Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement

Irit Gottfried, Nofar Schottlender, Uri Ashery, Irit Gottfried, Nofar Schottlender, Uri Ashery

Abstract

Hyperbaric oxygen treatment (HBOT)-the medical use of oxygen at environmental pressure greater than one atmosphere absolute-is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT's mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.

Keywords: Alzheimer’s disease; brain disorders; cognition; hyperbaric oxygen treatment (HBOT); neuroinflammation; neuroprotection.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
HBOT improves brain function. HBOT has been shown to improve cerebral blood flow, brain metabolism, and brain microstructure, leading to improved cognitive functions, physical functions, sleep, and gait.
Figure 2
Figure 2
HBOT affects multiple cellular and molecular pathways. HBOT affects several molecular and cellular pathways that are important for cellular and neuronal recovery including neuroprotection via SIRT1, oxidative stress via SIRT1 and Nrf-2, apoptosis via SIRT1, neurogenesis via Wnt3. Green frames represent proteins and processes that are upregulated; red frames represent proteins and processes that are downregulated. Abbreviations: nuclear factor erythroid 2-related factor 2 (Nrf-2), nuclear factor kappa B (NF-κB), Hypoxia-Inducible Factor 1-alpha (HIF1a), heme oxygenase 1 (HO-1), superoxide dismutase 1 (SOD1), malondialdehyde (MDA), B-cell lymphoma 2 (Bcl2), Bcl-2-associated X protein (Bax), vascular endothelial growth factor (VEGF-A), Glutathione-S-transferases (GST), Glutathione Peroxidase (GPx), tumor necrosis factor alpha (TNFa), Wnt Family Member 3 (Wnt3).

References

    1. Calvert J.W., Cahill J., Zhang J.H. Hyperbaric oxygen and cerebral physiology. Neurol. Res. 2007;29:132–141. doi: 10.1179/016164107X174156.
    1. Jones M.W., Brett K., Han N., Wyatt H.A. Hyperbaric Physics. StatPearls Publishing; Treasure Island, FL, USA: 2019.
    1. Glik J., Cholewka A., Stanek A., Englisz B., Sieroń K., Mikuś-Zagórska K., Knefel G., Nowak M., Kawecki M. Thermal imaging and planimetry evaluation of the results of chronic wounds treatment with hyperbaric oxygen therapy. Adv. Clin. Exp. Med. 2019;28:229–236. doi: 10.17219/acem/92304.
    1. Kasprzyk-Kucewicz T., Cholewka A., Englisz-Jurgielewicz B., Mucha R., Relich M., Kawecki M., Sieroń K., Onak P., Stanek A. Thermal effects of topical hyperbaric oxygen therapy in hard-to-heal wounds—A pilot study. Int. J. Environ. Res. Public Health. 2021;18:6737. doi: 10.3390/ijerph18136737.
    1. Stanek A., Gebala-Prajsnar K., Pasek J., Prajsnar G., Berszakiewicz A., Sieron A., Cholewka A., Zabrze I. Selected physical medicine interventions in the treatment of diabetic foot syndrome. Acta Angiol. 2015;21:140–145. doi: 10.5603/AA.2015.0024.
    1. Lin P.-Y., Sung P.-H., Chung S.-Y., Hsu S.-L., Chung W.-J., Sheu J.-J., Hsueh S.-K., Chen K.-H., Wu R.-W., Yip H.-K. Clinical Medicine Hyperbaric Oxygen Therapy Enhanced Circulating Levels of Endothelial Progenitor Cells and Angiogenesis Biomarkers, Blood Flow, in Ischemic Areas in Patients with Peripheral Arterial Occlusive Disease. J. Clin. Med. 2018;7:548. doi: 10.3390/jcm7120548.
    1. Carturan D., Boussuges A., Vanuxem P., Bar-Hen A., Burnet H., Gardette B. Ascent rate, age, maximal oxygen uptake, adiposity, and circulating venous bubbles after diving. J. Appl. Physiol. 2002;93:1349–1356. doi: 10.1152/japplphysiol.00723.1999.
    1. Edwards M., Singh M., Selesny S., Cooper J.S. Hyperbaric Treatment of Thermal Burns. StatPearls Publishing; Treasure Island, FL, USA: 2021.
    1. Cooper J.S., Hanley M.E. Hyperbaric Treatment of Radiation Proctitis. StatPearls Publishing; Treasure Island, FL, USA: 2021.
    1. Hanley M.E., Manna B. Hyperbaric Treatment of Diabetic Foot Ulcer. StatPearls Publishing; Treasure Island, FL, USA: 2021.
    1. Hyperbaric Oxygen Therapy: Get the Facts|FDA. [(accessed on 6 October 2021)]; Available online: .
    1. Kamat S.M., Mendelsohn A.R., Larrick J.W. Rejuvenation through Oxygen, More or Less. Rejuvenation Res. 2021;24:158–163. doi: 10.1089/rej.2021.0014.
    1. Somaa F. A Review of the Application of Hyperbaric Oxygen Therapy in Alzheimer’s Disease. J. Alzheimer’s Dis. 2021;81:1361–1367. doi: 10.3233/JAD-210157.
    1. Thibodeaux K., Speyrer M., Raza A., Yaakov R., Serena T.E. Hyperbaric oxygen therapy in preventing mechanical ventilation in COVID-19 patients: A retrospective case series. J. Wound Care. 2020;29:S4–S8. doi: 10.12968/jowc.2020.29.Sup5a.S4.
    1. Abu El Hawa A.A., Charipova K., Bekeny J.C., Johnson-Arbor K.K. The evolving use of hyperbaric oxygen therapy during the COVID-19 pandemic. J. Wound Care. 2021;30:S8–S11. doi: 10.12968/jowc.2021.30.Sup2.S8.
    1. Paganini M., Bosco G., Perozzo F.A.G., Kohlscheen E., Sonda R., Bassetto F., Garetto G., Camporesi E.M., Thom S.R. Advances in Experimental Medicine and Biology. Volume 1289. Springer; Cham, Switzerland: 2021. The Role of Hyperbaric Oxygen Treatment for COVID-19: A Review; pp. 27–35.
    1. De Maio A., Hightower L.E. COVID-19, acute respiratory distress syndrome (ARDS), and hyperbaric oxygen therapy (HBOT): What is the link? Cell Stress Chaperones. 2020;25:717–720. doi: 10.1007/s12192-020-01121-0.
    1. Guo D., Pan S., Wang M.M., Guo Y. Hyperbaric oxygen therapy may be effective to improve hypoxemia in patients with severe COVID-2019 pneumonia: Two case reports. Undersea Hyperb. Med. 2020;47:181–187. doi: 10.22462/04.06.2020.2.
    1. Boet S., Etherington C., Djaiani G., Tricco A.C., Sikora L., Katznelson R. Efficacy and safety of hyperbaric oxygen treatment in SARS-CoV-2 (COVID-19) pneumonia: A systematic review. Diving Hyperb. Med. 2021;51:271–281. doi: 10.28920/dhm51.3.271-281.
    1. Marcinkowska A.B., Mankowska N.D., Kot J., Winklewski P.J. Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: A Systematic Review. Neuropsychol. Rev. 2021 doi: 10.1007/s11065-021-09500-9.
    1. Kim H.-S., Choi M.-H., Baek J.-H., Park S.-J., Lee J.-C., Jeong U.-H., Kim S.-P., Kim H.-J., Choi Y., Lim D.-W., et al. Effects of 92% oxygen administration on cognitive performance and physiological changes of intellectually and developmentally disabled people. J. Physiol. Anthropol. 2015;34:3. doi: 10.1186/s40101-015-0043-9.
    1. Hadanny A., Rittblat M., Bitterman M., May-Raz I., Suzin G., Boussi-Gross R., Zemel Y., Bechor Y., Catalogna M., Efrati S. Hyperbaric oxygen therapy improves neurocognitive functions of post-stroke patients-a retrospective analysis. Restor. Neurol. Neurosci. 2020;38:93–107. doi: 10.3233/RNN-190959.
    1. Efrati S., Fishlev G., Bechor Y., Volkov O., Bergan J., Kliakhandler K., Kamiager I., Gal N., Friedman M., Ben-Jacob E., et al. Hyperbaric oxygen induces late neuroplasticity in post stroke patients—Randomized, prospective trial. PLoS ONE. 2013;8:e53716. doi: 10.1371/journal.pone.0053716.
    1. Cozene B., Sadanandan N., Gonzales-Portillo B., Saft M., Cho J., Park Y.J., Borlongan C.V. An extra breath of fresh air: Hyperbaric oxygenation as a stroke therapeutic. Biomolecules. 2020;10:1279. doi: 10.3390/biom10091279.
    1. Lee Y.S., Chio C.C., Chang C.P., Wang L.C., Chiang P.M., Niu K.C., Tsai K.J. Long course hyperbaric oxygen stimulates neurogenesis and attenuates inflammation after ischemic stroke. Mediat. Inflamm. 2013;2013:512978. doi: 10.1155/2013/512978.
    1. Chen L., Li F., Gu D. Hyperbaric oxygen therapy for cerebral blood flow and electroencephalogram in patients with acute cerebral infarction: Choice for therapeutic occasion. Neural Regen. Res. 2007;2:171–174. doi: 10.1016/S1673-5374(07)60038-3.
    1. Rosario E.R., Kaplan S.E., Khonsari S., Vazquez G., Solanki N., Lane M., Brownell H., Rosenberg S.S. The Effect of Hyperbaric Oxygen Therapy on Functional Impairments Caused by Ischemic Stroke. Neurol. Res. Int. 2018;2018:3172679. doi: 10.1155/2018/3172679.
    1. Ma J., Hong G., Ha E., Hong H., Kim J., Joo Y., Yoon S., Lyoo I.K., Kim J. Hippocampal cerebral blood flow increased following low-pressure hyperbaric oxygenation in firefighters with mild traumatic brain injury and emotional distress. Neurol. Sci. 2021;42:4131–4138. doi: 10.1007/s10072-021-05094-5.
    1. Skiba M., Rękas-Dudziak A., Bekała A., Płotek W. Late application of hyperbaric oxygen therapy during the rehabilitation of a patient with severe cognitive impairment after a traumatic brain injury. Clin. Case Rep. 2021;9:960–965. doi: 10.1002/ccr3.3658.
    1. Tal S., Hadanny A., Berkovitz N., Sasson E., Ben-Jacob E., Efrati S. Hyperbaric oxygen may induce angiogenesis in patients suffering from prolonged post-concussion syndrome due to traumatic brain injury. Restor. Neurol. Neurosci. 2015;33:943–951. doi: 10.3233/RNN-150585.
    1. Boussi-Gross R., Golan H., Fishlev G., Bechor Y., Volkov O., Bergan J., Friedman M., Hoofien D., Shlamkovitch N., Ben-Jacob E., et al. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury—Randomized prospective trial. PLoS ONE. 2013;8:e79995. doi: 10.1371/journal.pone.0079995.
    1. Harch P., Andrews S., Rowe C., Lischka J., Townsend M., Yu Q., Mercante D. Hyperbaric oxygen therapy for mild traumatic brain injury persistent postconcussion syndrome: A randomized controlled trial. Med. Gas Res. 2020;10:8–20. doi: 10.4103/2045-9912.279978.
    1. Tal S., Hadanny A., Sasson E., Suzin G., Efrati S. Hyperbaric Oxygen Therapy Can Induce Angiogenesis and Regeneration of Nerve Fibers in Traumatic Brain Injury Patients. Front. Hum. Neurosci. 2017;11:508. doi: 10.3389/fnhum.2017.00508.
    1. Chen J., Zhang F., Zhao L., Cheng C., Zhong R., Dong C., Le W. Hyperbaric oxygen ameliorates cognitive impairment in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Alzheimer’s Dement. 2020;6:e12030. doi: 10.1016/j.jalz.2019.09.067.
    1. Harch P.G., Fogarty E.F. Hyperbaric oxygen therapy for Alzheimer’s dementia with positron emission tomography imaging: A case report. Med. Gas Res. 2018;8:181–184. doi: 10.4103/2045-9912.248271.
    1. Xu Y., Wang Q., Qu Z., Yang J., Zhang X., Zhao Y. Protective Effect of Hyperbaric Oxygen Therapy on Cognitive Function in Patients with Vascular Dementia. Cell Transpl. 2019;28:1071–1075. doi: 10.1177/0963689719853540.
    1. You Q., Li L., Xiong S.-Q., Yan Y.-F., Li D., Yan N.-N., Chen H.-P., Liu Y.-P. Meta-Analysis on the Efficacy and Safety of Hyperbaric Oxygen as Adjunctive Therapy for Vascular Dementia. Front. Aging Neurosci. 2019;11:86. doi: 10.3389/fnagi.2019.00086.
    1. Vila J.F., Balcarce P.E., Abiusi G.R., Domínguez R.O., Pisarello J.B. Improvement in motor and cognitive impairment after hyperbaric oxygen therapy in a selected group of patients with cerebrovascular disease: A prospective single-blind controlled trial. Undersea Hyperb. Med. 2005;32:341–349.
    1. Denis P.A. Alzheimer’s disease: A gas model. The NADPH oxidase-Nitric Oxide system as an antibubble biomachinery. Med. Hypotheses. 2013;81:976–987. doi: 10.1016/j.mehy.2013.09.008.
    1. Zárate S.C., Traetta M.E., Codagnone M.G., Seilicovich A., Reinés A.G. Humanin, a mitochondrial-derived peptide released by astrocytes, prevents synapse loss in hippocampal neurons. Front. Aging Neurosci. 2019;11:123. doi: 10.3389/fnagi.2019.00123.
    1. Hazafa A., Batool A., Ahmad S., Amjad M., Chaudhry S.N., Asad J., Ghuman H.F., Khan H.M., Naeem M., Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci. 2021;264:118679. doi: 10.1016/j.lfs.2020.118679.
    1. Hashimoto Y., Ito Y., Niikura T., Shao Z., Hata M., Oyama F., Nishimoto I. Mechanisms of neuroprotection by a novel rescue factor humanin from swedish mutant amyloid precursor protein. Biochem. Biophys. Res. Commun. 2001;283:460–468. doi: 10.1006/bbrc.2001.4765.
    1. Jacobs E.A., Winter P.M., Alvis H.J., Small S.M. Hyperoxygenation Effect on Cognitive Functioning in the Aged. N. Engl. J. Med. 1969;281:753–757. doi: 10.1056/NEJM196910022811402.
    1. Yu R., Wang B., Li S., Wang J., Zhou F., Chu S., He X., Wen X., Ni X., Liu L., et al. Cognitive enhancement of healthy young adults with hyperbaric oxygen: A preliminary resting-state fMRI study. Clin. Neurophysiol. 2015;126:2058–2067. doi: 10.1016/j.clinph.2015.01.010.
    1. Vadas D., Kalichman L., Hadanny A., Efrati S. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance. Front. Integr. Neurosci. 2017;11:25. doi: 10.3389/fnint.2017.00025.
    1. Suzin G., Frolinger T.H., Yogev D., Hadanny A., Catalogna M., Rassovsky Y., Efrati S. Oxygen: The rate-limiting factor for episodic memory performance, even in healthy young individuals. Biomolecules. 2020;10:1328. doi: 10.3390/biom10091328.
    1. Hadanny A., Malka D.K., Gil S., Rahav B.G., Merav C., Kobi D., Yafit H., Ramzia A.H., Efrat S., Gregory F., et al. Cognitive enhancement of healthy older adults using hyperbaric oxygen: A randomized controlled trial. Aging. 2020;12:13740–13761. doi: 10.18632/aging.103571.
    1. Shapira R., Gdalyahu A., Gottfried I., Sasson E., Hadanny A., Efrati S., Blinder P., Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer’s disease mouse model and in elderly patients. Aging. 2021;13:20935–20961. doi: 10.18632/aging.203485.
    1. Raskin A., Gershon S., Crook T.H., Sathananthan G., Ferris S. The effects of hyperbaric and normobaric oxygen on cognitive impairment in the elderly. Arch. Gen. Psychiatry. 1978;35:50–56. doi: 10.1001/archpsyc.1978.01770250052005.
    1. Hadanny A., Efrati S. The hyperoxic-hypoxic paradox. Biomolecules. 2020;10:958. doi: 10.3390/biom10060958.
    1. Fratantonio D., Virgili F., Zucchi A., Lambrechts K., Latronico T., Lafère P., Germonpré P., Balestra C. Increasing oxygen partial pressures induce a distinct transcriptional response in human pbmc: A pilot study on the “normobaric oxygen paradox”. Int. J. Mol. Sci. 2021;22:458. doi: 10.3390/ijms22010458.
    1. Balestra C., Lambrechts K., Mrakic-Sposta S., Vezzoli A., Levenez M., Germonpré P., Virgili F., Bosco G., Lafère P. Hypoxic and Hyperoxic Breathing as a Complement to Low-Intensity Physical Exercise Programs: A Proof-of-Principle Study. Int. J. Mol. Sci. 2021;22:9600. doi: 10.3390/ijms22179600.
    1. Van Vliet T., Casciaro F., Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res. Rev. 2021;67:101267. doi: 10.1016/j.arr.2021.101267.
    1. Greer S.N., Metcalf J.L., Wang Y., Ohh M. The updated biology of hypoxia-inducible factor. EMBO J. 2012;31:2448–2460. doi: 10.1038/emboj.2012.125.
    1. Fratantonio D., Cimino F., Speciale A., Virgili F. Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability. BioFactors. 2018;44:207–218. doi: 10.1002/biof.1419.
    1. Cimino F., Speciale A., Anwar S., Canali R., Ricciardi E., Virgili F., Trombetta D., Saija A. Anthocyanins protect human endothelial cells from mild hyperoxia damage through modulation of Nrf2 pathway. Genes Nutr. 2013;8:391–399. doi: 10.1007/s12263-012-0324-4.
    1. Tonelli C., Chio I.I.C., Tuveson D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox Signal. 2018;29:1727–1745. doi: 10.1089/ars.2017.7342.
    1. Mattson M.P., Meffert M.K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006;13:852–860. doi: 10.1038/sj.cdd.4401837.
    1. Lippert T., Borlongan C.V. Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer. CNS Neurosci. Ther. 2019;25:815–823. doi: 10.1111/cns.13124.
    1. Zhou Z., Daugherty W.P., Sun D., Levasseur J.E., Altememi N., Hamm R.J., Rockswold G.L., Bullock M.R. Protection of mitochondrial function and improvement in cognitive recovery in rats treated with hyperbaric oxygen following lateral fluid-percussion injury. J. Neurosurg. 2007;106:687–694. doi: 10.3171/jns.2007.106.4.687.
    1. Tian X., Zhang L., Wang J., Dai J., Shen S., Yang L., Huang P. The protective effect of hyperbaric oxygen and Ginkgo biloba extract on Aβ25–35-induced oxidative stress and neuronal apoptosis in rats. Behav. Brain Res. 2013;242:1–8. doi: 10.1016/j.bbr.2012.12.026.
    1. Thom S.R., Milovanova T.N., Yang M., Bhopale V.M., Sorokina E.M., Uzun G., Malay D.S., Troiano M.A., Hardy K.R., Lambert D.S., et al. Vasculogenic stem cell mobilization and wound recruitment in diabetic patients: Increased cell number and intracellular regulatory protein content associated with hyperbaric oxygen therapy. Wound Repair Regen. 2011;19:149–161. doi: 10.1111/j.1524-475X.2010.00660.x.
    1. Goldstein L.J., Gallagher K.A., Bauer S.M., Bauer R.J., Baireddy V., Liu Z.-J., Buerk D.G., Thom S.R., Velazquez O.C. Endothelial Progenitor Cell Release into Circulation Is Triggered by Hyperoxia-Induced Increases in Bone Marrow Nitric Oxide. Stem Cells. 2006;24:2309–2318. doi: 10.1634/stemcells.2006-0010.
    1. Milovanova T.N., Bhopale V.M., Sorokina E.M., Moore J.S., Hunt T.K., Hauer-Jensen M., Velazquez O.C., Thom S.R. Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J. Appl. Physiol. 2009;106:711–728. doi: 10.1152/japplphysiol.91054.2008.
    1. Yang Y.J., Wang X.L., Yu X.H., Wang X., Xie M., Liu C.T. Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea Hyperb. Med. 2008;35:113–129.
    1. Liu S., Shen G., Deng S., Wang X., Wu Q., Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regen. Res. 2013;8:3334–3343. doi: 10.3969/j.issn.1673-5374.2013.35.008.
    1. Wei L., Wang J., Cao Y., Ren Q., Zhao L., Li X., Wang J. Hyperbaric oxygenation promotes neural stem cell proliferation and protects the learning and memory ability in neonatal hypoxic-ischemic brain damage. Int. J. Clin. Exp. Pathol. 2015;8:1752–1759.
    1. Wang X.L., Yang Y.J., Xie M., Yu X.H., Liu C.T., Wang X. Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. Neuroreport. 2007;18:1753–1756. doi: 10.1097/WNR.0b013e3282f0ec09.
    1. Yang Y., Wei H., Zhou X., Zhang F., Wang C. Hyperbaric oxygen promotes neural stem cell proliferation by activating vascular endothelial growth factor/extracellular signal-regulated kinase signaling after traumatic brain injury. Neuroreport. 2017;28:1232–1238. doi: 10.1097/WNR.0000000000000901.
    1. Zhang T., Yang Q.-W.W., Wang S.-N.N., Wang J.-Z.Z., Wang Q., Wang Y., Luo Y.-J.J. Hyperbaric oxygen therapy improves neurogenesis and brain blood supply in piriform cortex in rats with vascular dementia. Brain Inj. 2010;24:1350–1357. doi: 10.3109/02699052.2010.504525.
    1. Zhang L., Sun Q., Xin Q., Qin J., Zhang L., Wu D., Gao G., Xia Y. Hyperbaric oxygen therapy mobilized circulating stem cells and improved delayed encephalopathy after acute carbon monoxide poisoning with up-regulation of brain-derived neurotrophic factor. Am. J. Emerg. Med. 2021;42:95–100. doi: 10.1016/j.ajem.2021.01.021.
    1. Lin K.-C.C., Niu K.-C.C., Tsai K.-J.J., Kuo J.-R.R., Wang L.-C.C., Chio C.-C.C., Chang C.-P.P. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J. Trauma Acute Care Surg. 2012;72:650–659. doi: 10.1097/TA.0b013e31823c575f.
    1. Buckley C.J., Cooper J.S. Hyperbaric Affects on Angiogenesis. StatPearls Publishing; Treasure Island, FL, USA: 2021.
    1. Shapira R., Solomon B., Efrati S., Frenkel D., Ashery U. Hyperbaric oxygen therapy ameliorates pathophysiology of 3xTg-AD mouse model by attenuating neuroinflammation. Neurobiol. Aging. 2018;62:105–119. doi: 10.1016/j.neurobiolaging.2017.10.007.
    1. Shapira R., Efrati S., Ashery U. Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease. Neural Regen. Res. 2018;13 doi: 10.4103/1673-5374.232475.
    1. Halbach J.L., Prieto J.M., Wang A.W., Hawisher D., Cauvi D.M., Reyes T., Okerblom J., Ramirez-Sanchez I., Villarreal F., Patel H.H., et al. Early hyperbaric oxygen therapy improves survival in a model of severe sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019;317:R160–R168. doi: 10.1152/ajpregu.00083.2019.
    1. Lin Y., Lin X., Zheng X., Liu F., Ye C., Huang L., Zhou Q., Chen T., Lin L. Hyperbaric oxygen therapy cognitive function in a rat model of mild cognitive impairment via ERK signaling. Ann. Cardiothorac. Surg. 2020;9:3472–3480. doi: 10.21037/apm-20-1716.
    1. Zhao B., Pan Y., Wang Z., Xu H., Song X. Hyperbaric oxygen pretreatment improves cognition and reduces hippocampal damage via p38 mitogen-activated protein kinase in a rat model. Yonsei Med. J. 2017;58:131–138. doi: 10.3349/ymj.2017.58.1.131.
    1. Corrêa S.A.L., Eales K.L. The Role of p38 MAPK and Its Substrates in Neuronal Plasticity and Neurodegenerative Disease. J. Signal Transduct. 2012;2012:1–12. doi: 10.1155/2012/649079.
    1. Sun A., Liu M., Nguyen X.V., Bing G. p38 MAP kinase is activated at early stages in Alzheimer’s disease brain. Exp. Neurol. 2003;183:394–405. doi: 10.1016/S0014-4886(03)00180-8.
    1. Gamdzyk M., Małek M., Bratek E., Koks A., Kaminski K., Ziembowicz A., Salinska E. Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Res. 2016;1648:257–265. doi: 10.1016/j.brainres.2016.07.025.
    1. Yan W., Fang Z., Yang Q., Dong H., Lu Y., Lei C., Xiong L. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J. Cereb. Blood Flow Metab. 2013;33:396–406. doi: 10.1038/jcbfm.2012.179.
    1. Xue F., Huang J.W., Ding P.Y., Zang H.G., Kou Z.J., Li T., Fan J., Peng Z.W., Yan W.J. Nrf2/antioxidant defense pathway is involved in the neuroprotective effects of Sirt1 against focal cerebral ischemia in rats after hyperbaric oxygen preconditioning. Behav. Brain Res. 2016;309:1–8. doi: 10.1016/j.bbr.2016.04.045.
    1. Hong-qiang H., Mang-qiao S., Fen X., Shan-shan L., Hui-juan C., Wu-gang H., Wen-jun Y., Zheng-wu P. Sirt1 mediates improvement of isoflurane-induced memory impairment following hyperbaric oxygen preconditioning in middle-aged mice. Physiol. Behav. 2018;195:1–8. doi: 10.1016/j.physbeh.2018.07.017.
    1. Hu Q., Manaenko A., Bian H., Guo Z., Huang J.L., Guo Z.N., Yang P., Tang J., Zhang J.H. Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD+/Sirt1 Pathway in Hyperglycemic Middle Cerebral Artery Occlusion Rats. Stroke. 2017;48:1655–1664. doi: 10.1161/STROKEAHA.116.015753.
    1. Tian X., Wang J., Dai J., Yang L., Zhang L., Shen S., Huang P. Hyperbaric Oxygen and Ginkgo Biloba Extract Inhibit Aβ25-35-induced Toxicity and Oxidative Stress in vivo: A Potential Role in Alzheimer’s Disease. Int. J. Neurosci. 2012;122:563–569. doi: 10.3109/00207454.2012.690797.
    1. Baratz-Goldstein R., Toussia-Cohen S., Elpaz A., Rubovitch V., Pick C.G. Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol. Cell. Neurosci. 2017;83:74–82. doi: 10.1016/j.mcn.2017.06.004.
    1. Zhang L.D., Ma L., Zhang L., Dai J.G., Chang L.G., Huang P.L., Tian X.Q. Hyperbaric oxygen and ginkgo biloba extract ameliorate cognitive and memory impairment via nuclear factor Kappa-B pathway in rat model of alzheimer’s disease. Chin. Med. J. 2015;128:3088–3093. doi: 10.4103/0366-6999.169105.

Source: PubMed

3
Abonneren