Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms

Simon Malenfant, Marius Lebret, Émilie Breton-Gagnon, François Potus, Roxane Paulin, Sébastien Bonnet, Steeve Provencher, Simon Malenfant, Marius Lebret, Émilie Breton-Gagnon, François Potus, Roxane Paulin, Sébastien Bonnet, Steeve Provencher

Abstract

Exercise intolerance is a cardinal symptom of pulmonary arterial hypertension (PAH) and strongly impacts patients' quality of life (QoL). Although central cardiopulmonary impairments limit peak oxygen consumption (V' O2peak ) in patients with PAH, several peripheral abnormalities have been described over the recent decade as key determinants in exercise intolerance, including impaired skeletal muscle (SKM) morphology, convective O2 transport, capillarity and metabolism indicating that peripheral abnormalities play a greater role in limiting exercise capacity than previously thought. More recently, cerebrovascular alterations potentially contributing to exercise intolerance in patients with PAH were also documented. Currently, only cardiopulmonary rehabilitation has been shown to efficiently improve the peripheral components of exercise intolerance in patients with PAH. However, more extensive studies are needed to identify targeted interventions that would ultimately improve patients' exercise tolerance and QoL. The present review offers a broad and comprehensive analysis of the present literature about the complex mechanisms and their interactions limiting exercise in patients and suggests several gaps in knowledge that need to be addressed in the future for a better understanding of exercise intolerance in patients with PAH.

Conflict of interest statement

Conflict of interest: S. Malenfant has nothing to disclose. Conflict of interest: M. Lebret has nothing to disclose. Conflict of interest: É. Breton-Gagnon has nothing to disclose. Conflict of interest: F. Potus has nothing to disclose. Conflict of interest: R. Paulin has nothing to disclose. Conflict of interest: S. Bonnet has nothing to disclose. Conflict of interest: S. Provencher has nothing to disclose.

Copyright ©ERS 2021.

Figures

FIGURE 1
FIGURE 1
Exercise intolerance has a major impact on daily life activities. Patients rapidly reach anaerobic threshold in their daily activities, making sustained efforts difficult. Average peak oxygen uptake (V′O2peak) used for comparison was 16.1 (1.4) mL O2.kg−1·min−1 based on six studies [–9]. V′O2: standing quietly in a queue: 4.6 mL O2·kg−1·min−1; standing, fidgeting: 6.3 mL O2·kg−1·min−1; doing the laundry, folding clothes: 9.8 mL O2·kg−1·min−1; cooking, laying the table: 11.6 mL O2·kg−1·min−1; walking outside, moderate effort: 12.3 mL O2·kg−1·min−1; mowing the lawn, with a power mower: 15.6 mL O2·kg−1·min−1. Specific physical activity intensity was determined using the 2011 Compendium of Physical Activities [10]. NYHA: New York Heart Association; PAH: pulmonary arterial hypertension. Data from [11].
FIGURE 2
FIGURE 2
Impaired cardiac adaptation and ventilatory response to exercise in patients with pulmonary arterial hypertension (PAH). RV: right ventricle; LV: left ventricle; VD/VT: dead space/tidal volume ratio; V′/Q′: ventilation-perfusion ratio (normal ratio average 0.8).
FIGURE 3
FIGURE 3
Skeletal muscle (SKM) determinants of exercise intolerance in patients with pulmonary arterial hypertension (PAH).
FIGURE 4
FIGURE 4
The Wagner diagram. Oxygen uptake is plotted as a function of microvascular oxygen pressure. Black line: diffusive (Fick law) and convective (Fick principal) components that interact to determine peak oxygen uptake (V′O2peak). The Fick principle line is not straight because it directly represents the haemoglobin dissociation curve (greater haemoglobin O2 affinity), resulting in a lower venous O2 partial pressure [130]. The slope of the straight line (Fick law) is determined by the diffusing capacity of the muscles [130]. Red line: in patients with heart failure, a left-shifted haemoglobin dissociation curve (greater haemoglobin O2 affinity), resulting in a lower venous O2 partial pressure, and a lower slope of the Fick law line results in earlier bisection of both diffusive and convective components and reduced V′O2peak. a-vO2: arterio-venous difference; DO2: oxygen delivery; HFrEF: heart failure with reduced ejection fraction; PO2: partial pressure of oxygen; CO: cardiac output.

References

    1. Galie N, Humbert M, Vachiery JL, et al. . 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903–975. doi:10.1183/13993003.01032-2015
    1. Simonneau G, Montani D, Celermajer DS, et al. . Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913. doi:10.1183/13993003.01913-2018
    1. Frost A, Badesch D, Gibbs JSR, et al. . Diagnosis of pulmonary hypertension. Eur Respir J 2019; 53: 1801904. doi:10.1183/13993003.01904-2018
    1. Mainguy V, Malenfant S, Neyron AS, et al. . Repeatability and responsiveness of exercise tests in pulmonary arterial hypertension. Eur Respir J 2013; 42: 425–434. doi:10.1183/09031936.00107012
    1. Malenfant S, Brassard P, Paquette M, et al. . Compromised cerebrovascular regulation and cerebral oxygenation in pulmonary arterial hypertension. J Am Heart Assoc 2017; 6: e006126. doi:10.1161/JAHA.117.006126
    1. Mainguy V, Maltais F, Saey D, et al. . Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax 2010; 65: 113–117. doi:10.1136/thx.2009.117168
    1. Malenfant S, Potus F, Mainguy V, et al. . Impaired skeletal muscle oxygenation and exercise tolerance in pulmonary hypertension. Med Sci Sports Exerc 2015; 47: 2273–2282. doi:10.1249/MSS.0000000000000696
    1. Gonzalez-Saiz L, Fiuza-Luces C, Sanchis-Gomar F, et al. . Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: the WHOLEi+12 trial. Int J Cardiol 2017; 231: 277–283. doi:10.1016/j.ijcard.2016.12.026
    1. de Man FS, Handoko ML, Groepenhoff H, et al. . Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2009; 34: 669–675. doi:10.1183/09031936.00027909
    1. Ainsworth BE, Haskell WL, Herrmann SD, et al. . 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc 2011; 43: 1575–1581. doi:10.1249/MSS.0b013e31821ece12
    1. Nayor M, Houstis NE, Namasivayam M, et al. . Impaired exercise tolerance in heart failure with preserved ejection fraction: quantification of multiorgan system reserve capacity. JACC Heart Fail 2020; 8: 605–617. doi:10.1016/j.jchf.2020.03.008
    1. Nickel NP, Yuan K, Dorfmuller P, et al. . Beyond the lungs: systemic manifestations of pulmonary arterial hypertension. Am J Respir Crit Care Med 2020; 201: 148–157. doi:10.1164/rccm.201903-0656CI
    1. Lai YC, Provencher S, Goncharova EA. TAKling GDF-15 and skeletal muscle atrophy in pulmonary hypertension: are we there yet? Thorax 2019; 74: 103–105. doi:10.1136/thoraxjnl-2018-212680
    1. Grunig E, Eichstaedt C, Barbera JA, et al. . ERS statement on exercise training and rehabilitation in patients with severe chronic pulmonary hypertension. Eur Respir J 2019; 53: 1800332. doi:10.1183/13993003.00332-2018
    1. Panagiotou M, Peacock AJ, Johnson MK. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training? Pulm Circ 2015; 5: 424–434.
    1. Guazzi M, Adams V, Conraads V, et al. . EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J 2012; 33: 2917–2927. doi:10.1093/eurheartj/ehs221
    1. Sun XG, Hansen JE, Oudiz RJ, et al. . Exercise pathophysiology in patients with primary pulmonary hypertension. Circulation 2001; 104: 429–435. doi:10.1161/hc2901.093198
    1. Arena R, Lavie CJ, Milani RV, et al. . Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant 2010; 29: 159–173. doi:10.1016/j.healun.2009.09.003
    1. Weatherald J, Farina S, Bruno N, et al. . Cardiopulmonary exercise testing in pulmonary hypertension. Ann Am Thorac Soc 2017; 14: Suppl. 1, S84–S92. doi:10.1513/AnnalsATS.201610-788FR
    1. Sun XG, Hansen JE, Oudiz RJ, et al. . Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. Circulation 2002; 105: 54–60. doi:10.1161/hc0102.101509
    1. Bossone E, D'Andrea A, D'Alto M, et al. . Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr 2013; 26: 1–14.
    1. Markowitz DH, Systrom DM. Diagnosis of pulmonary vascular limit to exercise by cardiopulmonary exercise testing. J Heart Lung Transplant 2004; 23: 88–95. doi:10.1016/S1053-2498(03)00064-0
    1. Oldham WM, Oliveira RKF, Wang RS, et al. . Network analysis to risk stratify patients with exercise intolerance. Circ Res 2018; 122: 864–876. doi:10.1161/CIRCRESAHA.117.312482
    1. Deboeck G, Niset G, Vachiery JL, et al. . Physiological response to the six-minute walk test in pulmonary arterial hypertension. Eur Respir J 2005; 26: 667–672. doi:10.1183/09031936.05.00031505
    1. Mainguy V, Provencher S, Maltais F, et al. . Assessment of daily life physical activities in pulmonary arterial hypertension. PLoS One 2011; 6: e27993. doi:10.1371/journal.pone.0027993
    1. Pugh ME, Buchowski MS, Robbins IM, et al. . Physical activity limitation as measured by accelerometry in pulmonary arterial hypertension. Chest 2012; 142: 1391–1398. doi:10.1378/chest.12-0150
    1. Wensel R, Opitz CF, Anker SD, et al. . Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 2002; 106: 319–324. doi:10.1161/01.CIR.0000022687.18568.2A
    1. Miyamoto S, Nagaya N, Satoh T, et al. . Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 2000; 161: 487–492. doi:10.1164/ajrccm.161.2.9906015
    1. Benza RL, Gomberg-Maitland M, Elliott CG, et al. . Predicting survival in patients with pulmonary arterial hypertension: the REVEAL Risk Score Calculator 2.0 and comparison with ESC/ERS-based risk assessment strategies. Chest 2019; 156: 323–337. doi:10.1016/j.chest.2019.02.004
    1. Hoeper MM, Kramer T, Pan Z, et al. . Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 2017; 50: 1700740. doi:10.1183/13993003.00740-2017
    1. Maron BA, Galie N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol 2016; 1: 1056–1065. doi:10.1001/jamacardio.2016.4471
    1. Groepenhoff H, Vonk-Noordegraaf A, Boonstra A, et al. . Exercise testing to estimate survival in pulmonary hypertension. Med Sci Sports Exerc 2008; 40: 1725–1732. doi:10.1249/MSS.0b013e31817c92c0
    1. Frost AE, Langleben D, Oudiz R, et al. . The 6-min walk test (6MW) as an efficacy endpoint in pulmonary arterial hypertension clinical trials: demonstration of a ceiling effect. Vascul Pharmacol 2005; 43: 36–39. doi:10.1016/j.vph.2005.03.003
    1. Degano B, Sitbon O, Savale L, et al. . Characterization of pulmonary arterial hypertension patients walking more than 450 m in 6 min at diagnosis. Chest 2010; 137: 1297–1303. doi:10.1378/chest.09-2060
    1. Lee WT, Peacock AJ, Johnson MK. The role of per cent predicted 6-min walk distance in pulmonary arterial hypertension. Eur Respir J 2010; 36: 1294–1301. doi:10.1183/09031936.00155009
    1. Casanova C, Celli BR, Barria P, et al. . The 6-min walk distance in healthy subjects: reference standards from seven countries. Eur Respir J 2011; 37: 150–156. doi:10.1183/09031936.00194909
    1. Costa GOS, Ramos RP, Oliveira RKF, et al. . Prognostic value of six-minute walk distance at a South American pulmonary hypertension referral center. Pulm Circ 2020; 10: 2045894019888422.
    1. Galie N, Manes A, Negro L, et al. . A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J 2009; 30: 394–403. doi:10.1093/eurheartj/ehp022
    1. Mathai SC, Puhan MA, Lam D, et al. . The minimal important difference in the 6-minute walk test for patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 186: 428–433. doi:10.1164/rccm.201203-0480OC
    1. Lajoie AC, Lauziere G, Lega JC, et al. . Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respir Med 2016; 4: 291–305. doi:10.1016/S2213-2600(16)00027-8
    1. Gabler NB, French B, Strom BL, et al. . Validation of 6-minute walk distance as a surrogate end point in pulmonary arterial hypertension trials. Circulation 2012; 126: 349–356. doi:10.1161/CIRCULATIONAHA.112.105890
    1. McLaughlin VV, Badesch DB, Delcroix M, et al. . End points and clinical trial design in pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54: Suppl. 1, S97–S107. doi:10.1016/j.jacc.2009.04.007
    1. Barst RJ, Langleben D, Frost A, et al. . Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 2004; 169: 441–447. doi:10.1164/rccm.200307-957OC
    1. Barst RJ, McGoon M, McLaughlin V, et al. . Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 2003; 41: 2119–2125. doi:10.1016/S0735-1097(03)00463-7
    1. Savarese G, Musella F, D'Amore C, et al. . Haemodynamics, exercise capacity and clinical events in pulmonary arterial hypertension. Eur Respir J 2013; 42: 414–424. doi:10.1183/09031936.00123712
    1. Oga T, Nishimura K, Tsukino M, et al. . The effects of oxitropium bromide on exercise performance in patients with stable chronic obstructive pulmonary disease. A comparison of three different exercise tests. Am J Respir Crit Care Med 2000; 161: 1897–1901. doi:10.1164/ajrccm.161.6.9905045
    1. Deboeck G, Scoditti C, Huez S, et al. . Exercise testing to predict outcome in idiopathic versus associated pulmonary arterial hypertension. Eur Respir J 2012; 40: 1410–1419. doi:10.1183/09031936.00217911
    1. Minai OA, Gudavalli R, Mummadi S, et al. . Heart rate recovery predicts clinical worsening in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 185: 400–408. doi:10.1164/rccm.201105-0848OC
    1. Humbert M, Guignabert C, Bonnet S, et al. . Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 2019; 53: 1801887. doi:10.1183/13993003.01887-2018
    1. Ting H, Sun XG, Chuang ML, et al. . A noninvasive assessment of pulmonary perfusion abnormality in patients with primary pulmonary hypertension. Chest 2001; 119: 824–832. doi:10.1378/chest.119.3.824
    1. Agostoni P, Farina S, Apostolo A, et al. . Inside ventilatory regulation in pulmonary hypertension: several hidden data are still undiscovered. Eur J Prev Cardiol 2014; 21: 268–271. doi:10.1177/2047487313497866
    1. Farina S, Correale M, Bruno N, et al. . The role of cardiopulmonary exercise tests in pulmonary arterial hypertension. Eur Respir Rev 2018; 27: 170134. doi:10.1183/16000617.0134-2017
    1. Yasunobu Y, Oudiz RJ, Sun XG, et al. . End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. Chest 2005; 127: 1637–1646. doi:10.1378/chest.127.5.1637
    1. Hoeper MM, Pletz MW, Golpon H, et al. . Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2007; 29: 944–950. doi:10.1183/09031936.00134506
    1. Farina S, Bruno N, Agalbato C, et al. . Physiological insights of exercise hyperventilation in arterial and chronic thromboembolic pulmonary hypertension. Int J Cardiol 2018; 259: 178–182. doi:10.1016/j.ijcard.2017.11.023
    1. Deboeck G, Niset G, Lamotte M, et al. . Exercise testing in pulmonary arterial hypertension and in chronic heart failure. Eur Respir J 2004; 23: 747–751. doi:10.1183/09031936.04.00111904
    1. Corra U, Giordano A, Bosimini E, et al. . Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest 2002; 121: 1572–1580. doi:10.1378/chest.121.5.1572
    1. Guazzi M, Raimondo R, Vicenzi M, et al. . Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol 2007; 50: 299–308. doi:10.1016/j.jacc.2007.03.042
    1. Murphy RM, Shah RV, Malhotra R, et al. . Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation 2011; 124: 1442–1451. doi:10.1161/CIRCULATIONAHA.111.024141
    1. Ponikowski P, Chua TP, Anker SD, et al. . Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 2001; 104: 544–549. doi:10.1161/hc3101.093699
    1. Ponikowski P, Chua TP, Piepoli M, et al. . Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 1997; 96: 2586–2594. doi:10.1161/01.CIR.96.8.2586
    1. Vicenzi M, Deboeck G, Faoro V, et al. . Exercise oscillatory ventilation in heart failure and in pulmonary arterial hypertension. Int J Cardiol 2016; 202: 736–740. doi:10.1016/j.ijcard.2015.09.087
    1. Breda AP, Pereira de Albuquerque AL, Jardim C, et al. . Skeletal muscle abnormalities in pulmonary arterial hypertension. PLoS One 2014; 9: e114101. doi:10.1371/journal.pone.0114101
    1. Kabitz HJ, Schwoerer A, Bremer HC, et al. . Impairment of respiratory muscle function in pulmonary hypertension. Clin Sci (Lond) 2008; 114: 165–171. doi:10.1042/CS20070238
    1. Meyer FJ, Lossnitzer D, Kristen AV, et al. . Respiratory muscle dysfunction in idiopathic pulmonary arterial hypertension. Eur Respir J 2005; 25: 125–130. doi:10.1183/09031936.04.00095804
    1. Potus F, Malenfant S, Graydon C, et al. . Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 190: 318–328.
    1. de Man FS, van Hees HW, Handoko ML, et al. . Diaphragm muscle fiber weakness in pulmonary hypertension. Am J Respir Crit Care Med 2011; 183: 1411–1418. doi:10.1164/rccm.201003-0354OC
    1. Manders E, de Man FS, Handoko ML, et al. . Diaphragm weakness in pulmonary arterial hypertension: role of sarcomeric dysfunction. Am J Physiol Lung Cell Mol Physiol 2012; 303: L1070–L1078. doi:10.1152/ajplung.00135.2012
    1. Boucly A, Morelot-Panzini C, Garcia G, et al. . Intensity and quality of exertional dyspnoea in patients with stable pulmonary hypertension. Eur Respir J 2020; 55: 1802108. doi:10.1183/13993003.02108-2018
    1. Laveneziana P, Garcia G, Joureau B, et al. . Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension. Eur Respir J 2013; 41: 578–587. doi:10.1183/09031936.00223611
    1. van Wolferen SA, Marcus JT, Boonstra A, et al. . Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28: 1250–1257. doi:10.1093/eurheartj/ehl477
    1. MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part One. Am J Respir Crit Care Med 1994; 150: 833–852. doi:10.1164/ajrccm.150.3.8087359
    1. Provencher S, Herve P, Sitbon O, et al. . Changes in exercise haemodynamics during treatment in pulmonary arterial hypertension. Eur Respir J 2008; 32: 393–398. doi:10.1183/09031936.00009008
    1. Brown SB, Raina A, Katz D, et al. . Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest 2011; 140: 27–33. doi:10.1378/chest.10-1136
    1. Sanz J, Sanchez-Quintana D, Bossone E, et al. . Anatomy, function, and dysfunction of the right ventricle: JACC state-of-the-art review. J Am Coll Cardiol 2019; 73: 1463–1482. doi:10.1016/j.jacc.2018.12.076
    1. Vonk Noordegraaf A, Chin KM, Haddad F, et al. . Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 2019; 53: 1801900. doi:10.1183/13993003.01900-2018
    1. Meloche J, Lampron MC, Nadeau V, et al. . Implication of inflammation and epigenetic readers in coronary artery remodeling in patients with pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2017; 37: 1513–1523. doi:10.1161/ATVBAHA.117.309156
    1. Potus F, Ruffenach G, Dahou A, et al. . Downregulation of microRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation 2015; 132: 932–943. doi:10.1161/CIRCULATIONAHA.115.016382
    1. Rain S, Handoko ML, Trip P, et al. . Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 2013; 128: 2016–2025. 2011–2010. doi:10.1161/CIRCULATIONAHA.113.001873
    1. Piao L, Fang YH, Cadete VJ, et al. . The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med (Berl) 2010; 88: 47–60. doi:10.1007/s00109-009-0524-6
    1. Borlaug BA, Reddy YNV. The role of the pericardium in heart failure: implications for pathophysiology and treatment. JACC Heart Fail 2019; 7: 574–585. doi:10.1016/j.jchf.2019.03.021
    1. Kasner M, Westermann D, Steendijk P, et al. . Left ventricular dysfunction induced by nonsevere idiopathic pulmonary arterial hypertension: a pressure–volume relationship study. Am J Respir Crit Care Med 2012; 186: 181–189. doi:10.1164/rccm.201110-1860OC
    1. Manders E, Bogaard HJ, Handoko ML, et al. . Contractile dysfunction of left ventricular cardiomyocytes in patients with pulmonary arterial hypertension. J Am Coll Cardiol 2014; 64: 28–37. doi:10.1016/j.jacc.2014.04.031
    1. Gorter TM, Obokata M, Reddy YNV, et al. . Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease. Eur Heart J 2018; 39: 2825–2835. doi:10.1093/eurheartj/ehy331
    1. Blumberg FC, Arzt M, Lange T, et al. . Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail 2013; 15: 771–775. doi:10.1093/eurjhf/hft044
    1. Chaouat A, Sitbon O, Mercy M, et al. . Prognostic value of exercise pulmonary haemodynamics in pulmonary arterial hypertension. Eur Respir J 2014; 44: 704–713. doi:10.1183/09031936.00153613
    1. Jaijee S, Quinlan M, Tokarczuk P, et al. . Exercise cardiac MRI unmasks right ventricular dysfunction in acute hypoxia and chronic pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2018; 315: H950–H957. doi:10.1152/ajpheart.00146.2018
    1. Lin AC, Strugnell WE, Seale H, et al. . Exercise cardiac MRI-derived right ventriculo-arterial coupling ratio detects early right ventricular maladaptation in PAH. Eur Respir J 2016; 48: 1797–1800. doi:10.1183/13993003.01145-2016
    1. Provencher S, Chemla D, Herve P, et al. . Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. Eur Respir J 2006; 27: 114–120. doi:10.1183/09031936.06.00042705
    1. Spruijt OA, de Man FS, Groepenhoff H, et al. . The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am J Respir Crit Care Med 2015; 191: 1050–1057. doi:10.1164/rccm.201412-2271OC
    1. Badagliacca R, Papa S, Valli G, et al. . Right ventricular dyssynchrony and exercise capacity in idiopathic pulmonary arterial hypertension. Eur Respir J 2017; 49: 1601419. doi:10.1183/13993003.01419-2016
    1. Hsu S, Houston BA, Tampakakis E, et al. . Right ventricular functional reserve in pulmonary arterial hypertension. Circulation 2016; 133: 2413–2422. doi:10.1161/CIRCULATIONAHA.116.022082
    1. Groepenhoff H, Westerhof N, Jacobs W, et al. . Exercise stroke volume and heart rate response differ in right and left heart failure. Eur J Heart Fail 2010; 12: 716–720. doi:10.1093/eurjhf/hfq062
    1. Andersen MJ, Nishimura RA, Borlaug BA. The hemodynamic basis of exercise intolerance in tricuspid regurgitation. Circ Heart Fail 2014; 7: 911–917. doi:10.1161/CIRCHEARTFAILURE.114.001575
    1. Willie CK, Tzeng YC, Fisher JA, et al. . Integrative regulation of human brain blood flow. J Physiol 2014; 592: 841–859. doi:10.1113/jphysiol.2013.268953
    1. Rasmussen P, Nielsen J, Overgaard M, et al. . Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol 2010; 588: 1985–1995. doi:10.1113/jphysiol.2009.186767
    1. Smith KJ, MacLeod D, Willie CK, et al. . Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery. J Physiol 2014; 592: 5507–5527. doi:10.1113/jphysiol.2014.281212
    1. Fu TC, Wang CH, Hsu CC, et al. . Suppression of cerebral hemodynamics is associated with reduced functional capacity in patients with heart failure. Am J Physiol Heart Circ Physiol 2011; 300: H1545–H1555. doi:10.1152/ajpheart.00867.2010
    1. Brassard P, Gustafsson F. Exercise intolerance in heart failure: did we forget the brain? Can J Cardiol 2016; 32: 475–484. doi:10.1016/j.cjca.2015.12.021
    1. Smith KJ, Suarez IM, Scheer A, et al. . Cerebral blood flow during exercise in heart failure: effect of ventricular assist devices. Med Sci Sports Exerc 2019; 51: 1372–1379. doi:10.1249/MSS.0000000000001904
    1. Koike A, Itoh H, Oohara R, et al. . Cerebral oxygenation during exercise in cardiac patients. Chest 2004; 125: 182–190. doi:10.1378/chest.125.1.182
    1. Caldas JR, Panerai RB, Haunton VJ, et al. . Cerebral blood flow autoregulation in ischemic heart failure. Am J Physiol Regul Integr Comp Physiol 2017; 312: R108–R113. doi:10.1152/ajpregu.00361.2016
    1. Caldas JR, Panerai RB, Salinet AM, et al. . Dynamic cerebral autoregulation is impaired during submaximal isometric handgrip in patients with heart failure. Am J Physiol Heart Circ Physiol 2018; 315: H254–H261. doi:10.1152/ajpheart.00727.2017
    1. Erkelens CD, van der Wal HH, de Jong BM, et al. . Dynamics of cerebral blood flow in patients with mild non-ischaemic heart failure. Eur J Heart Fail 2017; 19: 261–268. doi:10.1002/ejhf.660
    1. Treptow E, Oliveira MF, Soares A, et al. . Cerebral microvascular blood flow and CO2 reactivity in pulmonary arterial hypertension. Respir Physiol Neurobiol 2016; 233: 60–65. doi:10.1016/j.resp.2016.08.001
    1. Muller-Mottet S, Hildenbrand FF, Keusch S, et al. . Effects of exercise and vasodilators on cerebral tissue oxygenation in pulmonary hypertension. Lung 2015; 193: 113–120. doi:10.1007/s00408-014-9667-5
    1. Mar PL, Nwazue V, Black BK, et al. . Valsalva maneuver in pulmonary arterial hypertension: susceptibility to syncope and autonomic dysfunction. Chest 2016; 149: 1252–1260. doi:10.1016/j.chest.2015.11.015
    1. Malenfant S, Brassard P, Paquette M, et al. . Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension. Physiol Rep 2020; 8: e14389. doi:10.14814/phy2.14389
    1. Ulrich S, Hasler ED, Saxer S, et al. . Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: randomized, sham-controlled cross-over trial. Eur Heart J 2017; 38: 1159–1168. doi:10.1093/eurheartj/ehx099
    1. Bauer R, Dehnert C, Schoene P, et al. . Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respir Med 2007; 101: 2366–2369. doi:10.1016/j.rmed.2007.06.014
    1. Manders E, Ruiter G, Bogaard HJ, et al. . Quadriceps muscle fibre dysfunction in patients with pulmonary arterial hypertension. Eur Respir J 2015; 45: 1737–1740. doi:10.1183/09031936.00205114
    1. Batt J, Ahmed SS, Correa J, et al. . Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2014; 50: 74–86.
    1. Garfield BE, Crosby A, Shao D, et al. . Growth/differentiation factor 15 causes TGFbeta-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax 2019; 74: 164–176. doi:10.1136/thoraxjnl-2017-211440
    1. Moreira-Goncalves D, Padrao AI, Ferreira R, et al. . Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochim Biophys Acta 2015; 1852: 2722–2731. doi:10.1016/j.bbadis.2015.10.002
    1. Yndestad A, Larsen KO, Oie E, et al. . Elevated levels of activin A in clinical and experimental pulmonary hypertension. J Appl Physiol (1985) 2009; 106: 1356–1364. doi:10.1152/japplphysiol.90719.2008
    1. Rhodes CJ, Ghataorhe P, Wharton J, et al. . Plasma metabolomics implicates modified transfer RNAs and altered bioenergetics in the outcomes of pulmonary arterial hypertension. Circulation 2017; 135: 460–475. doi:10.1161/CIRCULATIONAHA.116.024602
    1. Fukawa T, Yan-Jiang BC, Min-Wen JC, et al. . Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Nat Med 2016; 22: 666–671. doi:10.1038/nm.4093
    1. Vinke P, Bowen TS, Boekschoten MV, et al. . Anti-inflammatory nutrition with high protein attenuates cardiac and skeletal muscle alterations in a pulmonary arterial hypertension model. Sci Rep 2019; 9: 10160. doi:10.1038/s41598-019-46331-4
    1. Malenfant S, Potus F, Fournier F, et al. . Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. J Mol Med (Berl) 2015; 93: 573–584. doi:10.1007/s00109-014-1244-0
    1. Wust RC, Myers DS, Stones R, et al. . Regional skeletal muscle remodeling and mitochondrial dysfunction in right ventricular heart failure. Am J Physiol Heart Circ Physiol 2012; 302: H402–H411. doi:10.1152/ajpheart.00653.2011
    1. Zurlo F, Larson K, Bogardus C, et al. . Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 1990; 86: 1423–1427. doi:10.1172/JCI114857
    1. Armstrong RB, Delp MD, Goljan EF, et al. . Distribution of blood flow in muscles of miniature swine during exercise. J Appl Physiol (1985) 1987; 62: 1285–1298. doi:10.1152/jappl.1987.62.3.1285
    1. Manohar M. Blood flow to the respiratory and limb muscles and to abdominal organs during maximal exertion in ponies. J Physiol 1986; 377: 25–35. doi:10.1113/jphysiol.1986.sp016174
    1. Laughlin MH, Klabunde RE, Delp MD, et al. . Effects of dipyridamole on muscle blood flow in exercising miniature swine. Am J Physiol 1989; 257: H1507–H1515.
    1. Knight DR, Poole DC, Schaffartzik W, et al. . Relationship between body and leg VO2 during maximal cycle ergometry. J Appl Physiol (1985) 1992; 73: 1114–1121. doi:10.1152/jappl.1992.73.3.1114
    1. Aaron EA, Seow KC, Johnson BD, et al. . Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol (1985) 1992; 72: 1818–1825. doi:10.1152/jappl.1992.72.5.1818
    1. Tolle J, Waxman A, Systrom D. Impaired systemic oxygen extraction at maximum exercise in pulmonary hypertension. Med Sci Sports Exerc 2008; 40: 3–8. doi:10.1249/mss.0b013e318159d1b8
    1. Levine BD. VO2max: what do we know, and what do we still need to know? J Physiol 2008; 586: 25–34. doi:10.1113/jphysiol.2007.147629
    1. Panagiotou M, Johnson MK, Louvaris Z, et al. . A study of clinical and physiological relations of daily physical activity in precapillary pulmonary hypertension. J Appl Physiol (1985) 2017; 123: 851–859. doi:10.1152/japplphysiol.00986.2016
    1. Roca J, Agusti AG, Alonso A, et al. . Effects of training on muscle O2 transport at VO2max. J Appl Physiol (1985) 1992; 73: 1067–1076. doi:10.1152/jappl.1992.73.3.1067
    1. Katz SD, Balidemaj K, Homma S, et al. . Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol 2000; 36: 845–851. doi:10.1016/S0735-1097(00)00790-7
    1. Wray DW, Nishiyama SK, Donato AJ, et al. . Endothelin-1-mediated vasoconstriction at rest and during dynamic exercise in healthy humans. Am J Physiol Heart Circ Physiol 2007; 293: H2550–H2556. doi:10.1152/ajpheart.00867.2007
    1. Thijssen DH, Ellenkamp R, Kooijman M, et al. . A causal role for endothelin-1 in the vascular adaptation to skeletal muscle deconditioning in spinal cord injury. Arterioscler Thromb Vasc Biol 2007; 27: 325–331. doi:10.1161/01.ATV.0000253502.83167.31
    1. Strachan FE, Newby DE, Sciberras DG, et al. . Repeatability of local forearm vasoconstriction to endothelin-1 measured by venous occlusion plethysmography. Br J Clin Pharmacol 2002; 54: 386–394.
    1. Spratt JC, Goddard J, Patel N, et al. . Systemic ETA receptor antagonism with BQ-123 blocks ET-1 induced forearm vasoconstriction and decreases peripheral vascular resistance in healthy men. Br J Pharmacol 2001; 134: 648–654. doi:10.1038/sj.bjp.0704304
    1. Donato AJ, Lesniewski LA, Delp MD. The effects of aging and exercise training on endothelin-1 vasoconstrictor responses in rat skeletal muscle arterioles. Cardiovasc Res 2005; 66: 393–401. doi:10.1016/j.cardiores.2004.10.023
    1. Pringle JS, Doust JH, Carter H, et al. . Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol 2003; 89: 289–300. doi:10.1007/s00421-003-0799-1
    1. Boushel R, Langberg H, Gemmer C, et al. . Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise. J Physiol 2002; 543: 691–698. doi:10.1113/jphysiol.2002.021477
    1. Schrage WG, Joyner MJ, Dinenno FA. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. J Physiol 2004; 557: 599–611. doi:10.1113/jphysiol.2004.061283
    1. Nadeau V, Potus F, Boucherat O, et al. . Dual ETA/ETB blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension. Pulm Circ 2018; 8: 2045893217741429. doi:10.1177/2045893217741429
    1. Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res 2014; 115: 176–188. doi:10.1161/CIRCRESAHA.113.301129
    1. Enache I, Charles AL, Bouitbir J, et al. . Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem 2013; 373: 161–170. doi:10.1007/s11010-012-1485-6
    1. Boucherat O, Peterlini T, Bourgeois A, et al. . Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med 2018; 198: 90–103. doi:10.1164/rccm.201708-1751OC
    1. Sithamparanathan S, Rocha MC, Parikh JD, et al. . Skeletal muscle mitochondrial oxidative phosphorylation function in idiopathic pulmonary arterial hypertension: in vivo and in vitro study. Pulm Circ 2018; 8: 2045894018768290. doi:10.1177/2045894018768290
    1. McCullough DJ, Kue N, Mancini T, et al. . Endurance exercise training in pulmonary hypertension increases skeletal muscle electron transport chain supercomplex assembly. Pulm Circ 2020; 10: 2045894020925762. doi:10.1177/2045894020925762
    1. Handoko ML, de Man FS, Happe CM, et al. . Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation 2009; 120: 42–49. doi:10.1161/CIRCULATIONAHA.108.829713
    1. Mereles D, Ehlken N, Kreuscher S, et al. . Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation 2006; 114: 1482–1489. doi:10.1161/CIRCULATIONAHA.106.618397
    1. Mainguy V, Maltais F, Saey D, et al. . Effects of a rehabilitation program on skeletal muscle function in idiopathic pulmonary arterial hypertension. J Cardiopulm Rehabil Prev 2010; 30: 319–323. doi:10.1097/HCR.0b013e3181d6f962
    1. Chan L, Chin LMK, Kennedy M, et al. . Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest 2013; 143: 333–343. doi:10.1378/chest.12-0993
    1. Grunig E, Maier F, Ehlken N, et al. . Exercise training in pulmonary arterial hypertension associated with connective tissue diseases. Arthritis Res Ther 2012; 14: R148. doi:10.1186/ar3883
    1. Becker-Grunig T, Klose H, Ehlken N, et al. . Efficacy of exercise training in pulmonary arterial hypertension associated with congenital heart disease. Int J Cardiol 2013; 168: 375–381. doi:10.1016/j.ijcard.2012.09.036
    1. Nagel C, Prange F, Guth S, et al. . Exercise training improves exercise capacity and quality of life in patients with inoperable or residual chronic thromboembolic pulmonary hypertension. PLoS One 2012; 7: e41603. doi:10.1371/journal.pone.0041603
    1. Grunig E, Ehlken N, Ghofrani A, et al. . Effect of exercise and respiratory training on clinical progression and survival in patients with severe chronic pulmonary hypertension. Respiration 2011; 81: 394–401. doi:10.1159/000322475
    1. Kabitz HJ, Bremer HC, Schwoerer A, et al. . The combination of exercise and respiratory training improves respiratory muscle function in pulmonary hypertension. Lung 2014; 192: 321–328. doi:10.1007/s00408-013-9542-9
    1. Pandey A, Garg S, Khunger M, et al. . Efficacy and safety of exercise training in chronic pulmonary hypertension: systematic review and meta-analysis. Circ Heart Fail 2015; 8: 1032–1043. doi:10.1161/CIRCHEARTFAILURE.115.002130
    1. Ehlken N, Lichtblau M, Klose H, et al. . Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial. Eur Heart J 2016; 37: 35–44. doi:10.1093/eurheartj/ehv337
    1. Richter MJ, Grimminger J, Kruger B, et al. . Effects of exercise training on pulmonary hemodynamics, functional capacity and inflammation in pulmonary hypertension. Pulm Circ 2017; 7: 20–37. doi:10.1086/690553
    1. Tickle PG, Hendrickse PW, Degens H, et al. . Impaired skeletal muscle performance as a consequence of random functional capillary rarefaction can be restored with overload-dependent angiogenesis. J Physiol 2020; 598: 1187–1203. doi:10.1113/JP278975
    1. Reeves JT, Linehan JH, Stenmark KR. Distensibility of the normal human lung circulation during exercise. Am J Physiol Lung Cell Mol Physiol 2005; 288: L419–L425. doi:10.1152/ajplung.00162.2004
    1. La Gerche A, MacIsaac AI, Burns AT, et al. . Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function during exercise. J Appl Physiol (1985) 2010; 109: 1307–1317. doi:10.1152/japplphysiol.00457.2010
    1. Badesch DB, Champion HC, Sanchez MA, et al. . Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2009; 54: Suppl. 1, S55–S66. doi:10.1016/j.jacc.2009.04.011
    1. Kovacs G, Berghold A, Scheidl S, et al. . Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 2009; 34: 888–894. doi:10.1183/09031936.00145608
    1. Naeije R, Vanderpool R, Dhakal BP, et al. . Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Crit Care Med 2013; 187: 576–583. doi:10.1164/rccm.201211-2090CI
    1. Herve P, Lau EM, Sitbon O, et al. . Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J 2015; 46: 728–737. doi:10.1183/09031936.00021915
    1. Ho JE, Zern EK, Lau ES, et al. . Exercise pulmonary hypertension predicts clinical outcomes in patients with dyspnea on effort. J Am Coll Cardiol 2020; 75: 17–26.
    1. Segrera SA, Lawler L, Opotowsky AR, et al. . Open label study of ambrisentan in patients with exercise pulmonary hypertension. Pulm Circ 2017; 7: 531–538. doi:10.1177/2045893217709024
    1. Kennedy TP, Michael JR, Huang CK, et al. . Nifedipine inhibits hypoxic pulmonary vasoconstriction during rest and exercise in patients with chronic obstructive pulmonary disease. A controlled double-blind study. Am Rev Respir Dis 1984; 129: 544–551.
    1. Archer SL, Mike D, Crow J, et al. . A placebo-controlled trial of prostacyclin in acute respiratory failure in COPD. Chest 1996; 109: 750–755. doi:10.1378/chest.109.3.750
    1. Lau EMT, Chemla D, Godinas L, et al. . Loss of vascular distensibility during exercise is an early hemodynamic marker of pulmonary vascular disease. Chest 2016; 149: 353–361. doi:10.1378/chest.15-0125
    1. Lalande S, Yerly P, Faoro V, et al. . Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals. J Physiol 2012; 590: 4279–4288. doi:10.1113/jphysiol.2012.234310
    1. Singh I, Oliveira RKF, Naeije R, et al. . Pulmonary vascular distensibility and early pulmonary vascular remodeling in pulmonary hypertension. Chest 2019; 156: 724–732. doi:10.1016/j.chest.2019.04.111
    1. Malhotra R, Dhakal BP, Eisman AS, et al. . Pulmonary vascular distensibility predicts pulmonary hypertension severity, exercise capacity, and survival in heart failure. Circ Heart Fail 2016; 9: e003011. doi:10.1161/CIRCHEARTFAILURE.115.003011
    1. Kovacs G, Herve P, Barbera JA, et al. . An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017; 50: 1700578. doi:10.1183/13993003.00578-2017
    1. Kovacs G, Herve P, Olschewski H, et al. . The pulmonary haemodynamics during exercise–research network (PEX-NET) ERS Clinical Research Collaboration: investigating the prognostic relevance of exercise haemodynamics. Eur Respir J 2019; 53: 1900458. doi:10.1183/13993003.00458-2019
    1. Poole DC, Behnke BJ, Musch TI. The role of vascular function on exercise capacity in health and disease. J Physiol 2020; in press. doi: 10.1113/JP278931
    1. Poole DC, Richardson RS, Haykowsky MJ, et al. . Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 2018; 124: 208–224. doi:10.1152/japplphysiol.00747.2017
    1. Harms CA, Babcock MA, McClaran SR, et al. . Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol (1985) 1997; 82: 1573–1583. doi:10.1152/jappl.1997.82.5.1573
    1. Dempsey JA, Miller JD, Romer L, et al. . Exercise-induced respiratory muscle work: effects on blood flow, fatigue and performance. Adv Exp Med Biol 2008; 605: 209–212. doi:10.1007/978-0-387-73693-8_36
    1. Miyazaki A, Adachi H, Oshima S, et al. . Blood flow redistribution during exercise contributes to exercise tolerance in patients with chronic heart failure. Circ J 2007; 71: 465–470. doi:10.1253/circj.71.465
    1. Dempsey JA, Romer L, Rodman J, et al. . Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 2006; 151: 242–250. doi:10.1016/j.resp.2005.12.015
    1. Amann M, Regan MS, Kobitary M, et al. . Impact of pulmonary system limitations on locomotor muscle fatigue in patients with COPD. Am J Physiol Regul Integr Comp Physiol 2010; 299: R314–R324. doi:10.1152/ajpregu.00183.2010
    1. Spiekerkoetter E, Fabel H, Hoeper MM. Effects of inhaled salbutamol in primary pulmonary hypertension. Eur Respir J 2002; 20: 524–528. doi:10.1183/09031936.02.02572001
    1. Faria-Urbina M, Oliveira RKF, Segrera SA, et al. . Impaired systemic oxygen extraction in treated exercise pulmonary hypertension: a new engine in an old car? Pulm Circ 2018; 8: 2045893218755325. doi:10.1177/2045893218755325
    1. Cano I, Roca J, Wagner PD. Effects of lung ventilation-perfusion and muscle metabolism-perfusion heterogeneities on maximal O2 transport and utilization. J Physiol 2015; 593: 1841–1856. doi:10.1113/jphysiol.2014.286492
    1. Esposito F, Mathieu-Costello O, Shabetai R, et al. . Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol 2010; 55: 1945–1954. doi:10.1016/j.jacc.2009.11.086
    1. Esposito F, Reese V, Shabetai R, et al. . Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J Am Coll Cardiol 2011; 58: 1353–1362. doi:10.1016/j.jacc.2011.06.025
    1. Esposito F, Mathieu-Costello O, Wagner PD, et al. . Acute and chronic exercise in patients with heart failure with reduced ejection fraction: evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle. J Physiol 2018; 596: 5149–5161. doi:10.1113/JP276678
    1. Houstis NE, Eisman AS, Pappagianopoulos PP, et al. . Exercise intolerance in heart failure with preserved ejection fraction: diagnosing and ranking its causes using personalized O2 pathway analysis. Circulation 2018; 137: 148–161. doi:10.1161/CIRCULATIONAHA.117.029058
    1. Dhakal BP, Malhotra R, Murphy RM, et al. . Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail 2015; 8: 286–294. doi:10.1161/CIRCHEARTFAILURE.114.001825
    1. Broxterman RM, Hoff J, Wagner PD, et al. . Determinants of the diminished exercise capacity in patients with chronic obstructive pulmonary disease: looking beyond the lungs. J Physiol 2020; 598: 599–610. doi:10.1113/JP279135
    1. Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control during exercise in humans: a central command update. Exp Physiol 2006; 91: 51–58. doi:10.1113/expphysiol.2005.032037
    1. Ponikowski PP, Chua TP, Francis DP, et al. . Muscle ergoreceptor overactivity reflects deterioration in clinical status and cardiorespiratory reflex control in chronic heart failure. Circulation 2001; 104: 2324–2330. doi:10.1161/hc4401.098491
    1. Piepoli MF, Kaczmarek A, Francis DP, et al. . Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation 2006; 114: 126–134. doi:10.1161/CIRCULATIONAHA.105.605980
    1. Amann M, Blain GM, Proctor LT, et al. . Group III and IV muscle afferents contribute to ventilatory and cardiovascular response to rhythmic exercise in humans. J Appl Physiol (1985) 2010; 109: 966–976. doi:10.1152/japplphysiol.00462.2010
    1. Amann M, Proctor LT, Sebranek JJ, et al. . Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 2009; 587: 271–283. doi:10.1113/jphysiol.2008.163303
    1. Amann M, Blain GM, Proctor LT, et al. . Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans. J Physiol 2011; 589: Pt. 21, 5299–5309. doi:10.1113/jphysiol.2011.213769
    1. Broxterman RM, Hureau TJ, Layec G, et al. . Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. J Physiol 2018; 596: 2301–2314. doi:10.1113/JP275817
    1. Gagnon P, Bussieres JS, Ribeiro F, et al. . Influences of spinal anesthesia on exercise tolerance in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 186: 606–615. doi:10.1164/rccm.201203-0404OC

Source: PubMed

3
Abonneren