Prevalence and prognostic value of autonomic neuropathy assessed by Sudoscan® in transthyretin wild-type cardiac amyloidosis

Mounira Kharoubi, Fréderic Roche, Mélanie Bézard, David Hupin, Sidney Silva, Silvia Oghina, Coraline Chalard, Amira Zaroui, Arnault Galat, Soulef Guendouz, Florence Canoui-Poitrine, Luc Hittinger, Emmanuel Teiger, Jean-Pascal Lefaucheur, Thibaud Damy, Mounira Kharoubi, Fréderic Roche, Mélanie Bézard, David Hupin, Sidney Silva, Silvia Oghina, Coraline Chalard, Amira Zaroui, Arnault Galat, Soulef Guendouz, Florence Canoui-Poitrine, Luc Hittinger, Emmanuel Teiger, Jean-Pascal Lefaucheur, Thibaud Damy

Abstract

Aims: The prevalence of autonomic neuropathy (AN) is high in patients with hereditary transthyretin amyloidosis but remains unknown in transthyretin wild-type cardiac amyloidosis (ATTRwt-CA). This study aimed to determine the prevalence of AN in patients with ATTRwt-CA using Sudoscan®, a non-invasive method used to provide evidence of AN in clinical practice and based on measurement of electrochemical skin conductance at the hands and feet (fESC).

Methods and results: A series of 62 non-diabetic patients with ATTRwt-CA was prospectively included over 2 years and compared with healthy elderly subjects, matched by age, gender, and body mass index. The presence of AN was defined as electrochemical skin conductance at the hands <60 μS and/or fESC <70 μS, and conductances were analysed according to clinical, biological, and echocardiographic data. Mean fESC was significantly lower in patients with ATTRwt-CA compared with elderly controls: 68.3 (64.1-72.5) vs. 76.9 (75.6-78.1) μS (P < 0.0001), respectively. Prevalence of fESC <70 μS was higher in ATTRwt-CA patients than in controls: 48.4% vs. 19.9%, P < 0.05. Univariate analysis showed that fESC, N-terminal pro-B-type natriuretic peptide, creatinine plasma levels, and echocardiographic global longitudinal strain were associated with decompensated cardiac failure and death. Multivariate analysis revealed that fESC was an independent prognostic factor, and Kaplan-Meier estimator evidenced a greater occurrence of cardiac decompensation and death in patients with fESC <70 μS, P = 0.046.

Conclusions: Reduced fESC was observed in almost 50% of patients with ATTRwt-CA and was associated with a worse prognosis. Sudoscan® could easily be used to screen ATTRwt-CA patients for the presence of AN and identify patients at higher risk for a poor outcome.

Keywords: Aging; Cardiac amyloidosis; Heart failure; Neuropathy; Prognosis; Sudoscan.

Conflict of interest statement

M.K., M.B., S.S., C.C., A.Z., A.G., S.F., F.C.P., L.H., and J.P.L. have no conflict of interest to declare for this study. T.D. has received research grant and honorarium from Pfizer, Akcea, and Novartis and honorarium from Alnylam and Prothena. F.R. has no conflict of interest to declare for this study. The PROOF study was supported by two national PHRC (1998 and 2001; DGOS, URCIP CHU Saint Etienne).

© 2020 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Figures

Figure 1
Figure 1
Percentage of healthy elderly controls and transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients with reduced electrochemical skin conductance at the hands (hESC) (

Figure 2

Correlation between right and left…

Figure 2

Correlation between right and left electrochemical skin conductance at the hands (hESC) or…

Figure 2
Correlation between right and left electrochemical skin conductance at the hands (hESC) or feet (fESC) in healthy elderly controls and transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients.

Figure 3

Correlation between right and left…

Figure 3

Correlation between right and left electrochemical skin conductance at the hands (hESC) or…

Figure 3
Correlation between right and left electrochemical skin conductance at the hands (hESC) or feet (fESC) in transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients with or without carpal tunnel syndrome, diffuse neuropathy, or lumbar spinal stenosis.

Figure 4

Kaplan–Meier curves for cardiac decompensation…

Figure 4

Kaplan–Meier curves for cardiac decompensation or death in transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA)…

Figure 4
Kaplan–Meier curves for cardiac decompensation or death in transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients with electrochemical skin conductance at the feet (fESC) ≥70 μS or
Similar articles
Cited by
References
    1. Damy T, Maurer MS, Rapezzi C, Planté‐Bordeneuve V, Karayal ON, Mundayat R, Suhr OB, Kristen AV. Clinical, ECG and echocardiographic clues to the diagnosis of TTR‐related cardiomyopathy. Open Heart 2016; 3: e000289. - PMC - PubMed
    1. Connors LH, Sam F, Skinner M, Salinaro F, Sun F, Ruberg FL, Berk JL, Seldin DC. Heart failure due to age‐related cardiac amyloid disease associated with wild‐type transthyretin: a prospective, observational cohort study. Circulation 2016; 133: 282–290. - PMC - PubMed
    1. García‐Pavía P, Tomé‐Esteban MT, Rapezzi C. Amyloidosis. Also a Heart Disease Rev Esp Cardiol 2011; 64: 797–808. - PubMed
    1. Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, Berk JL, Plante‐Bordeneuve V, Schmidt HHJ, Merlini G. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 2015; 66: 2451–2466. - PubMed
    1. Chao C‐C, Huang C‐M, Chiang H‐H, Luo K‐R, Kan H‐W, Yang NC‐C, Chiang H, Lin W‐M, Lai S‐M, Lee M‐J, Shun C‐T, Hsieh S‐T. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol 2015; 78: 272–283. - PMC - PubMed
Show all 35 references
Related information
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 2
Figure 2
Correlation between right and left electrochemical skin conductance at the hands (hESC) or feet (fESC) in healthy elderly controls and transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients.
Figure 3
Figure 3
Correlation between right and left electrochemical skin conductance at the hands (hESC) or feet (fESC) in transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients with or without carpal tunnel syndrome, diffuse neuropathy, or lumbar spinal stenosis.
Figure 4
Figure 4
Kaplan–Meier curves for cardiac decompensation or death in transthyretin wild‐type cardiac amyloidosis (ATTRwt‐CA) patients with electrochemical skin conductance at the feet (fESC) ≥70 μS or

References

    1. Damy T, Maurer MS, Rapezzi C, Planté‐Bordeneuve V, Karayal ON, Mundayat R, Suhr OB, Kristen AV. Clinical, ECG and echocardiographic clues to the diagnosis of TTR‐related cardiomyopathy. Open Heart 2016; 3: e000289.
    1. Connors LH, Sam F, Skinner M, Salinaro F, Sun F, Ruberg FL, Berk JL, Seldin DC. Heart failure due to age‐related cardiac amyloid disease associated with wild‐type transthyretin: a prospective, observational cohort study. Circulation 2016; 133: 282–290.
    1. García‐Pavía P, Tomé‐Esteban MT, Rapezzi C. Amyloidosis. Also a Heart Disease Rev Esp Cardiol 2011; 64: 797–808.
    1. Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, Berk JL, Plante‐Bordeneuve V, Schmidt HHJ, Merlini G. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 2015; 66: 2451–2466.
    1. Chao C‐C, Huang C‐M, Chiang H‐H, Luo K‐R, Kan H‐W, Yang NC‐C, Chiang H, Lin W‐M, Lai S‐M, Lee M‐J, Shun C‐T, Hsieh S‐T. Sudomotor innervation in transthyretin amyloid neuropathy: pathology and functional correlates. Ann Neurol 2015; 78: 272–283.
    1. Mayaudon H, Miloche P‐O, Bauduceau B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab 2010; 36: 450–454.
    1. Novak P. Electrochemical skin conductance: a systematic review. Clin Auton Res 2019; 29: 17–29.
    1. Yajnik CS, Kantikar VV, Pande AJ, Deslypere JP. Quick and simple evaluation of sudomotor function for screening of diabetic neuropathy. ISRN Endocrinol 2012; 2012.
    1. Castro J, Miranda B, Castro I, de Carvalho M, Conceição I. The diagnostic accuracy of Sudoscan in transthyretin familial amyloid polyneuropathy. Clin Neurophysiol 2016; 127: 2222–2227.
    1. Lefaucheur J‐P, Zouari HG, Gorram F, Nordine T, Damy T, Planté‐Bordeneuve V. The value of electrochemical skin conductance measurement using Sudoscan® in the assessment of patients with familial amyloid polyneuropathy. Clin Neurophysiol 2018; 129: 1565–1569.
    1. Said G, Planté‐Bordeneuve V. TTR‐familial amyloid polyneuropathy—neurological aspects. Amyloid 2012; 19: 25–27.
    1. Fortanier E, Delmont E, Verschueren A, Attarian S. Quantitative sudomotor test helps differentiate transthyretin familial amyloid polyneuropathy from chronic inflammatory demyelinating polyneuropathy. Clin Neurophysiol 2020; 131: 1129–1133.
    1. Béquignon E, Guellich A, Bartier S, Raynal M, Prulière‐Escabasse V, Canouï‐Poitrine F, Coste A, Damy T. How your ears can tell what is hidden in your heart: wild‐type transthyretin amyloidosis as potential cause of sensorineural hearing loss inelderly‐AmyloDEAFNESS pilot study. Amyloid 2017; 24: 96–100.
    1. Vinik AI, Smith AG, Singleton JR, Callaghan B, Freedman BI, Tuomilehto J, Bordier L, Bauduceau B, Roche F. Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function. Diabetes Technol Ther 2016; 18: 391–398.
    1. Sekijima Y, Yazaki M, Ueda M, Koike H, Yamada M, Ando Y. First nationwide survey on systemic wild‐type ATTR amyloidosis in Japan. Amyloid 2018; 25: 8–10.
    1. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, Judge DP, Lenihan DJ, Gottlieb SS, Shah SJ, Steidley DE, Ventura H, Murali S, Silver MA, Jacoby D, Fedson S, Hummel SL, Kristen AV, Damy T, Planté‐Bordeneuve V, Coelho T, Mundayat R, Suhr OB, Waddington Cruz M, Rapezzi C. Genotype and phenotype of transthyretin cardiac amyloidosis. J Am Coll Cardiol 2016; 68: 161–172.
    1. Zouari HG, Tin SNW, Wahab A, Damy T, Lefaucheur J‐P. Assessment of autonomic innervation of the foot in familial amyloid polyneuropathy. Eur J Neurol 2019; 26: 94–e10.
    1. D'Amato C, Greco C, Lombardo G, Frattina V, Campo M, Cefalo CMA, Izzo V, Lauro D, Spallone V. The diagnostic usefulness of the combined COMPASS 31 questionnaire and electrochemical skin conductance for diabetic cardiovascular autonomic neuropathy and diabetic polyneuropathy. J Peripher Nerv Syst 2020b; 25: 44–53.
    1. Jin J, Wang W, Gu T, Chen W, Lu J, Bi Y, Zhu D. The application of SUDOSCAN for screening diabetic peripheral neuropathy in Chinese population. Exp Clin Endocrinol Diabetes 2018; 126: 472–477.
    1. Wang C, Zuo A, Liu P, Zhao R, Li W, Chen L, Hou X. Electrochemical skin conductance may be used to screen for diabetic cardiac autonomic neuropathy in a Chinese population with diabetes. J Diabetes Res 2017: 2017. 10.1155/2017/8289740
    1. Castro J, Costa J, de Castro I, Conceição I. Electrochemical skin conductance in hereditary amyloidosis related to transthyretin V30M—a promising tool to assess treatment efficacy? Amyloid 2018; 25: 267–268.
    1. Saad M, Psimaras D, Tafani C, Sallansonnet‐Froment M, Calvet J‐H, Vilier A, Tigaud J‐M, Bompaire F, Lebouteux M, de Greslan T, Ceccaldi B, Poirier J‐M, Ferrand F‐R, Le Moulec S, Huillard O, Goldwasser F, Taillia H, Maisonobe T, Ricard D. Quick, non‐invasive and quantitative assessment of small fiber neuropathy in patients receiving chemotherapy. J Neurooncol 2016; 127: 373–380.
    1. Delmotte J‐B, Tutakhail A, Abdallah K, Reach P, D'Ussel M, Deplanque G, Beaussier H, Coudoré F. Electrochemical skin conductance as a marker painful oxaliplatin‐induced peripheral neuropathy. Neurol Res Int 2018; 2018.
    1. Casellini CM, Parson HK, Hodges K, Edwards JF, Lieb DC, Wohlgemuth SD, Vinik AI. Bariatric surgery restores cardiac and sudomotor autonomic C‐fiber dysfunction towards normal in obese subjects with type 2 diabetes. PLoS ONE 2016; 11, e0154211.
    1. Fabry V, Gerdelat A, Acket B, Cintas P, Rousseau V, Uro‐Coste E, Evrard SM, Pavy‐Le Traon A. Which method for diagnosing small fiber neuropathy? Front Neurol 2020; 11, 342.
    1. Novak P. Electrochemical skin conductance correlates with skin nerve fiber density. Front Aging Neurosci 2016; 8, 199.
    1. Hoitsma E, Reulen JPH, de Baets M, Drent M, Spaans F, Faber CG. Small fiber neuropathy: a common and important clinical disorder. J Neurol Sci 2004; 227: 119–130.
    1. Sène D. Small fiber neuropathy: diagnosis, causes, and treatment. Joint Bone Spine 2018; 85: 553–559.
    1. Planté‐Bordeneuve V, Suhr OB, Maurer MS, White B, Grogan DR, Coelho T. The Transthyretin Amyloidosis Outcomes Survey (THAOS) registry: design and methodology. Curr Med Res Opin 2013; 29: 77–84.
    1. Trouvin A‐P, Perrot S. Functional and histological improvements of small nerve neuropathy after high‐concentration capsaicin patch application: a case study. Pain Rep 2019; 4, e761.
    1. Zaslansky R, Yarnitsky D. Clinical applications of quantitative sensory testing (QST). J Neurol Sci 1998; 153: 215–238.
    1. Arunodaya GR, Taly AB. Sympathetic skin response: a decade later. J Neurol Sci 1995; 129: 81–89.
    1. Gutrecht JA. Sympathetic skin response. J Clin Neurophysiol 1994; 11: 519–524.
    1. Montcuquet A, Duchesne M, Roussellet O, Jaccard A, Magy L. Electrochemical skin conductance values suggest frequent subclinical autonomic involvement in patients with AL amyloidosis. Amyloid. 2020;27: 3:215–216. 10.1080/13506129.2020.1757423
    1. Gillmore JD, Damy T, Fontana M, Hutchinson M, Lachmann HJ, Martinez‐Naharro A, Quarta CC, Rezk T, Whelan CJ, Gonzalez‐Lopez E, Lane T, Gilbertson JA, Rowczenio D, Petrie A, Hawkins PN. A new staging system for cardiac transthyretin amyloidosis. European Heart Journal. 2018;39: 30:2799–2806. 10.1093/eurheartj/ehx589

Source: PubMed

3
Abonneren