Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia

Anil Gulati, Anil Gulati

Abstract

Background: Neurogenesis is most active during pre-natal development, however, it persists throughout the human lifespan. The putative role of mitochondria in neurogenesis and angiogenesis is gaining importance. Since, ETB receptor mediated neurogenesis and angiogenesis has been identified, the role of these receptors with relevance to mitochondrial functions is of interest.

Methods: In addition to work from our laboratory, we undertook an extensive search of bibliographic databases for peer-reviewed research literature. Specific technical terms such as endothelin, mitochondria and neurogenesis were used to seek out and critically evaluate literature that was relevant.

Results: The ET family consists of three isopeptides (ET-1, ET-2 and ET-3) that produce biological actions by acting on two types of receptors (ETA and ETB). In the central nervous system (CNS) ETA receptors are potent constrictors of the cerebral vasculature and appear to contribute in the causation of cerebral ischemia. ETA receptor antagonists have been found to be effective in animal model of cerebral ischemia; however, clinical studies have shown no efficacy. Mitochondrial functions are critically important for several neural development processes such as neurogenesis, axonal and dendritic growth, and synaptic formation. ET appears to impair mitochondrial functions through activation of ETB receptors. On the other hand, blocking ETB receptors has been shown to trigger apoptotic processes by activating intrinsic mitochondrial pathway. Mitochondria are important for their role in molecular regulation of neurogenesis and angiogenesis. Stimulation of ETB receptors in the adult ischemic brain has been found to promote angiogenesis and neurogenesis mediated through vascular endothelial growth factor and nerve growth factor. It will be interesting to investigate the effect of ETBreceptor stimulation on mitochondrial functions in the CNS following cerebral ischemia.

Conclusion: The findings of this review implicate brain ETBreceptors in angiogenesis and neurogenesis following cerebral ischemia, it is possible that the positive effect of stimulating ETB receptors in cerebral ischemia may be mediated through mitochondrial functions.

Figures

Fig. (1)
Fig. (1)
There are two types of ET receptors: ETA and ETB. ETA receptors are found on the vascular smooth muscle and are vasoconstrictor. ETB receptors are identified as ETB1 and ETB2 based upon pharmacological response to RES701. RES701 was found to block ETB1 (located on vascular endothelial cells and function as dilator) but not ETB2 (located on vascular smooth muscle cells and function as constrictor).
Fig. (2)
Fig. (2)
Cerebral ischemia produces a wide variety of changes in the CNS. They can broadly be classified as injury and repair mechanisms. It is our hypothesis that ETB receptor agonist, IRL-1620, may be acting a neuroprotective and may also participate in the repair mechanism following cerebral ischemia. It has been demonstrated that IRL-1620 is both neuroprotective and participates in the repair mechanism in animal model of cerebral ischemia.

References

    1. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332(6163):411–415. [http://dx.doi. org/10.1038/332411a0]. [PMID: 2451132].
    1. Inoue A., Yanagisawa M., Kimura S., Kasuya Y., Miyauchi T., Goto K., Masaki T. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. USA. 1989;86(8):2863–2867. []. [PMID: 2649896].
    1. Arai H., Hori S., Aramori I., Ohkubo H., Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348(6303):730–732. [ 348730a0]. [PMID: 2175396].
    1. Sakurai T., Yanagisawa M., Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol. Sci. 1992;13(3):103–108. [PMID: 1315462].
    1. Goto K., Kasuya Y., Matsuki N., Takuwa Y., Kurihara H., Ishikawa T., Kimura S., Yanagisawa M., Masaki T. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc. Natl. Acad. Sci. USA. 1989;86(10):3915–3918. [. 3915]. [PMID: 2542956].
    1. Tsukahara H., Ende H., Magazine H.I., Bahou W.F., Goligorsky M.S. Molecular and functional characterization of the non-isopeptide-selective ETB receptor in endothelial cells. Receptor coupling to nitric oxide synthase. J. Biol. Chem. 1994;269(34):21778–21785. [PMID: 7520443].
    1. Warner T.D., Allcock G.H., Corder R., Vane J.R. Use of the endothelin antagonists BQ-123 and PD 142893 to reveal three endothelin receptors mediating smooth muscle contraction and the release of EDRF. Br. J. Pharmacol. 1993;110(2):777–782. []. [PMID: 8242251].
    1. MacCumber M.W., Ross C.A., Snyder S.H. Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. USA. 1990;87(6):2359–2363. [. 1073/pnas.87.6.2359]. [PMID: 2156267].
    1. Gulati A., Srimal R.C. Endothelin mechanisms in the central nervous system - A target for drug development. Drug Dev. Res. 1992;26(4):361–387. [].
    1. Gulati A., Srimal R.C. Endothelin antagonizes the hypotension and potentiates the hypertension induced by clonidine. Eur. J. Pharmacol. 1993;230(3):293–300. [ 0014-2999(93)90564-X]. [PMID: 8440307].
    1. Kumar A., Gulati A., Shahani B.T. Central cardiovascular effects of endothelin-1 (ET-1) could be attenuated by propranalol in rats. Circulation. 1995;92(8):1054–1054.
    1. Kumar A., Shahani B.T., Gulati A. Modification of systemic and regional circulatory effects of intracerebroventricular administration of endothelin-1 by propranolol in anesthetized rats. Gen. Pharmacol. 1996;27(6):1025–1033. [ 0306-3623(95)02134-5]. [PMID: 8909986].
    1. Ehrenreich H., Nau T.R., Dembowski C., Hasselblatt M., Barth M., Hahn A., Schilling L., Sirén A-L., Brück W. Endothelin b receptor deficiency is associated with an increased rate of neuronal apoptosis in the dentate gyrus. Neuroscience. 2000;95(4):993–1001. []. [PMID: 10682706].
    1. Vidovic M., Chen M.M., Lu Q.Y., Kalloniatis K.F., Martin B.M., Tan A.H., Lynch C., Croaker G.D., Cass D.T., Song Z.M. Deficiency in endothelin receptor B reduces proliferation of neuronal progenitors and increases apoptosis in postnatal rat cerebellum. Cell. Mol. Neurobiol. 2008;28(8):1129–1138. []. [PMID: 18683040].
    1. Druckenbrod N.R., Powers P.A., Bartley C.R., Walker J.W., Epstein M.L. Targeting of endothelin receptor-B to the neural crest. Genesis. 2008;46(8):396–400. [ dvg.20415]. [PMID: 18693272].
    1. Riechers C.C., Knabe W., Sirén A.L., Gariepy C.E., Yanagisawa M., Ehrenreich H. Endothelin B receptor deficient transgenic rescue rats: a rescue phenomenon in the brain. Neuroscience. 2004;124(4):719–723. [ j.neuroscience.2003.10.023]. [PMID: 15026112].
    1. Castañeda M.M., Cubilla M.A., López-Vicchi M.M., Suburo A.M. Endothelinergic cells in the subependymal region of mice. Brain Res. 2010;1321:20–30. [. brainres.2010.01.056]. [PMID: 20116370].
    1. Koyama Y., Baba A., Matsuda T. Endothelins stimulate the expression of neurotrophin-3 in rat brain and rat cultured astrocytes. Neuroscience. 2005;136(2):425–433. [ j.neuroscience.2005.08.004]. [PMID: 16181740].
    1. Koyama Y., Tsujikawa K., Matsuda T., Baba A. Intra- cerebroventricular administration of an endothelin ETB receptor agonist increases expressions of GDNF and BDNF in rat brain. Eur. J. Neurosci. 2003;18(4):887–894. [ j.1460-9568.2003.02797.x]. [PMID: 12925014].
    1. De Giusti V.C., Correa M.V., Villa-Abrille M.C., Beltrano C., Yeves A.M., de Cingolani G.E., Cingolani H.E., Aiello E.A. The positive inotropic effect of endothelin-1 is mediated by mitochondrial reactive oxygen species. Life Sci. 2008;83(7-8):264–271. []. [PMID: 18625248].
    1. Yuki K., Miyauchi T., Kakinuma Y., Murakoshi N., Suzuki T., Hayashi J., Goto K., Yamaguchi I. Mitochondrial dysfunction increases expression of endothelin-1 and induces apoptosis through caspase-3 activation in rat cardiomyocytes in vitro. J. Cardiovasc. Pharmacol. 2000;36(5) Suppl. 1:S205–S208. [ 10.1097/00005344-200036051-00062]. [PMID: 11078378].
    1. Marín-García J., Goldenthal M.J., Moe G.W. Selective endothelin receptor blockade reverses mitochondrial dysfunction in canine heart failure. J. Card. Fail. 2002;8(5):326–332. [http://dx. ]. [PMID: 12411984].
    1. Ouyang J.S., Li Y.P., Li C.Y., Cai C., Chen C.S., Chen S.X., Chen Y.F., Yang L., Xie Y.P. Mitochondrial ROS-K+ channel signaling pathway regulated secretion of human pulmonary artery endothelial cells. Free Radic. Res. 2012;46(12):1437–1445. []. [PMID: 22928487].
    1. Bagnato A., Natali P.G. Endothelin receptors as novel targets in tumor therapy. J. Transl. Med. 2004;2(1):16. [ 10.1186/1479-5876-2-16]. [PMID: 15165288].
    1. Paolillo M., Russo M.A., Curti D., Lanni C., Schinelli S. Endothelin B receptor antagonists block proliferation and induce apoptosis in glioma cells. Pharmacol. Res. 2010;61(4):306–315. []. [PMID: 19931393].
    1. Alvarez-Buylla A., Lim D.A. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41(5):683–686. []. [PMID: 15003168].
    1. Barnabé-Heider F., Göritz C., Sabelström H., Takebayashi H., Pfrieger F.W., Meletis K., Frisén J. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7(4):470–482. []. [PMID: 20887953].
    1. Anderson M.F., Aberg M.A., Nilsson M., Eriksson P.S. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res. Dev. Brain Res. 2002;134(1-2):115–122. [http:// ]. [PMID: 11947942].
    1. Thau-Zuchman O., Shohami E., Alexandrovich A.G., Leker R.R. Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J. Cereb. Blood Flow Metab. 2010;30(5):1008–1016. []. [PMID: 20068579].
    1. Malberg J.E., Eisch A.J., Nestler E.J., Duman R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000;20(24):9104–9110. [PMID: 11124987].
    1. Pakkenberg B., Gundersen H.J. Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 1997;384(2):312–320. [ 384:2<312:AID-CNE10>;2-K]. [PMID: 9215725].
    1. Kriegstein A., Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 2009;32:149–184. []. [PMID: 19555289].
    1. Eriksson P.S., Perfilieva E., Björk-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. Neurogenesis in the adult human hippocampus. Nat. Med. 1998;4(11):1313–1317. []. [PMID: 9809557].
    1. Kempermann G., Kuhn H.G., Gage F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–495. []. [PMID: 9087407].
    1. Wodarz A., Huttner W.B. Asymmetric cell division during neurogenesis in Drosophila and vertebrates. Mech. Dev. 2003;120(11):1297–1309. []. [PMID: 14623439].
    1. Clancy B., Darlington R.B., Finlay B.L. Translating developmental time across mammalian species. Neuroscience. 2001;105(1):7–17. [ 00171-3]. [PMID: 11483296].
    1. Briyal S., Lavhale M.S., Gulati A. Repeated administration of centhaquin to pregnant rats did not affect postnatal development and expression of endothelin receptors in the brain, heart or kidney of pups. Arzneimittelforschung. 2012;62(12):670–676. [http://dx. ]. [PMID: 23154885].
    1. Briyal S., Shepard C., Gulati A. Endothelin receptor type B agonist, IRL-1620, prevents beta amyloid (Aβ) induced oxidative stress and cognitive impairment in normal and diabetic rats. Pharmacol. Biochem. Behav. 2014;120:65–72. [ 10.1016/j.pbb.2014.02.008]. [PMID: 24561065].
    1. Leonard M.G., Prazad P., Puppala B., Gulati A. Selective Endothelin-B receptor stimulation increases vascular endothelial growth factor in the rat brain during postnatal development. Drug Res (Stuttg) 2015
    1. Puppala B., Awan I., Briyal S., Mbachu O., Leonard M., Gulati A. Ontogeny of endothelin receptors in the brain, heart, and kidneys of neonatal rats. Brain Dev. 2015;37(2):206–215. [http:// ]. [PMID: 24815227].
    1. Yuan Y., Zhang X., Zheng Y., Chen Z. Regulation of mitophagy in ischemic brain injury. Neurosci. Bull. 2015;31(4):395–406. []. [PMID: 26219224].
    1. Banerjee K., Munshi S., Frank D.E., Gibson G.E. Abnormal Glucose Metabolism in Alzheimer’s Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem. Res. 2015;40(12):2557–2569. []. [PMID: 26077923].
    1. Meijer A.J., Codogno P. Autophagy: regulation and role in disease. Crit. Rev. Clin. Lab. Sci. 2009;46(4):210–240. [http://dx. ]. [PMID: 19552522].
    1. Santos R.X., Correia S.C., Wang X., Perry G., Smith M.A., Moreira P.I., Zhu X. A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J. Alzheimers Dis. 2010;20(Suppl. 2):S401–S412. [PMID: 20463393].
    1. Vives-Bauza C., Przedborski S. Mitophagy: the latest problem for Parkinson’s disease. Trends Mol. Med. 2011;17(3):158–165. [http:// ]. [PMID: 21146459].
    1. Zhang X., Yan H., Yuan Y., Gao J., Shen Z., Cheng Y., Shen Y., Wang R.R., Wang X., Hu W.W., Wang G., Chen Z. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9(9):1321–1333. []. [PMID: 23800795].
    1. Xavier J.M., Rodrigues C.M., Solá S. Mitochondria: Major Regulators of Neural Development. Neuroscientist. 2015:1073858415585472. [PMID: 25948649].
    1. Cheng A., Hou Y., Mattson M.P. Mitochondria and neuro- plasticity. ASN Neuro. 2010;2(5):e00045. [. 1042/AN20100019]. [PMID: 20957078].
    1. Mattson M.P., Liu D. Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem. Biophys. Res. Commun. 2003;304(3):539–549. []. [PMID: 12729589].
    1. Kann O., Kovács R. Mitochondria and neuronal activity. Am. J. Physiol. Cell Physiol. 2007;292(2):C641–C657. [ 10.1152/ajpcell.00222.2006]. [PMID: 17092996].
    1. Acker T., Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J. Exp. Biol. 2004;207(Pt 18):3171–3188. []. [PMID: 15299039].
    1. Schänzer A., Wachs F.P., Wilhelm D., Acker T., Cooper-Kuhn C., Beck H., Winkler J., Aigner L., Plate K.H., Kuhn H.G. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 2004;14(3):237–248. []. [PMID: 15446578].
    1. Sisalli M.J., Annunziato L., Scorziello A. Novel Cellular Mechanisms for Neuroprotection in Ischemic Preconditioning: A View from Inside Organelles. Front. Neurol. 2015;6:115. []. [PMID: 26074868].
    1. Koyama Y., Michinaga S. Regulations of astrocytic functions by endothelins: roles in the pathophysiological responses of damaged brains. J. Pharmacol. Sci. 2012;118(4):401–407. [http://dx.doi. org/10.1254/jphs.11R13CP]. [PMID: 22447302].
    1. Briyal S., Philip T., Gulati A. Endothelin-A receptor antagonists prevent amyloid-β-induced increase in ETA receptor expression, oxidative stress, and cognitive impairment. J. Alzheimers Dis. 2011;23(3):491–503. [PMID: 21116051].
    1. Nakagomi S., Kiryu-Seo S., Kiyama H. Endothelin-converting enzymes and endothelin receptor B messenger RNAs are expressed in different neural cell species and these messenger RNAs are coordinately induced in neurons and astrocytes respectively following nerve injury. Neuroscience. 2000;101(2):441–449. []. [PMID: 11074166].
    1. Rogers S.D., Demaster E., Catton M., Ghilardi J.R., Levin L.A., Maggio J.E., Mantyh P.W. Expression of endothelin-B receptors by glia in vivo is increased after CNS injury in rats, rabbits, and humans. Exp. Neurol. 1997;145(1):180–195. [. 1006/exnr.1997.6468]. [PMID: 9184120].
    1. Viossat I., Duverger D., Chapelat M., Pirotzky E., Chabrier P.E., Braquet P. Elevated tissue endothelin content during focal cerebral ischemia in the rat. J. Cardiovasc. Pharmacol. 1993;22(Suppl. 8):S306–S309. []. [PMID: 7509972].
    1. Willette R.N., Ohlstein E.H., Pullen M., Sauermelch C.F., Cohen A., Nambi P. Transient forebrain ischemia alters acutely endothelin receptor density and immunoreactivity in gerbil brain. Life Sci. 1993;52(1):35–40. []. [PMID: 8417278].
    1. Lee M.E., de la Monte S.M., Ng S.C., Bloch K.D., Quertermous T. Expression of the potent vasoconstrictor endothelin in the human central nervous system. J. Clin. Invest. 1990;86(1):141–147. []. [PMID: 2195059].
    1. Robinson M.J., Macrae I.M., Todd M., Reid J.L., McCulloch J. Reduction of local cerebral blood flow to pathological levels by endothelin-1 applied to the middle cerebral artery in the rat. Neurosci. Lett. 1990;118(2):269–272. [ 0304-3940(90)90644-O]. [PMID: 2274283].
    1. Patel T.R., Galbraith S.L., McAuley M.A., Doherty A.M., Graham D.I., McCulloch J. Therapeutic potential of endothelin receptor antagonists in experimental stroke. J. Cardiovasc. Pharmacol. 1995;26(Suppl. 3):S412–S415. [. 1097/00005344-199506263-00121]. [PMID: 8587430].
    1. Barone F.C., Ohlstein E.H., Hunter A.J., Campbell C.A., Hadingham S.H., Parsons A.A., Yang Y., Shohami E. Selective antagonism of endothelin-A-receptors improves outcome in both head trauma and focal stroke in rat. J. Cardiovasc. Pharmacol. 2000;36(5) Suppl. 1:S357–S361. [ 00005344-200036051-00104]. [PMID: 11078420].
    1. Legos J.J., Lenhard S.C., Haimbach R.E., Schaeffer T.R., Bentley R.G., McVey M.J., Chandra S., Irving E.A., Andrew A. Parsons; Barone, F.C. SB 234551 selective ET(A) receptor antagonism: perfusion/diffusion MRI used to define treatable stroke model, time to treatment and mechanism of protection. Exp. Neurol. 2008;212(1):53–62. [. expneurol.2008.03.011]. [PMID: 18462720].
    1. Briyal S., Gulati A. Endothelin-A receptor antagonist BQ123 potentiates acetaminophen induced hypothermia and reduces infarction following focal cerebral ischemia in rats. Eur. J. Pharmacol. 2010;644(1-3):73–79. [ j.ejphar.2010.06.071]. [PMID: 20638381].
    1. Briyal S., Gulati A., Gupta Y.K. Effect of combination of endothelin receptor antagonist (TAK-044) and aspirin in middle cerebral artery occlusion model of acute ischemic stroke in rats. Methods Find. Exp. Clin. Pharmacol. 2007;29(4):257–263. []. [PMID: 17609737].
    1. Gupta Y.K., Briyal S., Sharma U., Jagannathan N.R., Gulati A. Effect of endothelin antagonist (TAK-044) on cerebral ischemic volume, oxidative stress markers and neurobehavioral parameters in the middle cerebral artery occlusion model of stroke in rats. Life Sci. 2005;77(1):15–27. [. 11.025]. [PMID: 15848215].
    1. Kohan D.E., Cleland J.G., Rubin L.J., Theodorescu D., Barton M. Clinical trials with endothelin receptor antagonists: what went wrong and where can we improve? Life Sci. 2012;91(13-14):528–539. []. [PMID: 22967485].
    1. Shah R. Endothelins in health and disease. Eur. J. Intern. Med. 2007;18(4):272–282. [. 002]. [PMID: 17574100].
    1. Cramer S.C., Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–271. []. [PMID: 10838596].
    1. Chuquet J., Benchenane K., Toutain J., MacKenzie E.T., Roussel S., Touzani O. Selective blockade of endothelin-B receptors exacerbates ischemic brain damage in the rat. Stroke. 2002;33(12):3019–3025. [. 0000039401.48915.9F]. [PMID: 12468806].
    1. Ehrenreich H., Oldenburg J., Hasselblatt M., Herms J., Dembowski C., Löffler B.M., Brück W., Kamrowski-Kruck H., Gall S., Sirén A.L., Schilling L. Endothelin B receptor-deficient rats as a subtraction model to study the cerebral endothelin system. Neuroscience. 1999;91(3):1067–1075. [ S0306-4522(98)00663-0]. [PMID: 10391484].
    1. Leonard M.G., Briyal S., Gulati A. Endothelin B receptor agonist, IRL-1620, reduces neurological damage following permanent middle cerebral artery occlusion in rats. Brain Res. 2011;1420:48–58. [. 08.075]. [PMID: 21959172].
    1. Leonard M.G., Briyal S., Gulati A. Endothelin B receptor agonist, IRL-1620, provides long-term neuroprotection in cerebral ischemia in rats. Brain Res. 2012;1464:14–23. [ 10.1016/j.brainres.2012.05.005]. [PMID: 22580085].
    1. Leonard M.G., Gulati A. Endothelin B receptor agonist, IRL-1620, enhances angiogenesis and neurogenesis following cerebral ischemia in rats. Brain Res. 2013;1528:28–41. [ 10.1016/j.brainres.2013.07.002]. [PMID: 23850649].
    1. Laziz I., Larbi A., Grebert D., Sautel M., Congar P., Lacroix M.C., Salesse R., Meunier N. Endothelin as a neuroprotective factor in the olfactory epithelium. Neuroscience. 2011;172:20–29. []. [PMID: 21035524].
    1. Lee H.O., Levorse J.M., Shin M.K. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Dev. Biol. 2003;259(1):162–175. []. [PMID: 12812796].
    1. Yagami T., Ueda K., Sakaeda T., Okamura N., Nakazato H., Kuroda T., Hata S., Sakaguchi G., Itoh N., Hashimoto Y., Fujimoto M. Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology. 2005;48(2):291–300. [http://dx. ]. [PMID: 15695168].
    1. Go A.S., Mozaffarian D., Roger V.L., Benjamin E.J., Berry J.D., Borden W.B., Bravata D.M., Dai S., Ford E.S., Fox C.S., Franco S., Fullerton H.J., Gillespie C., Hailpern S.M., Heit J.A., Howard V.J., Huffman M.D., Kissela B.M., Kittner S.J., Lackland D.T., Lichtman J.H., Lisabeth L.D., Magid D., Marcus G.M., Marelli A., Matchar D.B., McGuire D.K., Mohler E.R., Moy C.S., Mussolino M.E., Nichol G., Paynter N.P., Schreiner P.J., Sorlie P.D., Stein J., Turan T.N., Virani S.S., Wong N.D., Woo D., Turner M.B. Executive summary: heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–152. []. [PMID: 23283859].
    1. Andres R.H., Horie N., Slikker W., Keren-Gill H., Zhan K., Sun G., Manley N.C., Pereira M.P., Sheikh L.A., McMillan E.L., Schaar B.T., Svendsen C.N., Bliss T.M., Steinberg G.K. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(Pt 6):1777–1789. []. [PMID: 21616972].
    1. Bacigaluppi M., Pluchino S., Peruzzotti-Jametti L., Kilic E., Kilic U., Salani G., Brambilla E., West M.J., Comi G., Martino G., Hermann D.M. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239–2251. []. [PMID: 19617198].
    1. Liu Z., Li Y., Zhang X., Savant-Bhonsale S., Chopp M. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke. 2008;39(9):2571–2577. [ STROKEAHA.107.511659]. [PMID: 18617661].

Source: PubMed

3
Abonneren