Neuromodulation of lower limb motor control in restorative neurology

Karen Minassian, Ursula Hofstoetter, Keith Tansey, Winfried Mayr, Karen Minassian, Ursula Hofstoetter, Keith Tansey, Winfried Mayr

Abstract

One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system.

Copyright © 2012 Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Lower limb motor activity generated by epidural lumbar SCS. (A) Drawing of a cylindrical epidural lead with four contacts (black rectangles) placed over the posterior aspect of the lumbar spinal cord. (B) Locomotor-like EMG activities of paralyzed lower limb muscles elicited by sustained epidural lumbar SCS at 25 Hz and 10 V in a supine position. Q: quadriceps, Ham: hamstrings, TA: tibialis anterior, TS: triceps surae. Induced relative knee movements (Knee mov.) are documented by a position sensor trace; deflection up indicates knee flexion. Data derived from a subject with chronic, motor-complete (AIS B), mid-thoracic (motor level: T8) traumatic SCI . (C) Extension movement and associated EMG activity induced by epidural lumbar SCS at 10 Hz and 10 V. The subject's lower limb had been placed in a flexed position prior to the onset of stimulation (see vertical arrow along the time-axis). The goniometer trace (Knee angle) illustrates the generated extension movement. Data derived from a subject with chronic, motor-complete (AIS A), mid-thoracic (motor level: T6) traumatic SCI in supine position . (D) Lower limb EMG activity induced by manually assisted, body-weight supported treadmill walking without (left side) and with additional epidural lumbar SCS. The treadmill belt speed was 0.36 m/s. The subject wore a parachute harness connected to counterweights which supported him vertically over the treadmill and provided 50% body weight support. Two physiotherapists manually imposed the stepping motions on the moving treadmill belt. No independent functional movements were produced. Black horizontal bars indicate stance phases. Subject with chronic, motor-complete (AIS A), low-cervical (motor level: C6) traumatic SCI .
Fig. 2
Fig. 2
Lower limb motor activity generated by transcutaneous lumbar SCS. (A) Stimulation method of transcutaneous SCS. Drawings of the stimulating paravertebral and abdominal reference electrodes with respect to the spine and spinal cord. (B) EMG activities generated in paralyzed lower limb muscles by partial (50%) body-weight supported and manually assisted treadmill stepping without (left) and with sub-motor transcutaneous SCS. EMG recordings were derived from the right quadriceps (Q), hamstrings (Ham), tibialis anterior (TA), and triceps surae (TS) along with goniometric data from the knee (Knee angle). Black bars mark stance phases; treadmill speed was 0.33 m/s. Continuous transcutaneous SCS at 30 Hz and 25 V produced rhythmic gait-synchronized EMG activities. Lower limb motor threshold was 28 V in a supported standing position. Subject with chronic, motor-complete (AIS A), mid-thoracic (motor level: T6) traumatic SCI. (C) EMG activities generated in paralyzed lower limbs by partial (50%) body-weight supported and manually assisted treadmill stepping without (left) and with above-motor threshold transcutaneous SCS; treadmill belt speed was 0.39 m/s. Transcutaneous SCS at 30 Hz and 35 V produced burst-like activities in all right lower limb muscles, with in-phase oscillation that were not synchronized to the manually controlled step-cycle. Lower limb motor threshold was 25 V in a passive supported standing position. Subject with chronic, motor-complete (AIS B), low-cervical (motor level: C6) traumatic SCI.

References

    1. Liberson W.T., Holmquest H.J., Scot D., Dow M. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 1961;42:101–105.
    1. Shealy C.N., Mortimer J.T., Reswick J.B. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg. 1967;46:489–491.
    1. Cook A.W., Weinstein S.P. Chronic dorsal column stimulation in multiple sclerosis. Preliminary report. NY State J Med. 1973;73:2868–2872.
    1. Gildenberg P.L. Neuromodulation: a historical perspective. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 9–20.
    1. Krames E.S., Rezai A.R., Peckham P.H., Aboelsaad F. What is neuromodulation? In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 3–8.
    1. Holsheimer J. Concepts and methods in neuromodulation and functional electrical stimulation: an introduction. Neuromodulation. 1998;1:57–61.
    1. Holsheimer J. Letters to the Editor: what is neuromodulation? Neuromodulation. 2003;6:270–272.
    1. Sillay K.A., Starr P.A. Deep brain stimulation in Parkinson's disease. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 539–548.
    1. Alterman R.L., Tagliati M. Deep brain stimulation for torsion dystonia. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 571–578.
    1. Burdick A.P., Okun M.S., Foote K.D. Deep brain stimulation for tremor. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 549–559.
    1. Amar A.P., Levy M.L., Liu C.Y., Apuzzo M.L.J. Vagus nerve stimulation. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 625–637.
    1. Waltz J.M., Reynolds L.O., Riklan M. Multi-lead spinal cord stimulation for control of motor disorders. Appl Neurophysiol. 1981;44:244–257.
    1. McAchran S., Rackley R., Vasavada S. Neuromodulation for voiding dysfunction. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 945–956.
    1. Penn R.D., Savoy S.M., Corcos D., Latash M., Gottlieb G., Parke B. Intrathecal baclofen for severe spinal spasticity. N Engl J Med. 1989;320:1517–1521.
    1. Meythaler J.M., Guin-Renfroe S., Brunner R.C., Hadley M.N. Intrathecal baclofen for spastic hypertonia from stroke. Stroke. 2001;32:2099–2109.
    1. Illis L.S. Central nervous system regeneration does not occur. Spinal Cord. 2011
    1. Dimitrijevic M.R., Kakulas B.A., McKay W.B., Vrbova G. Oxford University Press; New York: 2011. Restorative neurology of spinal cord injury. 336 pp.
    1. Krames E.S., Peckham P.H., Rezai A.R. Elsevier-Academic Press; London: 2009. Neuromodulation. 1063 pp.
    1. Kantrowitz A. Maimonides Hospital; New York, Brooklyn: 1960. Electronic physiologic aids. p. 4–5.
    1. Kralj A., Bajd T., Turk R., Krajnik J., Benko H. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J Rehabil R D. 1983;20:3–20.
    1. Chae J., Knutson J., Sheffler L.R. Stimulation for return of function after stroke. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 743–751.
    1. Kilgore K.L., Keith M.W., Peckham P.H. Stimulation for return of upper and lower extremity function. In: Krames E.S., Peckham P.H., Rezai A.R., editors. Neuromodulation. Elsevier-Academic Press; London: 2009. pp. 767–776.
    1. Vodovnik L., Kralj A., Stanic U., Acimovic R., Gros N. Recent applications of functional electrical stimulation to stroke patients in Ljubljana. Clin Orthop Relat Res. 1978;131:64–70.
    1. Weber D.J., Stein R.B., Chan K.M., Loeb G., Richmond F., Rolf R. BIONic WalkAide for correcting foot drop. IEEE Trans Neural Syst Rehabil Eng. 2005;13:242–246.
    1. Kottink A.I., Oostendorp L.J., Buurke J.H., Nene A.V., Hermens H.J., IJzerman M.J. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs. 2004;28:577–586.
    1. Burridge J.H., Haugland M., Larsen B., Pickering R.M., Svaneborg N., Iversen H.K. Phase II, trial to evaluate the ActiGait implanted drop-foot stimulator in established hemiplegia. J Rehabil Med. 2007;39:212–218.
    1. Kottink A.I., Hermens H.J., Nene A.V., Tenniglo M.J., van der Aa H.E., Buschman H.P. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch Phys Med Rehabil. 2007;88:971–978.
    1. Kottink A.I., Tenniglo M.J., de Vries W.H., Hermens H.J., Buurke J.H. Effects of an implantable two-channel peroneal nerve stimulator versus conventional walking device on spatiotemporal parameters and kinematics of hemiparetic gait. J Rehabil Med. 2012;44:51–57.
    1. Stein R.B., Chong S., Everaert D.G., Rolf R., Thompson A.K., Whittaker M. A multicenter trial of a footdrop stimulator controlled by a tilt sensor. Neurorehabil Neural Repair. 2006;20:371–379.
    1. Graupe D., Kohn K.H. Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg Neurol. 1998;50:202–207.
    1. Bijak M., Mayr W., Rakos M., Hofer C., Lanmüller H., Rafolt D. The Vienna functional electrical stimulation system for restoration of walking functions in spastic paraplegia. Artif Organs. 2002;26:224–227.
    1. Bijak M., Rakos M., Hofer C., Mayr W., Strohhofer M., Raschka D. Stimulation parameter optimization for FES supported standing up and walking in SCI patients. Artif Organs. 2005;29:220–223.
    1. Popovic M.R., Keller T., Pappas I.P., Dietz V., Morari M. Surface-stimulation technology for grasping and walking neuroprosthesis. IEEE Eng Med Biol Mag. 2001;20:82–93.
    1. Gallien P., Brissot R., Eyssette M., Tell L., Barat M., Wiart L. Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia. 1995;33:660–664.
    1. Chaplin E. Functional neuromuscular stimulation for mobility in people with spinal cord injuries. The Parastep I System. J Spinal Cord Med. 1996;19:99–105.
    1. Klose K.J., Jacobs P.L., Broton J.G., Guest R.S., Needham-Shropshire B.M., Lebwohl N. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 1. Ambulation performance and anthropometric measures. Arch Phys Med Rehabil. 1997;78:789–793.
    1. Graupe D., Cerrel-Bazo H., Kern H., Carraro U. Walking performance, medical outcomes and patient training in FES of innervated muscles for ambulation by thoracic-level complete paraplegics. Neurol Res. 2008;30:123–130.
    1. Davis J.A., Jr., Triolo R.J., Uhlir J., Bieri C., Rohde L., Lissy D. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers—where do we stand? J Rehabil Res Dev. 2001;38:609–617.
    1. Davis R., Patrick J., Barriskill A. Development of functional electrical stimulators utilizing cochlear implant technology. Med Eng Phys. 2001;23:61–68.
    1. von Wild K., Rabischong P., Brunelli G., Benichou M., Krishnan K. Computer added locomotion by implanted electrical stimulation in paraplegic patients (SUAW) Acta Neurochir Suppl. 2002;79:99–104.
    1. Cikajlo I., Matjacić Z., Bajd T., Futami R. Sensory supported FES control in gait training of incomplete spinal cord injury persons. Artif Organs. 2005;29:459–461.
    1. Bajd T., Kralj A., Stefancic M., Lavrac N. Use of functional electrical stimulation in the lower extremities of incomplete spinal cord injured patients. Artif Organs. 1999;23:403–409.
    1. Dimitrijevic M.M., Dimitrijevic M.R. Clinical elements for the neuromuscular stimulation and functional electrical stimulation protocols in the practice of neurorehabilitation. Artif Organs. 2002;26:256–259.
    1. Vodovnik L., Bowman B.R., Hufford P. Effects of electrical stimulation on spinal spasticity. Scand J Rehabil Med. 1984;16:29–34.
    1. Stein R.B. Functional electrical stimulation after spinal cord injury. J Neurotrauma. 1999;16:713–717.
    1. Cook A.W. Electrical stimulation in multiple sclerosis. Hosp Pract. 1976;11:51–58.
    1. Illis L.S., Oygar A.E., Sedgwick E.M., Awadalla M.A. Dorsal-column stimulation in the rehabilitation of patients with multiple sclerosis. Lancet. 1976;1:1383–1386.
    1. Dooley D.M., Sharkey J. Electrostimulation of the nervous system for patients with demyelinating and degenerative diseases of the nervous system and vascular diseases of the extremities. Appl Neurophysiol. 1977;40:208–217.
    1. Siegfried J., Krainick J.U., Haas H., Adorjani C., Meyer M., Thoden U. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophysiol. 1978;41:134–141.
    1. Gybels J., van Roost D. Spinal cord stimulation for the modification of dystonic and hyperkinetic conditions: a critical review. In: Eccles J., Dimitrijevic M.R., editors. vol. 1. S Karger AG; Basel: 1985. pp. 58–70. (Upper motor neuron functions and dysfunctions. Recent achievements in restorative neurology).
    1. Davis R., Gray E., Kudzma J. Beneficial augmentation following dorsal column stimulation in some neurological diseases. Appl Neurophysiol. 1981;44:37–49.
    1. Illis L.S., Sedgwick E.M., Tallis R.C. Spinal cord stimulation in multiple sclerosis: clinical results. J Neurol Neurosurg Psychiatry. 1980;43:1–14.
    1. Tallis R.C., Illis L.S., Sedgwick E.M. The quantitative assessment of the influence of spinal cord stimulation on motor function in patients with multiple sclerosis. Int Rehabil Med. 1983;5:10–16.
    1. Waltz J.M. Chronic stimulation for motor disorders. In: Gindelberg P.L., Tasker R.R., editors. Textbook for stereotactic and functional neurosurgery. McGraw-Hill; New York: 1998. pp. 1087–1099.
    1. Sedgwick E.M., Illis L.S., Tallis R.C., Thornton A.R., Abraham P., El-Negamy E. Evoked potentials and contingent negative variation during treatment of multiple sclerosis with spinal cord stimulation. J Neurol Neurosurg Psychiatry. 1980;43:15–24.
    1. Dimitrijevic M.R., Gerasimenko Y., Pinter M.M. Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci. 1998;860:360–376.
    1. Pinter M.M., Gerstenbrand F., Dimitrijevic M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord. 2000;38:524–531.
    1. Minassian K., Persy I., Rattay F., Pinter M.M., Kern H., Dimitrijevic M.R. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci. 2007;26:275–295.
    1. Gerasimenko Y., Roy R.R., Edgerton V.R. Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp Neurol. 2008;209:417–425.
    1. Harkema S., Gerasimenko Y., Hodes J., Burdick J., Angeli C., Chen Y. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377:1938–1947.
    1. Richardson R.R., McLone D.G. Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol. 1978;9:153–155.
    1. Richardson R.R., Cerullo L.J., McLone D.G., Gutierrez F.A., Lewis V. Percutaneous epidural neurostimulation in modulation of paraplegic spasticity. Six case reports. Acta Neurochir (Wien) 1979;49:235–243.
    1. Siegfried J., Lazorthes Y., Broggi G. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophysiol. 1981;44:77–92.
    1. Dimitrijevic M.M., Dimitrijevic M.R., Illis L.S., Nakajima K., Sharkey P.C., Sherwood A.M. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. Cent Nerv Syst Trauma. 1986;3:129–144.
    1. Barolat G., Myklebust J.B., Wenninger W. Effects of spinal cord stimulation on spasticity and spasms secondary to myelopathy. Appl Neurophysiol. 1988;51:29–44.
    1. Barolat G., Singh-Sahni K., Staas W.E., Jr., Shatin D., Ketcik B., Allen K. Epidural spinal cord stimulation in the management of spasms in spinal cord injury: a prospective study. Stereotact Funct Neurosurg. 1995;64:153–164.
    1. Dimitrijevic M.R., Illis L.S., Nakajima K., Sharkey P.C., Sherwood A.M. Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: II. Neurophysiologic observations. Cent Nerv Syst Trauma. 1986;3:145–152.
    1. Murg M., Binder H., Dimitrijevic M.R. Epidural electric stimulation of posterior structures of the human lumbar spinal cord: 1. Muscle twitches – a functional method to define the site of stimulation. Spinal Cord. 2000;38:394–402.
    1. Marino R.J., Barros T., Biering-Sorensen F., Burns S.P., Donovan W.H., Graves D.E. International standards for neurological classification of spinal cord injury. J Spinal Cord Med. 2003;26:S50–S56. ASIA Neurological Standards Committee 2002.
    1. Sherwood A.M., McKay W.B., Dimitrijevic M.R. Motor control after spinal cord injury: assessment using surface EMG. Muscle Nerve. 1996;19:966–979.
    1. Davidoff R.A. The dorsal columns. Neurology. 1989;39:1377–1385.
    1. Gerasimenko Y., Daniel O., Regnaux J., Combeaud M., Bussel B. Mechanisms of locomotor activity generation under epidural spinal cord stimulation. In: Dengler R., Kossev A.R., editors. Sensorimotor control. IOS Press; Washington, DC: 2001. pp. 164–171.
    1. Gerasimenko Y.P., Makarovskii A.N., Nikitin O.A. Control of locomotor activity in humans and animals in the absence of supraspinal influences. Neurosci Behav Physiol. 2002;32:417–423.
    1. Minassian K., Jilge B., Rattay F., Pinter M.M., Binder H., Gerstenbrand F. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord. 2004;42:401–416.
    1. Jilge B., Minassian K., Rattay F., Pinter M.M., Gerstenbrand F., Binder H. Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res. 2004;154:308–326.
    1. Rattay F., Minassian K., Dimitrijevic M.R. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. Quantitative analysis by computer modeling. Spinal Cord. 2000;38:473–489.
    1. Ladenbauer J., Minassian K., Hofstoetter U.S., Dimitrijevic M.R., Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng. 2010;18:637–645.
    1. Minassian K., Persy I., Rattay F., Dimitrijevic M.R. Effect of peripheral afferent and central afferent input to the human lumbar spinal cord isolated from brain control. Biocyber Biomed Eng. 2005;25:11–29.
    1. Barolat G., Myklebust J.B., Wenninger W. Enhancement of voluntary motor function following spinal cord stimulation—case study. Appl Neurophysiol. 1986;49:307–314.
    1. Herman R., He J., D’Luzansky S., Willis W., Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002;40:65–68.
    1. Carhart M.R., He J., Herman R., D’Luzansky S., Willis W.T. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004;12:32–42.
    1. Ganley G.J., Willis W.T., Carhart M.R., He J., Herman R.M. Epidural spinal cord stimulation improves locomotor performance in low ASIA C, wheelchair-dependent, spinal cord-injured individuals: Insights from metabolic response. Top Spinal Cord Inj Rehabil. 2005;11:50–63.
    1. Huang H., He J., Herman R., Carhart M.R. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006;14:14–23.
    1. Danner S., Rattay F., Bijak M., Mayr W., Minassian K., Hofstoetter U.S. Society for Neuroscience; Washington, DC: 2011. Human lumbar cord can process spinal cord stimulation of different frequencies. Program no. 182. 06. Neuroscience meeting planner. [Online]
    1. Holsheimer J. Which neuronal elements are activated directly by spinal cord stimulation. Neuromodulation. 2002;5:25–31.
    1. Minassian K., Persy I., Rattay F., Dimitrijevic M.R., Hofer C., Kern H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve. 2007;35:327–336.
    1. Hofstoetter U.S., Minassian K., Hofer C., Mayr W., Rattay F., Dimitrijevic M.R. Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs. 2008;32:644–648.
    1. Minassian K., Hofstoetter U.S., Rattay F. Transcutaneous lumbar posterior root stimulation for motor control studies and modification of motor activity after spinal cord injury. In: Dimitrijevic M.R., Kakulas B.A., McKay W.B., Vrbova G., editors. Restorative neurology of spinal cord injury. Oxford University Press; New York: 2011. pp. 226–255.
    1. Danner S.M., Hofstoetter U.S., Ladenbauer J., Rattay F., Minassian K. Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs. 2011;35:257–262.
    1. Szava Z., Danner S.M., Minassian K. VDM Verlag Dr. Müller; Saarbrücken: 2011. Transcutaneous electrical spinal cord stimulation: biophysics of a new rehabilitation method after spinal cord injury. 104 pp.
    1. Hofstoetter U., Mayr W., Rattay F., Dimitrijevic M.R., Minassian K. Society for Neuroscience; Washington, DC: 2011. Effects of transcutaneous spinal cord stimulation on spasticity electrophysiologically evaluated in spinal cord injured individuals. Program No. 808. 02. Abstract Viewer/Itinerary Planner.
    1. Minassian K., Hofstoetter U., Tansey K., Rattay F., Mayr W., Dimitrijevic M.R. Society for Neuroscience; San Diego, CA: 2010. Transcutaneous stimulation of the human lumbar spinal cord: Facilitating locomotor output in spinal cord injury. Program No. 286. 19. Neuroscience Meeting Planner. [Online]
    1. Dietz V., Colombo G., Jensen L., Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Ann Neurol. 1995;37:574–582.
    1. Vrbova G., Slawinska U. Summary of strategies used to repair the injured spinal cord. In: Dimitrijevic M.R., Kakulas B.A., McKay W.B., Vrbova G., editors. Restorative neurology of spinal cord injury. Oxford University Press; New York: 2011. pp. 93–133.
    1. Dimitrijevic M.R., Larsson L.E. Neural control of gait: clinical neurophysiological aspects. Appl Neurophysiol. 1981;44:152–159.
    1. Eccles J., Dimitrijevic M.R. vol. 1. S Karger AG; Basel: 1985. (Recent achievements in restorative neurology, upper motor neuron functions and dysfunctions). 346 pp.
    1. Illis L.S. Is there a central pattern generator in man? Paraplegia. 1995;33:239–240.
    1. Courtine G., van den Brand R., Musienko P. Spinal cord injury: time to move. Lancet. 2011;377:1896–1898.
    1. Edgerton V.R., Leon R.D., Harkema S.J., Hodgson J.A., London N., Reinkensmeyer D.J. Retraining the injured spinal cord. J Physiol. 2001;533:15–22.
    1. Dimitrijevic M.R. Chronic spinal cord stimulation in spasticity. In: Gindelberg P.L., Tasker R.R., editors. Textbook for stereotactic and functional neurosurgery. McGraw-Hill; New York: 1998. pp. 1267–1273.
    1. Bamford J.A., Mushahwar V.K. Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog Brain Res. 2011;194:227–239.
    1. Edgerton V.R., Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11:1351–1353.

Source: PubMed

3
Abonneren