Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure

Shruti S Joshi, Trisha Singh, David E Newby, Jagdeep Singh, Shruti S Joshi, Trisha Singh, David E Newby, Jagdeep Singh

Abstract

Patients with type 2 diabetes mellitus are at a higher risk of developing heart failure compared with the healthy population. In recent landmark clinical trials, sodium-glucose co-transporter 2 (SGLT2) inhibitor therapies improve blood glucose control and also reduce cardiovascular events and heart failure hospitalisations in patients with type 2 diabetes. Intriguingly, such clinical benefits have also been seen in patients with heart failure in the absence of type 2 diabetes although the underlying mechanisms are not clearly understood. Potential pathways include improved glycaemic control, diuresis, weight reduction and reduction in blood pressure, but none fully explain the observed improvements in clinical outcomes. More recently, novel mechanisms have been proposed to explain these benefits that include improved cardiomyocyte calcium handling, enhanced myocardial energetics, induced autophagy and reduced epicardial fat. We provide an up-to-date review of cardiac-specific SGLT2 inhibitor-mediated mechanisms and highlight studies currently underway investigating some of the proposed mechanisms of action in cardiovascular health and disease.

Keywords: heart failure; heart failure with reduced ejection fraction; pharmacology; systemic review.

Conflict of interest statement

Competing interests: The authors have received an investigator initiated award from AstraZeneca to conduct the ‘DAPA-MEMRI’ study.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Schematic diagram showing conventional mechanisms of action of SGLT2 inhibitors. SGLT, sodium-glucose co-transporter.
Figure 2
Figure 2
Schematic diagram showing proposed novel mechanisms of action of SGLT2 inhibitors in heart failure. AMPK, adenosine monophosphate-activated protein kinase; HIF, hypoxia-inducible factor; NHE, sodium-hydrogen exchanger; SGLT, sodium-glucose co-transporter; SIRT, sirtuin.

References

    1. Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J 2020;5:15. 10.21037/amj.2020.03.03
    1. Maack C, Lehrke M, Backs J, et al. . Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. Eur Heart J 2018;39:4243–54. 10.1093/eurheartj/ehy596
    1. Packer M. Heart failure: the most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care 2018;41:11–13. 10.2337/dci17-0052
    1. Udell JA, Cavender MA, Bhatt DL, et al. . Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol 2015;3:356–66. 10.1016/S2213-8587(15)00044-3
    1. Scirica BM, Bhatt DL, Braunwald E, et al. . Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369:1317–26. 10.1056/NEJMoa1307684
    1. Cosmi F, Shen L, Magnoli M, et al. . Treatment with insulin is associated with worse outcome in patients with chronic heart failure and diabetes. Eur J Heart Fail 2018;20:888–95. 10.1002/ejhf.1146
    1. Hummel CS, Lu C, DDF L. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am J Physiol Physiol 2011;300:C14–21.
    1. Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther 2014;5:355–66. 10.1007/s13300-014-0089-4
    1. Zinman B, Wanner C, Lachin JM, et al. . Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117–28. 10.1056/NEJMoa1504720
    1. Neal B, Perkovic V, Mahaffey KW. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–57.
    1. Wiviott SD, Raz I, Bonaca MP. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347–57.
    1. Cannon CP, Pratley R, Dagogo-Jack S. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020;383:1425–35.
    1. Kosiborod M, Lam CSP, Kohsaka S, et al. . Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol 2018;71:2628–39. 10.1016/j.jacc.2018.03.009
    1. Kim GS, Park JH, Won JC. The role of glucagon-like peptide 1 receptor agonists and sodium-glucose cotransporter 2 inhibitors in reducing cardiovascular events in patients with type 2 diabetes. Endocrinol Metab 2019;34:106. 10.3803/EnM.2019.34.2.106
    1. McMurray JJV, Solomon SD, Inzucchi SE. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381:1995–2008.
    1. Packer M, Anker SD, Butler J. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020:NEJMoa2022190.
    1. Zannad F, Ferreira JP, Pocock SJ, et al. . SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020;396:819–29. 10.1016/S0140-6736(20)31824-9
    1. Sha S, Polidori D, Heise T, et al. . Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2014;16:1087–95. 10.1111/dom.12322
    1. Dekkers CCJ, Sjöström CD, Greasley PJ, et al. . Effects of the sodium-glucose co-transporter-2 inhibitor dapagliflozin on estimated plasma volume in patients with type 2 diabetes. Diabetes Obes Metab 2019;21:2667–73. 10.1111/dom.13855
    1. Nassif ME, Windsor SL, Tang F, et al. . Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction: the DEFINE-HF trial. Circulation 2019;140:1463–76. 10.1161/CIRCULATIONAHA.119.042929
    1. Hallow KM, Helmlinger G, Greasley PJ, et al. . Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018;20:479–87. 10.1111/dom.13126
    1. Mordi NA, Mordi IR, Singh JS, et al. . Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: the RECEDE-CHF trial. Circulation 2020;142:1713–24. 10.1161/CIRCULATIONAHA.120.048739
    1. Cherney DZ, Perkins BA, Soleymanlou N, et al. . The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 2014;13:28. 10.1186/1475-2840-13-28
    1. Pfeifer M, Townsend RR, Davies MJ, et al. . Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol 2017;16:29. 10.1186/s12933-017-0511-0
    1. Mazidi M, Rezaie P, Gao H-K, et al. . Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: a systematic review and meta-analysis of 43 randomized control trials with 22 528 patients. J Am Heart Assoc 2017;6. 10.1161/JAHA.116.004007
    1. Nakayama H, Ohtsuka Y, Kawahara M. Changes in body composition during SGLT2 inhibitor treatment and their relevance to the improvement of insulin sensitivity. Diabetes Res Clin Pract 2016;120:S50–1.
    1. Iemitsu K, Iizuka T, Takihata M, et al. . Factors influencing changes in hemoglobin A1c and body weight during treatment of type 2 diabetes with ipragliflozin: interim analysis of the ASSIGN-K study. J Clin Med Res 2016;8:373–8. 10.14740/jocmr2492w
    1. Pinto L, Rados D, Remonti L. Efficacy of SGLT2 inhibitors in glycemic control, weight loss and blood pressure reduction: a systematic review and meta-analysis. Diabetol Metab Syndr 2015;7:A58.
    1. Ramírez-Rodríguez AM, González-Ortiz M, Martínez-Abundis E. Effect of dapagliflozin on insulin secretion and insulin sensitivity in patients with prediabetes. Exp Clin Endocrinol Diabetes 2020;128:506-511. 10.1055/a-0664-7583
    1. McDowell K, Petrie MC, Raihan NA, et al. . Effects of intentional weight loss in patients with obesity and heart failure: a systematic review. Obes Rev 2018;19:1189–204. 10.1111/obr.12707
    1. Swedberg K, Young JB, Anand IS, et al. . Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med 2013;368:1210–9. 10.1056/NEJMoa1214865
    1. Heusch G, Libby P, Gersh B, et al. . Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014;383:1933–43. 10.1016/S0140-6736(14)60107-0
    1. Shi L, Zhu D, Wang S, et al. . Dapagliflozin attenuates cardiac remodeling in mice model of cardiac pressure overload. Am J Hypertens 2019;32:452–9. 10.1093/ajh/hpz016
    1. Lee H-C, Shiou Y-L, Jhuo S-J, et al. . The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol 2019;18:45. 10.1186/s12933-019-0849-6
    1. Verma S, Mazer CD, Yan AT, et al. . Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 2019;140:1693–702. 10.1161/CIRCULATIONAHA.119.042375
    1. Singh JSS, Mordi IR, Vickneson K, et al. . Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial. Diabetes Care 2020;43:dc192187. 10.2337/dc19-2187
    1. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129. 10.1152/physrev.00006.2004
    1. Verma S, Rawat S, KL H. Empagliflozin increases cardiac energy production in diabetes. JACC Basic to Transl Sci 2018;3:575–87.
    1. Goonasekera SA, Hammer K, Auger-Messier M, et al. . Decreased cardiac L-type Ca²⁺ channel activity induces hypertrophy and heart failure in mice. J Clin Invest 2012;122:280–90. 10.1172/JCI58227
    1. Beuckelmann DJ, Näbauer M, Erdmann E. Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure. Circulation 1992;85:1046–55. 10.1161/01.cir.85.3.1046
    1. Banerjee SK, McGaffin KR, Pastor-Soler NM, et al. . SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 2009;84:111–8. 10.1093/cvr/cvp190
    1. Lee T-I, Chen Y-C, Lin Y-K, et al. . Empagliflozin attenuates myocardial sodium and calcium dysregulation and reverses cardiac remodeling in streptozotocin-induced diabetic rats. Int J Mol Sci 2019;20. 10.3390/ijms20071680
    1. Hammoudi N, Jeong D, Singh R, et al. . Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther 2017;31:233–46. 10.1007/s10557-017-6734-1
    1. Uthman L, Baartscheer A, Schumacher CA, et al. . Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol 2018;9:1575. 10.3389/fphys.2018.01575
    1. Ng K-M, Lau Y-M, Dhandhania V, et al. . Empagliflozin ameliorates high glucose induced-cardiac dysfuntion in human iPSC-derived cardiomyocytes. Sci Rep 2018;8:14872. 10.1038/s41598-018-33293-2
    1. Baartscheer A, Schumacher CA, Wüst RCI, et al. . Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017;60:568–73. 10.1007/s00125-016-4134-x
    1. Uthman L, Baartscheer A, Bleijlevens B, et al. . Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018;61:722–6. 10.1007/s00125-017-4509-7
    1. Iborra-Egea O, Santiago-Vacas E, Yurista SR. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic to Transl Sci 2019;4:831–40.
    1. Maiuri MC, Zalckvar E, Kimchi A, et al. . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007;8:741–52. 10.1038/nrm2239
    1. Santulli G. Cardioprotective effects of autophagy: eat your heart out, heart failure! Sci Transl Med 2018;10:eaau0462. 10.1126/scitranslmed.aau0462
    1. Luo G, Jian Z, Zhu Y. Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 2020.
    1. Zhou H, Wang S, Zhu P, et al. . Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 2018;15:335–46. 10.1016/j.redox.2017.12.019
    1. Hawley SA, Ford RJ, Smith BK, et al. . The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016;65:2784–94. 10.2337/db16-0058
    1. Esterline RL, Vaag A, Oscarsson J, et al. . Mechanisms in endocrinology: SGLT2 inhibitors: clinical benefits by restoration of normal diurnal metabolism? Eur J Endocrinol 2018;178:R113–25. 10.1530/EJE-17-0832
    1. Ghantous CM, Azrak Z, Hanache S, et al. . Differential role of leptin and adiponectin in cardiovascular system. Int J Endocrinol 2015;2015:1–13. 10.1155/2015/534320
    1. Iacobellis G, Ribaudo MC, Zappaterreno A, et al. . Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 2004;94:1084–7. 10.1016/j.amjcard.2004.06.075
    1. Schulze PC, Kratzsch J, Linke A, et al. . Elevated serum levels of leptin and soluble leptin receptor in patients with advanced chronic heart failure. Eur J Heart Fail 2003;5:33–40. 10.1016/s1388-9842(02)00177-0
    1. Wu P, Wen W, Li J, et al. . Systematic review and meta-analysis of randomized controlled trials on the effect of SGLT2 inhibitor on blood leptin and adiponectin level in patients with type 2 diabetes. Horm Metab Res 2019;51:487–94. 10.1055/a-0958-2441
    1. Scheen AJ. [EMPA-REG OUTCOME: Empagliflozin reduces mortality in patients with type 2 diabetes at high cardiovascular risk]. Rev Med Liege 2015;70:583–9
    1. Neal B, Perkovic V, Mahaffey KW, et al. . Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–57. 10.1056/NEJMoa1611925
    1. Wiviott SD, Raz I, Bonaca MP, et al. . Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347–57. 10.1056/NEJMoa1812389
    1. Cannon CP, Pratley R, Dagogo-Jack S, et al. . Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med 2020;383:1425–35. 10.1056/NEJMoa2004967
    1. McMurray JJV, Solomon SD, Inzucchi SE, et al. . Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019;381:1995–2008. 10.1056/NEJMoa1911303
    1. Packer M, Anker SD, Butler J. Cardiovascular and renal outcomes with Empagliflozin in heart failure. N Engl J Med 2020:NEJMoa2022190. 10.1056/NEJMoa2022190

Source: PubMed

3
Abonneren