Evaluating intrinsic and non-intrinsic cancer risk factors

Song Wu, Wei Zhu, Patricia Thompson, Yusuf A Hannun, Song Wu, Wei Zhu, Patricia Thompson, Yusuf A Hannun

Abstract

Discriminating the contribution of unmodifiable random intrinsic DNA replication errors ('bad luck') to cancer development from those of other factors is critical for understanding cancer in humans and for directing public resources aimed at reducing the burden of cancer. Here, we review and highlight the evidence that demonstrates cancer causation is multifactorial, and provide several important examples where modification of risk factors has achieved cancer prevention. Furthermore, we stress the need and opportunities to advance understanding of cancer aetiology through integration of interaction effects between risk factors when estimating the contribution of individual and joint factors to cancer burden in a population. We posit that non-intrinsic factors drive most cancer risk, and stress the need for cancer prevention.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Three types of cancer risk factors. The overall cancer risk factors are divided into two mutually exclusive components: the unmodifiable intrinsic and the modifiable, at least partially, non-intrinsic risk factors. The intrinsic risk factors refer to random errors resulting from DNA replication. The non-intrinsic risk factors further consist of endogenous and exogenous risk factors depending on whether such factors are more internal or external to an individual
Fig. 2
Fig. 2
This diagram illustrates the relationship between intrinsic and non-intrinsic risks, as well as preventable cancer and overall cancer burden. One can see that by ignoring the unknown non-intrinsic risk (area marked with?), the estimated intrinsic risk in ref. is inflated as the true intrinsic risk (blue region) plus the unknown non-intrinsic risk. Preventable cancer is a subset of cancers with known non-intrinsic causes since to be preventable, a cancer has to have a known and modifiable factor (e.g., Radon is a known factor for lung cancer but not much modifiable.) By the same rationale, preventable cancer is often under-estimated due to the unknown non-intrinsic risk factors
Fig. 3
Fig. 3
Shown are the (conservative non-zero) minimum, the 10th and 90th percentiles, the US average, and the maximum of the lifetime cancer risk based on World cancer registry, and the stem-cell-model based minimum. The huge disparity between the US average and world minimum indicates that cancer is unlikely the end result of a universal endogenous carcinogenesis mechanism unaffected by exogenous factors (published with permission)
Fig. 4
Fig. 4
Proportion of non-intrinsic risk estimates from four different approaches. Data were obtained from ref . The two dashed horizontal lines indicate non-intrinsic risk at the levels of 0.5 and 0.7. IRL confidence interval from the intrinsic risk line method, EPI epidemiological estimates, MS estimates based on mutational signatures (Box 1), M3 estimates from the 3-hit model, AML: Acute Myeloid Leukemia, ALL: Acute Lymphocytic Leukemia, CLL: Chronic Lymphocytic Leukemia, NHL: Non-Hodgkin’s Lymphoma. Most cancers show substantial non-intrinsic risks, except for AML, ALL, CLL and Pilocytic Astrocytoma, all of which are rare cancers and contribute less than 1% of the total cancer burden, and therefore those results do not affect our overall estimates. Moreover, AML, ALL and CLL are blood cancers whose pathogenesis and requirement for mutations may differ from solid tumours

References

    1. Verellen D, et al. Innovations in image-guided radiotherapy. Nat. Rev. Cancer. 2007;7:949–960. doi: 10.1038/nrc2288.
    1. Chabner BA, Roberts TG., Jr. Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer. 2005;5:65–72. doi: 10.1038/nrc1529.
    1. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer. 2012;12:265–277. doi: 10.1038/nrc3258.
    1. Global Burden of Disease Cancer, C. et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1:505–527. doi: 10.1001/jamaoncol.2015.0735.
    1. Steele CB, et al. Vital signs: trends in incidence of cancers associated with overweight and obesity - United States, 2005-2014. Morb. Mortal. Wkly. Rep. 2017;66:1052–1058. doi: 10.15585/mmwr.mm6639e1.
    1. Zhu W, Wu S, Hannun YA. Contributions of the Intrinsic Mutation Process to Cancer Mutation and Risk Burdens. EBioMedicine. 2017;24:5–6. doi: 10.1016/j.ebiom.2017.09.026.
    1. Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347:78–81. doi: 10.1126/science.1260825.
    1. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355:1330–1334. doi: 10.1126/science.aaf9011.
    1. Wild C, et al. Cancer risk: role of chance overstated. Science. 2015;347:728–728. doi: 10.1126/science.aaa6799.
    1. Song MY, Giovannucci EL. Cancer risk: many factors contribute. Science. 2015;347:728–729. doi: 10.1126/science.aaa6094.
    1. Potter JD, Prentice RL. Cancer risk: tumors excluded. Science. 2015;347:727–727. doi: 10.1126/science.aaa6507.
    1. O’Callaghan M. Cancer risk: accuracy of literature. Science. 2015;347:729–729. doi: 10.1126/science.aaa6212.
    1. Gotay C, Dummer T, Spinelli J. Cancer risk: prevention is crucial. Science. 2015;347:728–728. doi: 10.1126/science.aaa6462.
    1. Altenberg, L. Statistical problems in a paper on variation in cancer risk among tissues, and new discoveries. Preprint at (2015).
    1. Wu S, Powers S, Zhu W, Hannun YA. Substantial contribution of extrinsic risk factors to cancer development. Nature. 2016;529:43–47. doi: 10.1038/nature16166.
    1. Twort CC, Twort JM. Observations on the reaction of the skin to oils and tars. J. Hyg.-Camb. 1928;28:219–227. doi: 10.1017/S0022172400009578.
    1. Twort JM, Twort CC. Comparative activity of some carcinogenic hydrocarbons. Am. J. Cancer. 1939;35:80–85.
    1. Yamagiwa K, Ichikawa K. Experimental study of the pathogenesis of carcinoma. CA Cancer J. Clin. 1977;27:174–181. doi: 10.3322/canjclin.27.3.174.
    1. Nordling CO. A new theory on the cancer-inducing mechanism. Br. J. Cancer. 1953;7:68–72. doi: 10.1038/bjc.1953.8.
    1. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer. 1954;8:1–12. doi: 10.1038/bjc.1954.1.
    1. Muller HJ. Radiation damage to the genetic material. Am. Sci. 1950;38:33–59.
    1. Knudson AG. Mutation and cancer - Statistical Study of Retinoblastoma. Proc. . Natl Acad. Sci. USA. 1971;68:820. doi: 10.1073/pnas.68.4.820.
    1. Cavenee WK, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature. 1983;305:779–784. doi: 10.1038/305779a0.
    1. Little MP. Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics. 1995;51:1278–1291. doi: 10.2307/2533259.
    1. Tan WY, Yan XW. A new stochastic and state space model of human colon cancer incorporating multiple pathways. Biol. Direct. 2010;5:26. doi: 10.1186/1745-6150-5-26.
    1. Heidenreich WF, Luebeck EG, Hazelton WD, Paretzke HG, Moolgavkar SH. Multistage models and the incidence of cancer in the cohort of atomic bomb survivors. Radiat. Res. 2002;158:607–614. doi: 10.1667/0033-7587(2002)158[0607:MMATIO];2.
    1. Ames BN. Mutagenesis and carcinogenesis - endogenous and exogenous factors. Environ. Mol. Mutagen. 1989;14:66–77. doi: 10.1002/em.2850140614.
    1. Hussain SP, Harris CC. Molecular epidemiology and carcinogenesis: endogenous and exogenous carcinogens. Mutat. Res-Rev. Mutat. 2000;462:311–322. doi: 10.1016/S1383-5742(00)00015-6.
    1. Nowak MA, Waclaw B. CANCER Genes, environment, and “bad luck”. Science. 2017;355:1266–1267. doi: 10.1126/science.aam9746.
    1. Klutstein M, Moss J, Kaplan T, Cedar H. Contribution of epigenetic mechanisms to variation in cancer risk among tissues. Proc. Natl Acad. Sci. USA. 2017;114:2230–2234. doi: 10.1073/pnas.1616556114.
    1. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415. doi: 10.1038/nature12477.
    1. Bozic I, Nowak MA. Unwanted evolution. Science. 2013;342:938–939. doi: 10.1126/science.1247887.
    1. Sethi TK, El-Ghamry MN, Kloecker GH. Radon and lung cancer. Clin. Adv. Hematol. & Oncol.: Hamp;O. 2012;10:157–164.
    1. Besaratinia A, Pfeifer GP. Second-hand smoke and human lung cancer. Lancet Oncol. 2008;9:657–666. doi: 10.1016/S1470-2045(08)70172-4.
    1. Raaschou-Nielsen O, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE) Lancet Oncol. 2013;14:813–822. doi: 10.1016/S1470-2045(13)70279-1.
    1. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–322. doi: 10.1038/nature09781.
    1. Sung JJ, Lau JY, Goh KL, Leung WK, Asia Pacific Working Group on Colorectal. C. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6:871–876. doi: 10.1016/S1470-2045(05)70422-8.
    1. Siegel RL, Miller KD, Jemal A. Colorectal cancer mortality rates in adults aged 20 to 54 years in the United States, 1970-2014. JAMA. 2017;318:572–574. doi: 10.1001/jama.2017.7630.
    1. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer J. Int. du Cancer. 2010;127:2893–2917. doi: 10.1002/ijc.25516.
    1. Hemminki K, Forsti A, Khyatti M, Anwar WA, Mousavi M. Cancer in immigrants as a pointer to the causes of cancer. Eur. J. Public Health. 2014;24:64–71. doi: 10.1093/eurpub/cku102.
    1. Doll R, Hill AB. Smoking and carcinoma of the lung - preliminary report. Br. Med. J. 1950;2:739–748. doi: 10.1136/bmj.2.4682.739.
    1. Doll R, Hill AB. The mortality of doctors in relation to their smoking habits - a preliminary report. Br. Med. J. 1954;1:1451–1455. doi: 10.1136/bmj.1.4877.1451.
    1. Koh HK, Geller AC, Miller DR, Grossbart TA, Lew RA. Prevention and early detection strategies for melanoma and skin cancer. Current status. Arch. Dermatol. 1996;132:436–443. doi: 10.1001/archderm.1996.03890280098014.
    1. Blot WJ, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48:3282–3287.
    1. Kamangar F, Chow WH, Abnet CC, Dawsey SM. Environmental causes of esophageal cancer. Gastroenterol. Clin. North Am. 2009;38:27–57, vii. doi: 10.1016/j.gtc.2009.01.004.
    1. Koch Wayne M, Lango M, Sewell D, Zahurak M, Sidransky D. Head and neck cancer in nonsmokers: a distinct clinical and molecular entity. Laryngoscope. 2009;109:1544–1551. doi: 10.1097/00005537-199910000-00002.
    1. Bosch FX, et al. Prevalence of human papillomavirus in cervical-cancer - a worldwide perspective. J. Natl. Cancer Inst. 1995;87:796–802. doi: 10.1093/jnci/87.11.796.
    1. Frisch M, et al. Sexually transmitted infection as a cause of anal cancer. New Engl. J. Med. 1997;337:1350–1358. doi: 10.1056/NEJM199711063371904.
    1. Chaturvedi AK, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 2011;29:4294–4301. doi: 10.1200/JCO.2011.36.4596.
    1. Webb PM, et al. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut. 2001;49:347–353. doi: 10.1136/gut.49.3.347.
    1. Freedman ND, et al. A prospective study of tobacco, alcohol, and the risk of esophageal and gastric cancer subtypes. Am. J. Epidemiol. 2007;165:1424–1433. doi: 10.1093/aje/kwm051.
    1. Alberg AJ, et al. A prospective cohort study of bladder cancer risk in relation to active cigarette smoking and household exposure to secondhand cigarette smoke. Am. J. Epidemiol. 2007;165:660–666. doi: 10.1093/aje/kwk047.
    1. Fuchs CS, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch. Intern. Med. 1996;156:2255–2260. doi: 10.1001/archinte.1996.00440180119015.
    1. Terry P, Ekbom A, Lichtenstein P, Feychting M, Wolk A. Long-term tobacco smoking and colorectal cancer in a prospective cohort study. Int. J. Cancer J. Int. du Cancer. 2001;91:585–587. doi: 10.1002/1097-0215(200002)9999:9999<::AID-IJC1086>;2-H.
    1. Irigaray P, et al. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed. Pharmacother. 2007;61:640–658. doi: 10.1016/j.biopha.2007.10.006.
    1. Plummer, M. et al. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet. Global Health, 4, e609–e616 (2016).
    1. Helicobacter & Cancer Collaborative. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut49, 347–353 (2001).
    1. Arnheim Dahlstrom L, et al. Prospective seroepidemiologic study of human papillomavirus and other risk factors in cervical cancer. Cancer Epidemiol., Biomark. Prev. 2011;20:2541–2550. doi: 10.1158/1055-9965.EPI-11-0761.
    1. Agalliu, I. et al. Associations of Oral α-, β-, and γ-human papillomavirus types with risk of incident head and neck cancer. JAMA Oncol., 10.1001/jamaoncol.2015.5504 (2016).
    1. Ringelhan M, O’Connor T, Protzer U, Heikenwalder M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J. Pathol. 2015;235:355–367. doi: 10.1002/path.4434.
    1. Sun CA, et al. Incidence and cofactors of hepatitis C virus-related hepatocellular carcinoma: a prospective study of 12,008 men in Taiwan. Am. J. Epidemiol. 2003;157:674–682. doi: 10.1093/aje/kwg041.
    1. Belpomme D, et al. The multitude and diversity of environmental carcinogens. Environ. Res. 2007;105:414–429. doi: 10.1016/j.envres.2007.07.002.
    1. Veierod MB, et al. A prospective study of pigmentation, sun exposure, and risk of cutaneous malignant melanoma in women. J. Natl Cancer Inst. 2003;95:1530–1538. doi: 10.1093/jnci/djg075.
    1. Goss PE, Sierra S. Current perspectives on radiation-induced breast cancer. J. Clin. Oncol. 1998;16:338–347. doi: 10.1200/JCO.1998.16.1.338.
    1. Turner MC, et al. Radon and Lung Cancer in the American Cancer Society Cohort. Cancer Epidem. Biomar. 2011;20:438–448. doi: 10.1158/1055-9965.EPI-10-1153.
    1. Bizzozero OJ, Jr., Johnson KG, Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. I. Distribution, incidence and appearance time. N. Eng. J. Med. 1966;274:1095–1101. doi: 10.1056/NEJM196605192742001.
    1. Anand P, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008;25:2097–2116. doi: 10.1007/s11095-008-9661-9.
    1. Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg. 2009;22:191–197. doi: 10.1055/s-0029-1242458.
    1. Gray J, Evans N, Taylor B, Rizzo J, Walker M. State of the evidence the connection between breast cancer and the environment. Int. J. Occup. Env. Heal. 2009;15:43–78. doi: 10.1179/oeh.2009.15.1.43.
    1. Shimizu H, et al. Cancers of the prostate and breast among Japanese and White Immigrants in Los-Angeles-County. Brit. J. Cancer. 1991;63:963–966. doi: 10.1038/bjc.1991.210.
    1. Kabat GC, Matthews CE, Kamensky V, Hollenbeck AR, Rohan TE. Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: a prospective cohort study. Am. J. Clin. Nutr. 2015;101:558–569. doi: 10.3945/ajcn.114.094854.
    1. Gonzalez CA, Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer. 2010;46:2555–2562. doi: 10.1016/j.ejca.2010.07.025.
    1. Hastie, T., Tibshirani, R. & Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations. (Chapman and Hall/CRC, 2015).
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met. 1995;57:289–300.
    1. Beral V, et al. Alcohol, tobacco and breast cancer - collaborative reanalysis of individual data from 53 epidemiological studies, including 58515 women with breast cancer and 95067 women without the disease. Br. J. Cancer. 2002;87:1234–1245. doi: 10.1038/sj.bjc.6600596.
    1. Allen NE, et al. Moderate alcohol intake and cancer incidence in women. J. Natl. Cancer Inst. 2009;101:296–305. doi: 10.1093/jnci/djn514.
    1. Willett WC. Diet, nutrition, and avoidable cancer. Environ. Health Perspect. 1995;103(Suppl 8):165–170. doi: 10.1289/ehp.95103s8165.
    1. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc. Nutr. Soc. 2008;67:253–256. doi: 10.1017/S002966510800712X.
    1. Drake JW. Mutagenic Mechanisms. Annu. Rev. Genet. 1969;3:247. doi: 10.1146/annurev.ge.03.120169.001335.
    1. Pleasance ED, et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. 2010;463:184–190. doi: 10.1038/nature08629.
    1. Pleasance ED, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463:191–196. doi: 10.1038/nature08658.
    1. Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 2014;24:52–60. doi: 10.1016/j.gde.2013.11.014.
    1. Hoang ML, et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 2013;5:3006200. doi: 10.1126/scitranslmed.3006200.
    1. Brown SB, Hankinson SE. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids. 2015;99:8–10. doi: 10.1016/j.steroids.2014.12.013.
    1. Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk. A Synth. Rev. 2002;11:1531–1543.
    1. Lortet-Tieulent, J., Ferlay, J., Bray, F. & Jemal, A. International patterns and trends in endometrial cancer incidence, 1978–2013. J. Natl Cancer Inst., 110, 354–361 (2017).
    1. Onstad MA, Schmandt RE, Lu KH. Addressing the role of obesity in endometrial cancer risk, prevention, and treatment. J. Clin. Oncol. 2016;34:4225–4230. doi: 10.1200/JCO.2016.69.4638.
    1. Upala, S. & Anawin, S. Bariatric surgery and risk of postoperative endometrial cancer: a systematic review and meta-analysis. Surgery Obes. Related Dis.11, 949–955 (2015).
    1. Carbone M, Bedrossian CW. The pathogenesis of mesothelioma. Semin. Diagn. Pathol. 2006;23:56–60. doi: 10.1053/j.semdp.2006.08.002.
    1. Elinav E, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer. 2013;13:759–771. doi: 10.1038/nrc3611.
    1. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444. doi: 10.1038/nature07205.
    1. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer. 2009;9:798–809. doi: 10.1038/nrc2734.
    1. Parker, K. H., Beury, D. W. & Ostrand-Rosenberg, S. in Advances in Cancer Research Vol. 128, (eds Xiang-Yang, W. & Paul, B. F.) 95–139 (Academic Press, 2015).
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Todoric J, Antonucci L, Karin M. Targeting inflammation in cancer prevention and therapy. Cancer Prev. Res. 2016;9:895–905. doi: 10.1158/1940-6207.CAPR-16-0209.
    1. Chubak, J., Kamineni, A., Buist, D. S., Anderson, M. L. & Whitlock, E. P. Aspirin Use for the Prevention of Colorectal Cancer: An Updated Systematic Evidence Review for the U.S. Preventive Services Task Force. (Agency for Healthcare Research and Quality, 2015).
    1. de Magalhaes JP. How ageing processes influence cancer. Nat. Rev. Cancer. 2013;13:357–365. doi: 10.1038/nrc3497.
    1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Podolskiy DI, Gladyshev VN. Intrinsic versus extrinsic cancer risk factors and aging. Trends Mol. Med. 2016;22:833–834. doi: 10.1016/j.molmed.2016.08.001.
    1. Ruzankina Y, Brown EJ. Relationships between stem cell exhaustion, tumour suppression and ageing. Br. J. Cancer. 2007;97:1189–1193. doi: 10.1038/sj.bjc.6604029.
    1. Burton DGA. Cellular senescence, ageing and disease. Age. 2009;31:1–9. doi: 10.1007/s11357-008-9075-y.
    1. Clarke CA, et al. Age-specific incidence of breast cancer subtypes: understanding the black-white crossover. J. Natl Cancer Inst. 2012;104:1094–1101. doi: 10.1093/jnci/djs264.
    1. Lichtenstein P, et al. Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Eng. J. Med. 2000;343:78–85. doi: 10.1056/NEJM200007133430201.
    1. Mucci LA, et al. Familial risk and heritability of cancer among twins in Nordic Countries. Jama-J. Am. Med. Assoc. 2016;315:68–76. doi: 10.1001/jama.2015.17703.
    1. Donehower LA, et al. MLH1-silenced and non-silenced subgroups of hypermutated colorectal carcinomas have distinct mutational landscapes. J. Pathol. 2013;229:99–110. doi: 10.1002/path.4087.
    1. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science357, 6348 (2017). While the above work [30] serves mainly as a counter example to the ‘bad luck’ theory[7], this seminal work demonstrates that genetic, environmental, or metabolic insults can induce overly restrictive or permissive epigenetic landscapes that subsequently contribute to pathogenesis of cancer and other diseases – thus delineating the epigenetic mechanisms behind various risk factors, endogenous and exogenous, to cancer
    1. Guida F, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum. Mol. Genet. 2015;24:2349–2359. doi: 10.1093/hmg/ddu751.
    1. Kundu, T. K. Epigenetics: development and disease. (Springer, 2013).
    1. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–839. doi: 10.1016/j.cell.2016.07.050.
    1. The Telomeres Mendelian Randomization, Collaboration. Association between telomere length and risk of cancer and non-neoplastic diseases: A mendelian randomization study. JAMA Oncol., 3, 636–651 (2017).
    1. Romano GH, et al. Environmental stresses disrupt telomere length homeostasis. PLoS Genet. 2013;9:e1003721. doi: 10.1371/journal.pgen.1003721.
    1. Starkweather AR, et al. An integrative review of factors associated with Telomere length and implications for biobehavioral research. Nurs. Res. 2014;63:36–50. doi: 10.1097/NNR.0000000000000009.
    1. Jiang Y, et al. An international ecological study of adult height in relation to cancer incidence for 24 anatomical sites. Cancer Causes Control. 2015;26:493–499. doi: 10.1007/s10552-014-0520-1.
    1. Zhang, B. et al. Height and breast cancer risk: evidence from prospective studies and Mendelian randomization. J Natl Cancer I 107, djv219 (2015).
    1. Khankari NK, et al. Association between adult height and risk of colorectal, lung, and prostate cancer: results from meta-analyses of prospective studies and Mendelian randomization analyses. PLoS Med. 2016;13:e1002118. doi: 10.1371/journal.pmed.1002118.
    1. Jelenkovic A, et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 2016;6:28496. doi: 10.1038/srep28496.
    1. Addo OY, et al. Maternal height and child growth patterns. J. Pediatr. 2013;163:549–554. doi: 10.1016/j.jpeds.2013.02.002.
    1. Bjerregaard LG, et al. Childhood height, adult height, and the risk of prostate cancer. Cancer Causes Control. 2016;27:561–567. doi: 10.1007/s10552-016-0731-8.
    1. DeClercq V, McMurray DN, Chapkin RS. Obesity promotes colonic stem cell expansion during cancer initiation. Cancer Lett. 2015;369:336–343. doi: 10.1016/j.canlet.2015.10.001.
    1. Sutcliffe S, Colditz GA. Prostate cancer: is it time to expand the research focus to early-life exposures? Nat. Rev. Cancer. 2013;13:208–518. doi: 10.1038/nrc3434.
    1. Riley AW, Duncan GJ. Completing a national birth cohort in the united states. JAMA Pediatr. 2016;170:829–830. doi: 10.1001/jamapediatrics.2016.1760.
    1. Doll R, Peto R. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl Cancer Inst. 1981;66:1191–1308. doi: 10.1093/jnci/66.6.1192.
    1. Parkin DM, Boyd L, Walker LC. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer. 2011;105(Suppl 2):S77–S81. doi: 10.1038/bjc.2011.489.
    1. IARC Advisory Group. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Report No. 14/001 (World Health Organization, 2008).
    1. Charles DR, Luce-Clauses EM. The kinetics of papilloma formation in benzpyrene-treated mice. Cancer Res. 1942;2:261–263.
    1. Moolgavkar SH, Knudson AG. Mutation and cancer - a model for human carcinogenesis. J. Natl. Cancer Inst. 1981;66:1037–1052. doi: 10.1093/jnci/66.6.1037.
    1. Moolgavkar SH. Model for human carcinogenesis - action of environmental agents. Environ. Health Perspect. 1983;50:285–291. doi: 10.1289/ehp.8350285.
    1. Vogelstein B, Kinzler KW. The Path to Cancer–Three Strikes and You’re Out. N. Eng. J. Med. 2015;373:1895–1898. doi: 10.1056/NEJMp1508811.
    1. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer. 2005;5:172–183. doi: 10.1038/nrc1567.
    1. Faderl S, et al. The biology of chronic myeloid leukemia. N. Eng. J. Med. 1999;341:164–172. doi: 10.1056/NEJM199907153410306.

Source: PubMed

3
Abonneren