptosis of human purified monocytes, whereas at low doses it significantly inhibited the production of inflammatory/growth factors (CCL2, CXCL8 and VEGF) and dramatically impaired monocyte adhesion and migration ability. These findings were supported by the strong inhibition of genes of the Rho-GTPase family in lurbinectedin-treated monocytes.

Conclusions: The results illustrate that lurbinectedin affects at multiple levels the inflammatory microenvironment by acting on the viability and functional activity of mononuclear phagocytes. These peculiar effects, combined with its intrinsic activity against cancer cells, make lurbinectedin a compound of particular interest in oncology.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effects of lurbinectedin on human purified monocytes in vitro. (A) Cell viability of monocytes treated with lurbinectedin or trabectedin at two different doses (5 and 10 nM) for up to 48 h, evaluated with Annexin/PI staining by flow cytometry; results are shown as % of live cells compared with untreated cells (mean±s.e. of three experiments). (B) Caspase-8 activation in treated monocytes evaluated by flow cytometry with anti-cleaved CASP8 antibody. Caspase-8 activation peaks at 12 h and remains at plateau at 18 h. (C) Modulation of cytokine production (ELISA) by lurbinectedin and trabectedin in human LPS-stimulated monocytes. Monocytes were treated with drugs (5 nM) for 1 h, washed and cultured with fresh medium for 24 h. Both drugs significantly and similarly inhibited the production of CCL2, CXCL8 and VEGF. (D) Migration assay (left) and adhesion assay (right) of human monocytes pre-treated with lurbinectedin and trabectedin (5 nM), in response to CCL2 (100 ng ml−1). Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (Student’s t-test).
Figure 2
Figure 2
Modulation of gene expression by lurbinectedin in human LPS-stimulated monocytes. Monocytes were treated with lurbinectedin (10 nM), trabectedin (10 nM) or doxorubicin (1 μM) for 6 h (mean±s.e. of five donors). (A) Dendogram plot showing the similarity of gene modulation for lurbinectedin (PM) and trabectedin (ET), in contrast with doxorubicin. (B) Modulation of Rho GTPase genes in human LPS-stimulated monocytes, in the myeloid cell line THP1, primary IL-2-activated human T lymphocytes and the murine fibrosarcoma MN/MCA1. Both lurbinectedin and trabectedin inhibit Rho GTPase genes selectively in myeloid cells. Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (Student’s t-test). Data were analysed by the DDCT method and expressed as fold change (arbitrary unit) compared with untreated control (set as 1). Values below 0.5 or above 2 (red dashed lines) are genes differentially expressed.
Figure 3
Figure 3
In vivo anti-tumour activity of lurbinectedin in mice. The syngenic fibrosarcoma MN/MCA1 (A) and its resistant variant RES-MN/MCA1 (B) were used. Mice were treated with lurbinectedin or trabectedin i.v. q7d × 3, respectively, at the indicated doses (see text). A representative experiment of two performed with similar results is shown. Lurbinectedin and trabectedin have similar anti-tumour efficacy. Statistical analysis: ***P<0.001 (two-way ANOVA; Bonferroni post hoc test).
Figure 4
Figure 4
Effects of lurbinectedin on the tumour microenvironment of the fibrosarcoma MN/MCA1. (A) Flow cytometry analysis of circulating leukocytes of mice treated with lurbinectedin or trabectedin as detailed in the legend of Figure 3. Results are shown after 1 cycle of treatment. Both drugs selectively decrease the number of total monocytes (CD11b+CD115+), especially the Ly6Chigh monocyte subset. (B) Flow cytometry analysis of splenic leukocytes in mice treated after three cycles. Both drugs selectively decrease the number of macrophages (CD11b+ F4/80+Ly6Chigh). Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (two-way ANOVA; Bonferroni T-test. (C) Representative immunohistochemistry pictures of tumour sections after treatment (three cycles), stained for macrophages (F4/80) or blood vessels (CD31). (D) Quantification of immunohistochemistry. Both macrophages and vessels were significantly reduced in tumours treated with lurbinectedin and trabectedin. The immunoreactive areas are calculated as mean from five microscopic fields for each sample, five mice per group. Images were analysed using Image-Pro Analyzer software. Original magnification, × 20. Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (Student’s t-test).
Figure 5
Figure 5
Effects of lurbinectedin on the tumour microenvironment of the fibrosarcoma resistant variant RES-MN/MCA1. (A) Flow cytometry analysis of circulating leukocytes of mice treated with lurbinectedin or trabectedin as detailed in the legend of Figure 3. Results are shown after one cycle of treatment. Both drugs selectively decrease the number of total monocytes (CD11b+CD115+), especially the Ly6Chigh monocyte subset. (B) Flow cytometry analysis of splenic leukocytes in mice treated after three cycles. Both drugs selectively decrease the number of macrophages (CD11b+ F4/80+Ly6Chigh). Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (two-way ANOVA; Bonferroni T-test. (C) Representative immunohistochemistry pictures of tumour sections after treatment (three cycles), stained for macrophages (F4/80) or blood vessels (CD31). (D) Quantification of immunohistochemistry. Both macrophages and vessels were significantly reduced in tumours treated with lurbinectedin and trabectedin. The immunoreactive areas are calculated as mean from five microscopic fields for each sample, five mice per group. Images were analysed using Image-Pro Analyzer software. Original magnification, × 20. Statistical analysis: *P<0.05, **P<0.01 and ***P<0.001 (Student’s t-test).
Figure 6
Figure 6
Schematic representation of the mechanisms of action of lurbinectedin on the tumour microenvironment. Lurbinectedin induces the apoptotic death of monocytes; at sub-cytotoxic concentrations lurbinectedin inhibits the cell migration in response to chemotactic signals (CCL2) and the production of inflammatory mediators produced in the tumour microenvironment (CCL2 and CXCL8) and the angiogenic factor VEGF.

References

    1. Allavena P, Mantovani A (2012) Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin Exp Immunol 167(2): 195–205.
    1. Belgiovine C, D’Incalci M, Allavena P, Frapolli R (2016) Tumor-associated macrophages and anti-tumor therapies: complex links. Cell Mol Life Sci 73(13): 2411–2424.
    1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57(1): 289–300.
    1. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT (2013) Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 19(12): 3165–3175.
    1. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573(1–3): 83–92.
    1. Céspedes MV, Guillén MJ, López-Casas PP, Sarno F, Gallardo A, Álamo P, Cuevas C, Hidalgo M, Galmarini CM, Allavena P, Avilés P, Mangues R (2016) Lurbinectedin induces depletion of tumor-associated macrophages (TAM), an essential component of its in vivo synergism with gemcitabine. Dis Model Mech 9: 1461–1471.
    1. Coussens LM, Zitvogel L, Palucka AK (2013) Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 339(6117): 286–291.
    1. De Palma M, Lewis CE (2013) Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23(3): 277–286.
    1. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirström K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1): 54–67.
    1. Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R (2007) A systems biology approach for pathway level analysis. Genome Res 17(10): 1537–1545.
    1. Elez ME, Tabernero J, Geary D, Macarulla T, Kang SP, Kahatt C, Pita AS, Teruel CF, Siguero M, Cullell-Young M, Szyldergemajn S, Ratain MJ (2014) First-in-human phase I study of lurbinectedin (PM01183) in patients with advanced solid tumors. Clin Cancer Res 20(8): 2205–2214.
    1. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916): 629–635.
    1. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, Apte RN, Aranda F, Ayyoub M, Beckhove P, Blay JY, Bracci L, Caignard A, Castelli C, Cavallo F, Celis E, Cerundolo V, Clayton A, Colombo MP, Coussens L, Dhodapkar MV, Eggermont AM, Fearon DT, Fridman WH, Fučíková J, Gabrilovich DI, Galon J, Garg A, Ghiringhelli F, Giaccone G, Gilboa E, Gnjatic S, Hoos A, Hosmalin A, Jäger D, Kalinski P, Kärre K, Kepp O, Kiessling R, Kirkwood JM, Klein E, Knuth A, Lewis CE, Liblau R, Lotze MT, Lugli E, Mach JP, Mattei F, Mavilio D, Melero I, Melief CJ, Mittendorf EA, Moretta L, Odunsi A, Okada H, Palucka AK, Peter ME, Pienta KJ, Porgador A, Prendergast GC, Rabinovich GA, Restifo NP, Rizvi N, Sautès-Fridman C, Schreiber H, Seliger B, Shiku H, Silva-Santos B, Smyth MJ, Speiser DE, Spisek R, Srivastava PK, Talmadge JE, Tartour E, Van Der Burg SH, Van Den Eynde BJ, Vile R, Wagner H, Weber JS, Whiteside TL, Wolchok JD, Zitvogel L, Zou W, Kroemer G (2014) Classification of current anticancer immunotherapies. Oncotarget 5(24): 12472–12508.
    1. Galmarini CM, Mackey JR, Dumontet C (2002) Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol 3(7): 415–424.
    1. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, Nebuloni M, van Rooijen N, Mortarini R, Beltrame L, Marchini S, Fuso Nerini I, Sanfilippo R, Casali PG, Pilotti S, Galmarini CM, Anichini A, Mantovani A, D'Incalci M, Allavena P (2013) Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23(2): 249–262.
    1. Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S, Pasqualini F, Grosso F, Sanfilippo R, Casali PG, Gronchi A, Virdis E, Tarantino E, Pilotti S, Greco A, Nebuloni M, Galmarini CM, Tercero JC, Mantovani A, D'Incalci M, Allavena P (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70(6): 2235–2244.
    1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5): 646–674.
    1. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, Kohrt HE, Horn L, Lawrence DP, Rost S, Leabman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528): 563–567.
    1. Hume DA, MacDonald KPA (2011) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119(8): 1810–1820.
    1. Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12: 4298–4314.
    1. Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, Ochoa A, Chen L, Zou W (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4): 871–881.
    1. Kuang D-M, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6): 1327–1337.
    1. Liguori M, Buracchi C, Pasqualini F, Bergomas F, Pesce S, Sironi M, Grizzi F, Mantovani A, Belgiovine C, Allavena P (2016) Functional TRAIL receptors in monocytes and tumor-associated macrophages: a possible targeting pathway in the tumor microenvironment. Oncotarget 7(27): 41662–41676.
    1. Mantovani A, Allavena P (2015) The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 212(4): 435–445.
    1. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203): 436–444.
    1. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23(4): 344–346.
    1. Massazza G, Tomasoni A, Lucchini V, Allavena P, Erba E, Colombo N, Mantovani A, D'Incalci M, Mangioni C, Giavazzi R (1989) Intraperitoneal and subcutaneous xenografts of human ovarian carcinoma in nude mice and their potential in experimental therapy. Int J Cancer 44(3): 494–500.
    1. Moneo V, Martinez P, de Castro B, Cascajares S, Avila S, Garcia-Fernandez LF, Galmarini M (2014) Abstract A174: Comparison of the antitumor activity of Trabectedin, Lurbinectedin, Zalypsis and PM00128 in a panel of human cells deficient in transcription/NER repair factors. Mol Cancer Ther 12(11_Supplement): A174.
    1. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1): 49–61.
    1. Oliva P, Decio A, Castiglioni V, Bassi A, Pesenti E, Cesca M, Scanziani E, Belotti D, Giavazzi R (2012) Cisplatin plus paclitaxel and maintenance of bevacizumab on tumour progression, dissemination, and survival of ovarian carcinoma xenograft models. Br J Cancer 107(2): 360–369.
    1. Paz-Ares L, Forster M, Boni V, Szyldergemajn S, Corral J, Turnbull S, Cubillo A, Teruel CF, Calderero IL, Siguero M, Bohan P, Calvo E (2017) Phase I clinical and pharmacokinetic study of PM01183 (a tetrahydroisoquinoline, Lurbinectedin) in combination with gemcitabine in patients with advanced solid tumors. Invest New Drugs 206(2): 198–206.
    1. Pernice T, Bishop AG, Guillen MJ, Cuevas C, Aviles P (2016) Development of a liquid chromatography/tandem mass spectrometry assay for the quantification of PM01183 (lurbinectedin), a novel antineoplastic agent, in mouse, rat, dog, Cynomolgus monkey and mini-pig plasma. J Pharm Biomed Anal 123: 37–41.
    1. Priceman SJ, Sung JL, Shaposhnik Z, Burton JB, Torres-Collado AX, Moughon DL, Johnson M, Lusis AJ, Cohen DA, Iruela-Arispe ML, Wu L (2010) Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115(7): 1461–1471.
    1. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10): 1264–1272.
    1. Qu Q-X, Huang Q, Shen Y, Zhu Y-B, Zhang X-G (2016) The increase of circulating PD-L1-expressing CD68+ macrophage in ovarian cancer. Tumor Biol 37(4): 5031–5037.
    1. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Rüttinger D (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6): 846–859.
    1. Romano M, Frapolli R, Zangarini M, Bello E, Porcu L, Galmarini CM, García-Fernández LF, Cuevas C, Allavena P, Erba E, D'Incalci M (2013) Comparison ofin vitroandin vivobiological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis (PM00104). Int J Cancer 133(9): 2024–2033.
    1. Sales G, Calura E, Cavalieri D, Romualdi C (2012) graphite—a Bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 13(1): 20.
    1. Santamaria Nunez G, Robles CMG, Giraudon C, Martínez-Leal JF, Compe E, Coin F, Aviles P, Galmarini CM, Egly JM (2016) Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Mol Cancer Ther 15(10): 2399–2412.
    1. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528): 568–571.
    1. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DA, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA Committee of the National Cancer Research Institute (2010) Guidelines for the welfare and use of animals in cancer research. Br J Cancer 102(11): 1555–1577.
    1. Yona S, Kim K-W, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1): 79–91.
    1. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3): 272–281.
    1. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18): 5057–5069.

Source: PubMed

3
Abonneren