Wolf in Sheep's Clothing: Clostridioides difficile Biofilm as a Reservoir for Recurrent Infections

Jazmin Meza-Torres, Emile Auria, Bruno Dupuy, Yannick D N Tremblay, Jazmin Meza-Torres, Emile Auria, Bruno Dupuy, Yannick D N Tremblay

Abstract

The microbiota inhabiting the intestinal tract provide several critical functions to its host. Microorganisms found at the mucosal layer form organized three-dimensional structures which are considered to be biofilms. Their development and functions are influenced by host factors, host-microbe interactions, and microbe-microbe interactions. These structures can dictate the health of their host by strengthening the natural defenses of the gut epithelium or cause disease by exacerbating underlying conditions. Biofilm communities can also block the establishment of pathogens and prevent infectious diseases. Although these biofilms are important for colonization resistance, new data provide evidence that gut biofilms can act as a reservoir for pathogens such as Clostridioides difficile. In this review, we will look at the biofilms of the intestinal tract, their contribution to health and disease, and the factors influencing their formation. We will then focus on the factors contributing to biofilm formation in C. difficile, how these biofilms are formed, and their properties. In the last section, we will look at how the gut microbiota and the gut biofilm influence C. difficile biofilm formation, persistence, and transmission.

Keywords: CDI relapsing; Clostridioides difficile infection; biofilm inducers; colonisation resistance; commensal microbiota; dysbiosis; mucosal-biofilm; persistence.

Conflict of interest statement

The authors have no conflict of interest to declare.

Figures

Figure 1
Figure 1
Healthy microbiota biofilms versus a dysbiotic microbiota biofilms. In a healthy microbiota (left panel), the microbial density and diversity increase from the stomach to the colon. In the small intestine, biofilms are discontinuous and loose aggregates, while in the large intestine, biofilms are dense, continuous and attached to a uniform mucus layer (attached biofilms). The biofilms in the gut lumen are loosely attached to food particles or encapsulated in mucin (aggregate biofilms). Commensal biofilms facilitate the host barrier function by thickening the mucus layer, regulating the secretion of IgA, stimulating conversion of pro-IL-1β into active IL-1β and inducing the development of Th17 cells. A dysbiotic microbiota (right panel) presents (1) damaged mucus-biofilm exposing epithelium cells to luminal content or (2) invasive biofilms where bacteria come directly into contact with the epithelium. Both scenarios expose the intestinal epithelium to pathogens and pathobionts which can trigger an infection. Invasive polymicrobial biofilms could trigger cellular inflammation, abnormal cellular proliferation, increased epithelial permeability (activation of IL-6 and Stat3) in patients with colorectal cancer (CRC), increased IL-17 production and DNA damage in patients with familial adenomatous polyposis (FAP), and inflammatory bowel disease (IBD). Patients’ Adherent-invasive E. coli (AIEC) colonize the intestinal mucosa and stimulate the secretion of TNF-α and mucin degradation.
Figure 2
Figure 2
Model for C. difficile aggregate/attached biofilm formation in vitro. The first step toward biofilm formation is either attachment of the cells to a surface or cellular aggregation. In both cases a shift in surface structures controlled by rising c-di-GMP levels results in the replacement of the flagella by T4P and adhesins (collagen and fibronectin binding proteins). Autolysin-mediated cell lysis is likely the main mechanism contributing to the formation of the extracellular matrix by releasing chromosomal DNA and cellular proteins in the medium, and exopolysaccharides may be synthesized and contribute to the matrix. Quorum sensing may induce prophage lysis that would also contribute to the biofilm matrix. Furthermore, c-di-GMP levels remain relatively high, ensuring consistent T4P and adhesins expression. C. difficile biofilm formation is characterized by a metabolic shift from glycolysis and the pentose phosphate pathway to the Stickland fermentation pathways and the Wood-Ljungdhal pathway, which are less efficient at producing energy. The table summarizes information about the main mechanisms involved in biofilm formation. Up-regulated mechanisms are indicated by the red upward arrows and the down-regulated mechanisms are indicated by the blue downward arrows. Abbreviations: aa: amino acids; QS: quorum sensing; eDNA: extracellular DNA; EPS: exopolysaccharides; DOC: deoxycholate; FOS: fructooligosaccharides.
Figure 3
Figure 3
Proposed model for the persistence of C. difficile. In this model, spores (circles) and biofilms contribute to short term and long-term relapses, respectively. Spores encased in mucus, biofilm communities or engulfed by epithelial cells, would eventually be eliminated by the renewal of the mucus and epithelial cells. The vegetative cells (rods) would keep a small viable population resulting in a biofilm that would be resistant to renewal of the mucus layers and epithelial cells. Sporulation could occur in the deeper layers of the biofilm, keeping a continuous supply of spores and leading to long-term relapses.
Figure 4
Figure 4
Proposed life cycle of C. difficile based on the metabolic landscape of the gut. The metabolic landscape is determined by 3 variables: competition, availability of microbiota-derived nutrients and availability of host-derived nutrients. Concentration of antimicrobial compounds and the metabolic landscape will determine the C. difficile growth rate and toxin production. Specifically, biofilm-persistence is a response to ecological competition caused by restriction in nutrient availability due to moderate levels of competition from the resident microbiota. Pathogenesis is a response to nutritional stress caused by a decrease in the availability of nutrient due to overgrowth. Sporulation is a response to starvation due to the depletion of nutrients in the gut or localized in the deeper layer of the biofilm. +++ high, ++ Moderate, + low, +/− very low.

References

    1. Eckburg P.B. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591.
    1. Hooper L.V., Midtvedt T., Gordon J.I. How Host-Microbial Interactions Shape the Nutrient Environment of the Mammalian Intestine. Annu. Rev. Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259.
    1. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular Analysis of Commensal Host-Microbial Relationships in the Intestine. Science. 2001;291:881–884. doi: 10.1126/science.291.5505.881.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, Stability and Resilience of the Human Gut Microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Motta J.-P., Wallace J.L., Buret A.G., Deraison C., Vergnolle N. Gastrointestinal Biofilms in Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021;18:314–334. doi: 10.1038/s41575-020-00397-y.
    1. Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002;56:187–209. doi: 10.1146/annurev.micro.56.012302.160705.
    1. Guzmán-Soto I., McTiernan C., Gonzalez-Gomez M., Ross A., Gupta K., Suuronen E.J., Mah T.-F., Griffith M., Alarcon E.I. Mimicking Biofilm Formation and Development: Recent Progress in in vitro and in Vivo Biofilm Models. Iscience. 2021;24:102443. doi: 10.1016/j.isci.2021.102443.
    1. Costerton J.W., Lewandowski Z., Caldwell D.E., Korber D.R., Lappin-Scott H.M. Microbial Biofilms. Annu. Rev. Microbiol. 1995;49:711–745. doi: 10.1146/annurev.mi.49.100195.003431.
    1. Flemming H.-C., Wingender J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010;8:623–633. doi: 10.1038/nrmicro2415.
    1. Bollinger R.R., Barbas A.S., Bush E.L., Lin S.S., Parker W. Biofilms in the Normal Human Large Bowel: Fact Rather than Fiction. Gut. 2007;56:1481–1482.
    1. Macfarlane S., Dillon J.F. Microbial Biofilms in the Human Gastrointestinal Tract. J. Appl. Microbiol. 2007;102:1187–1196. doi: 10.1111/j.1365-2672.2007.03287.x.
    1. Sonnenburg J.L., Angenent L.T., Gordon J.I. Getting a Grip on Things: How Do Communities of Bacterial Symbionts Become Established in Our Intestine? Nat. Immunol. 2004;5:569–573. doi: 10.1038/ni1079.
    1. Tropini C., Earle K.A., Huang K.C., Sonnenburg J.L. The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host Microbe. 2017;21:433–442. doi: 10.1016/j.chom.2017.03.010.
    1. von Rosenvinge E.C., O’May G.A., Macfarlane S., Macfarlane G.T., Shirtliff M.E. Microbial Biofilms and Gastrointestinal Diseases. Pathog. Dis. 2013;67:25–38. doi: 10.1111/2049-632X.12020.
    1. Macfarlane S., Furrie E., Macfarlane G.T., Dillon J.F. Microbial Colonization of the Upper Gastrointestinal Tract in Patients with Barrett’s Esophagus. Clin. Infect. Dis. 2007;45:29–38. doi: 10.1086/518578.
    1. Macfarlane S., Furrie E., Cummings J.H., Macfarlane G.T. Chemotaxonomic Analysis of Bacterial Populations Colonizing the Rectal Mucosa in Patients with Ulcerative Colitis. Clin. Infect. Dis. 2004;38:1690–1699. doi: 10.1086/420823.
    1. Swidsinski A., Loening-Baucke V., Herber A. Mucosal Flora in Crohn’s Disease and Ulcerative Colitis—An Overview. J. Physiol. Pharmacol. 2009;60((Suppl. S6)):61–71.
    1. Coticchia J.M., Sugawa C., Tran V.R., Gurrola J., Kowalski E., Carron M.A. Presence and Density of Helicobacter pylori Biofilms in Human Gastric Mucosa in Patients with Peptic Ulcer Disease. J. Gastrointest. Surg. 2006;10:883–889. doi: 10.1016/j.gassur.2005.12.009.
    1. Dejea C.M., Wick E.C., Hechenbleikner E.M., White J.R., Mark Welch J.L., Rossetti B.J., Peterson S.N., Snesrud E.C., Borisy G.G., Lazarev M., et al. Microbiota Organization Is a Distinct Feature of Proximal Colorectal Cancers. Proc. Natl. Acad Sci. USA. 2014;111:18321–18326. doi: 10.1073/pnas.1406199111.
    1. Li S., Konstantinov S.R., Smits R., Peppelenbosch M.P. Bacterial Biofilms in Colorectal Cancer Initiation and Progression. Trends Mol. Med. 2017;23:18–30. doi: 10.1016/j.molmed.2016.11.004.
    1. Flemming H.-C., Wingender J., Szewzyk U., Steinberg P., Rice S.A., Kjelleberg S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016;14:563–575. doi: 10.1038/nrmicro.2016.94.
    1. Yang J., Yang Y., Ishii M., Nagata M., Aw W., Obana N., Tomita M., Nomura N., Fukuda S. Does the Gut Microbiota Modulate Host Physiology through Polymicrobial Biofilms? Microb. Environ. 2020;35:ME20037. doi: 10.1264/jsme2.ME20037.
    1. Wang Y., Antonopoulos D.A., Zhu X., Harrell L., Hanan I., Alverdy J.C., Meyer F., Musch M.W., Young V.B., Chang E.B. Laser Capture Microdissection and Metagenomic Analysis of Intact Mucosa-Associated Microbial Communities of Human Colon. Appl. Microbiol. Biotechnol. 2010;88:1333–1342. doi: 10.1007/s00253-010-2921-8.
    1. Hooper L.V., Gordon J.I. Commensal Host-Bacterial Relationships in the Gut. Science. 2001;292:1115–1118. doi: 10.1126/science.1058709.
    1. de Vos W.M. Microbial Biofilms and the Human Intestinal Microbiome. NPJ Biofilms Microbiomes. 2015;1:15005. doi: 10.1038/npjbiofilms.2015.5.
    1. Engevik M.A., Danhof H.A., Auchtung J., Endres B.T., Ruan W., Bassères E., Engevik A.C., Wu Q., Nicholson M., Luna R.A., et al. Fusobacterium nucleatum Adheres to Clostridioides difficile via the RadD Adhesin to Enhance Biofilm Formation in Intestinal Mucus. Gastroenterology. 2021;160:1301–1314.e8. doi: 10.1053/j.gastro.2020.11.034.
    1. Lebeer S., Verhoeven T.L.A., Claes I.J.J., De Hertogh G., Vermeire S., Buyse J., Van Immerseel F., Vanderleyden J., De Keersmaecker S.C.J. FISH Analysis of Lactobacillus Biofilms in the Gastrointestinal Tract of Different Hosts. Lett Appl. Microbiol. 2011;52:220–226. doi: 10.1111/j.1472-765X.2010.02994.x.
    1. Nava G.M., Friedrichsen H.J., Stappenbeck T.S. Spatial Organization of Intestinal Microbiota in the Mouse Ascending Colon. ISME J. 2011;5:627–638. doi: 10.1038/ismej.2010.161.
    1. Palestrant D., Holzknecht Z.E., Collins B.H., Parker W., Miller S.E., Bollinger R.R. Microbial Biofilms in the Gut: Visualization by Electron Microscopy and by Acridine Orange Staining. Ultrastruct. Pathol. 2004;28:23–27. doi: 10.1080/usp.28.1.23.27.
    1. Smith H.F., Fisher R.E., Everett M.L., Thomas A.D., Randal Bollinger R., Parker W. Comparative Anatomy and Phylogenetic Distribution of the Mammalian Cecal Appendix. J. Evol. Biol. 2009;22:1984–1999. doi: 10.1111/j.1420-9101.2009.01809.x.
    1. Donaldson G.P., Lee S.M., Mazmanian S.K. Gut Biogeography of the Bacterial Microbiota. Nat. Rev. Microbiol. 2016;14:20–32. doi: 10.1038/nrmicro3552.
    1. Yasuda K., Oh K., Ren B., Tickle T.L., Franzosa E.A., Wachtman L.M., Miller A.D., Westmoreland S.V., Mansfield K.G., Vallender E.J., et al. Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque. Cell Host Microbe. 2015;17:385–391. doi: 10.1016/j.chom.2015.01.015.
    1. Zoetendal E.G., von Wright A., Vilpponen-Salmela T., Ben-Amor K., Akkermans A.D.L., de Vos W.M. Mucosa-Associated Bacteria in the Human Gastrointestinal Tract Are Uniformly Distributed along the Colon and Differ from the Community Recovered from Feces. Appl. Environ. Microbiol. 2002;68:3401–3407. doi: 10.1128/AEM.68.7.3401-3407.2002.
    1. Johansson M.E.V., Larsson J.M.H., Hansson G.C. The Two Mucus Layers of Colon Are Organized by the MUC2 Mucin, Whereas the Outer Layer Is a Legislator of Host-Microbial Interactions. Proc. Natl. Acad. Sci. USA. 2011;108((Suppl. S1)):4659–4665. doi: 10.1073/pnas.1006451107.
    1. Gustafsson J.K., Ermund A., Johansson M.E.V., Schütte A., Hansson G.C., Sjövall H. An Ex Vivo Method for Studying Mucus Formation, Properties, and Thickness in Human Colonic Biopsies and Mouse Small and Large Intestinal Explants. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012;302:G430–G438. doi: 10.1152/ajpgi.00405.2011.
    1. Johansson M.E.V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA. 2008;105:15064–15069. doi: 10.1073/pnas.0803124105.
    1. Tailford L.E., Crost E.H., Kavanaugh D., Juge N. Mucin Glycan Foraging in the Human Gut Microbiome. Front. Genet. 2015;6:81. doi: 10.3389/fgene.2015.00081.
    1. Douillard F.P., Ribbera A., Kant R., Pietilä T.E., Järvinen H.M., Messing M., Randazzo C.L., Paulin L., Laine P., Ritari J., et al. Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG. PLoS Genet. 2013;9:e1003683. doi: 10.1371/journal.pgen.1003683.
    1. Macfarlane S., McBain A.J., Macfarlane G.T. Consequences of Biofilm and Sessile Growth in the Large Intestine. Adv. Dent. Res. 1997;11:59–68. doi: 10.1177/08959374970110011801.
    1. Bergstrom K., Shan X., Casero D., Batushansky A., Lagishetty V., Jacobs J.P., Hoover C., Kondo Y., Shao B., Gao L., et al. Proximal Colon–Derived O-Glycosylated Mucus Encapsulates and Modulates the Microbiota. Science. 2020;370:467–472. doi: 10.1126/science.aay7367.
    1. Kamada N., Chen G.Y., Inohara N., Núñez G. Control of Pathogens and Pathobionts by the Gut Microbiota. Nat. Immunol. 2013;14:685–690. doi: 10.1038/ni.2608.
    1. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646.
    1. Hammami R., Fernandez B., Lacroix C., Fliss I. Anti-Infective Properties of Bacteriocins: An Update. Cell. Mol. Life Sci. 2013;70:2947–2967. doi: 10.1007/s00018-012-1202-3.
    1. McDonald J.A.K., Mullish B.H., Pechlivanis A., Liu Z., Brignardello J., Kao D., Holmes E., Li J.V., Clarke T.B., Thursz M.R., et al. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology. 2018;155:1495–1507.e15. doi: 10.1053/j.gastro.2018.07.014.
    1. Macpherson A.J., Geuking M.B., McCoy K.D. Homeland Security: IgA Immunity at the Frontiers of the Body. Trends Immunol. 2012;33:160–167. doi: 10.1016/j.it.2012.02.002.
    1. Vaishnava S., Yamamoto M., Severson K.M., Ruhn K.A., Yu X., Koren O., Ley R., Wakeland E.K., Hooper L.V. The Antibacterial Lectin RegIIIgamma Promotes the Spatial Segregation of Microbiota and Host in the Intestine. Science. 2011;334:255–258. doi: 10.1126/science.1209791.
    1. Vaishnava S., Behrendt C.L., Ismail A.S., Eckmann L., Hooper L.V. Paneth Cells Directly Sense Gut Commensals and Maintain Homeostasis at the Intestinal Host-Microbial Interface. Proc. Natl. Acad. Sci. USA. 2008;105:20858–20863. doi: 10.1073/pnas.0808723105.
    1. Wrzosek L., Miquel S., Noordine M.-L., Bouet S., Joncquel Chevalier-Curt M., Robert V., Philippe C., Bridonneau C., Cherbuy C., Robbe-Masselot C., et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii Influence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013;11:61. doi: 10.1186/1741-7007-11-61.
    1. Franchi L., Kamada N., Nakamura Y., Burberry A., Kuffa P., Suzuki S., Shaw M.H., Kim Y.-G., Núñez G. NLRC4-Driven Production of IL-1β Discriminates between Pathogenic and Commensal Bacteria and Promotes Host Intestinal Defense. Nat. Immunol. 2012;13:449–456. doi: 10.1038/ni.2263.
    1. Ivanov I.I., Atarashi K., Manel N., Brodie E.L., Shima T., Karaoz U., Wei D., Goldfarb K.C., Santee C.A., Lynch S.V., et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell. 2009;139:485–498. doi: 10.1016/j.cell.2009.09.033.
    1. Desai M.S., Seekatz A.M., Koropatkin N.M., Kamada N., Hickey C.A., Wolter M., Pudlo N.A., Kitamoto S., Terrapon N., Muller A., et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167:1339–1353.e21. doi: 10.1016/j.cell.2016.10.043.
    1. Collins J.W., Keeney K.M., Crepin V.F., Rathinam V.A.K., Fitzgerald K.A., Finlay B.B., Frankel G. Citrobacter rodentium: Infection, Inflammation and the Microbiota. Nat. Rev. Microbiol. 2014;12:612–623. doi: 10.1038/nrmicro3315.
    1. Sigal M., Rothenberg M.E., Logan C.Y., Lee J.Y., Honaker R.W., Cooper R.L., Passarelli B., Camorlinga M., Bouley D.M., Alvarez G., et al. Helicobacter pylori Activates and Expands Lgr5(+) Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology. 2015;148:1392–1404.e21. doi: 10.1053/j.gastro.2015.02.049.
    1. Johnson C.H., Dejea C.M., Edler D., Hoang L.T., Santidrian A.F., Felding B.H., Ivanisevic J., Cho K., Wick E.C., Hechenbleikner E.M., et al. Metabolism Links Bacterial Biofilms and Colon Carcinogenesis. Cell Metab. 2015;21:891–897. doi: 10.1016/j.cmet.2015.04.011.
    1. Dejea C.M., Fathi P., Craig J.M., Boleij A., Taddese R., Geis A.L., Wu X., DeStefano Shields C.E., Hechenbleikner E.M., Huso D.L., et al. Patients with Familial Adenomatous polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science. 2018;359:592–597. doi: 10.1126/science.aah3648.
    1. Chung L., Thiele Orberg E., Geis A.L., Chan J.L., Fu K., DeStefano Shields C.E., Dejea C.M., Fathi P., Chen J., Finard B.B., et al. Bacteroides fragilis Toxin Coordinates a Pro-Carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host Microbe. 2018;23:203–214.e5. doi: 10.1016/j.chom.2018.01.007.
    1. Kostic A.D., Chun E., Robertson L., Glickman J.N., Gallini C.A., Michaud M., Clancy T.E., Chung D.C., Lochhead P., Hold G.L., et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe. 2013;14:207–215. doi: 10.1016/j.chom.2013.07.007.
    1. Kumar R., Herold J.L., Schady D., Davis J., Kopetz S., Martinez-Moczygemba M., Murray B.E., Han F., Li Y., Callaway E., et al. Streptococcus gallolyticus Subsp. Gallolyticus Promotes Colorectal Tumor Development. PLoS Pathog. 2017;13:e1006440. doi: 10.1371/journal.ppat.1006440.
    1. Rubinstein M.R., Wang X., Liu W., Hao Y., Cai G., Han Y.W. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its FadA Adhesin. Cell Host Microbe. 2013;14:195–206. doi: 10.1016/j.chom.2013.07.012.
    1. Drewes J.L., White J.R., Dejea C.M., Fathi P., Iyadorai T., Vadivelu J., Roslani A.C., Wick E.C., Mongodin E.F., Loke M.F., et al. High-Resolution Bacterial 16S RRNA Gene Profile Meta-Analysis and Biofilm Status Reveal Common Colorectal Cancer Consortia. NPJ Biofilms Microbiomes. 2017;3:34. doi: 10.1038/s41522-017-0040-3.
    1. Warren R.L., Freeman D.J., Pleasance S., Watson P., Moore R.A., Cochrane K., Allen-Vercoe E., Holt R.A. Co-Occurrence of Anaerobic Bacteria in Colorectal Carcinomas. Microbiome. 2013;1:16. doi: 10.1186/2049-2618-1-16.
    1. Swidsinski A., Weber J., Loening-Baucke V., Hale L.P., Lochs H. Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease. J. Clin. Microbiol. 2005;43:3380–3389. doi: 10.1128/JCM.43.7.3380-3389.2005.
    1. Wang M., Molin G., Ahrné S., Adawi D., Jeppsson B. High Proportions of Proinflammatory Bacteria on the Colonic Mucosa in a Young Patient with Ulcerative Colitis as Revealed by Cloning and Sequencing of 16S RRNA Genes. Dig. Dis. Sci. 2007;52:620–627. doi: 10.1007/s10620-006-9461-1.
    1. Rolhion N., Darfeuille-Michaud A. Adherent-Invasive Escherichia coli in Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2007;13:1277–1283. doi: 10.1002/ibd.20176.
    1. Gibold L., Garenaux E., Dalmasso G., Gallucci C., Cia D., Mottet-Auselo B., Faïs T., Darfeuille-Michaud A., Nguyen H.T.T., Barnich N., et al. The Vat-AIEC Protease Promotes Crossing of the Intestinal Mucus Layer by Crohn’s Disease-Associated Escherichia coli. Cell Microbiol. 2016;18:617–631. doi: 10.1111/cmi.12539.
    1. Png C.W., Lindén S.K., Gilshenan K.S., Zoetendal E.G., McSweeney C.S., Sly L.I., McGuckin M.A., Florin T.H.J. Mucolytic Bacteria with Increased Prevalence in IBD Mucosa Augment in vitro Utilization of Mucin by Other Bacteria. Am. J. Gastroenterol. 2010;105:2420–2428. doi: 10.1038/ajg.2010.281.
    1. Golińska E., Tomusiak A., Gosiewski T., Więcek G., Machul A., Mikołajczyk D., Bulanda M., Heczko P.B., Strus M. Virulence Factors of Enterococcus Strains Isolated from Patients with Inflammatory Bowel Disease. World J. Gastroenterol. 2013;19:3562–3572. doi: 10.3748/wjg.v19.i23.3562.
    1. Coyte K.Z., Rakoff-Nahoum S. Understanding Competition and Cooperation within the Mammalian Gut Microbiome. Curr. Biol. 2019;29:R538–R544. doi: 10.1016/j.cub.2019.04.017.
    1. Mitri S., Richard Foster K. The Genotypic View of Social Interactions in Microbial Communities. Annu. Rev. Genet. 2013;47:247–273. doi: 10.1146/annurev-genet-111212-133307.
    1. Stecher B., Robbiani R., Walker A.W., Westendorf A.M., Barthel M., Kremer M., Chaffron S., Macpherson A.J., Buer J., Parkhill J., et al. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota. PLoS Biol. 2007;5:e244. doi: 10.1371/journal.pbio.0050244.
    1. Roelofs K.G., Coyne M.J., Gentyala R.R., Chatzidaki-Livanis M., Comstock L.E. Bacteroidales Secreted Antimicrobial Proteins Target Surface Molecules Necessary for Gut Colonization and Mediate Competition In Vivo. mBio. 2016;7:e01055-16. doi: 10.1128/mBio.01055-16.
    1. Aoki S.K., Pamma R., Hernday A.D., Bickham J.E., Braaten B.A., Low D.A. Contact-Dependent Inhibition of Growth in Escherichia coli. Science. 2005;309:1245–1248. doi: 10.1126/science.1115109.
    1. Sana T.G., Flaugnatti N., Lugo K.A., Lam L.H., Jacobson A., Baylot V., Durand E., Journet L., Cascales E., Monack D.M. Salmonella typhimurium Utilizes a T6SS-Mediated Antibacterial Weapon to Establish in the Host Gut. Proc. Natl. Acad. Sci. USA. 2016;113:E5044–E5051. doi: 10.1073/pnas.1608858113.
    1. Whitney J.C., Peterson S.B., Kim J., Pazos M., Verster A.J., Radey M.C., Kulasekara H.D., Ching M.Q., Bullen N.P., Bryant D., et al. A Broadly Distributed Toxin Family Mediates Contact-Dependent Antagonism between Gram-Positive Bacteria. Elife. 2017;6:e26938. doi: 10.7554/eLife.26938.
    1. Nadell C.D., Drescher K., Foster K.R. Spatial Structure, Cooperation and Competition in Biofilms. Nat. Rev. Microbiol. 2016;14:589–600. doi: 10.1038/nrmicro.2016.84.
    1. Stacy A., McNally L., Darch S.E., Brown S.P., Whiteley M. The Biogeography of Polymicrobial Infection. Nat. Rev. Microbiol. 2016;14:93–105. doi: 10.1038/nrmicro.2015.8.
    1. Lion S., van Baalen M. Self-Structuring in Spatial Evolutionary Ecology. Ecol. Lett. 2008;11:277–295. doi: 10.1111/j.1461-0248.2007.01132.x.
    1. Foster K.R., Bell T. Competition, Not Cooperation, Dominates Interactions among Culturable Microbial Species. Curr. Biol. 2012;22:1845–1850. doi: 10.1016/j.cub.2012.08.005.
    1. Rendueles O., Ghigo J.-M. Mechanisms of Competition in Biofilm Communities. Microbiol. Spectr. 2015;3:319–342. doi: 10.1128/microbiolspec.MB-0009-2014.
    1. Oliveira N.M., Martinez-Garcia E., Xavier J., Durham W.M., Kolter R., Kim W., Foster K.R. Biofilm Formation As a Response to Ecological Competition. PLoS Biol. 2015;13:e1002232. doi: 10.1371/journal.pbio.1002191.
    1. Pfeiffer T., Schuster S., Bonhoeffer S. Cooperation and Competition in the Evolution of ATP-Producing Pathways. Science. 2001;292:504–507. doi: 10.1126/science.1058079.
    1. Schluter J., Nadell C.D., Bassler B.L., Foster K.R. Adhesion as a Weapon in Microbial Competition. ISME J. 2015;9:139–149. doi: 10.1038/ismej.2014.174.
    1. Chassaing B., Cascales E. Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends Microbiol. 2018;26:329–338. doi: 10.1016/j.tim.2018.01.006.
    1. Platt T.G., Bever J.D. Kin Competition and the Evolution of Cooperation. Trends Ecol. Evol. 2009;24:370–377. doi: 10.1016/j.tree.2009.02.009.
    1. Wade M.J. Soft Selection, Hard Selection, Kin Selection, and Group Selection. Am. Nat. 1985;125:61–73. doi: 10.1086/284328.
    1. Popat R., Crusz S.A., Messina M., Williams P., West S.A., Diggle S.P. Quorum-Sensing and Cheating in Bacterial Biofilms. Proc. Biol. Sci. 2012;279:4765–4771. doi: 10.1098/rspb.2012.1976.
    1. Drescher K., Nadell C.D., Stone H.A., Wingreen N.S., Bassler B.L. Solutions to the Public Goods Dilemma in Bacterial Biofilms. Curr. Biol. 2014;24:50–55. doi: 10.1016/j.cub.2013.10.030.
    1. Kramer J., Özkaya Ö., Kümmerli R. Bacterial Siderophores in Community and Host Interactions. Nat. Rev. Microbiol. 2020;18:152–163. doi: 10.1038/s41579-019-0284-4.
    1. Webb J.S., Thompson L.S., James S., Charlton T., Tolker-Nielsen T., Koch B., Givskov M., Kjelleberg S. Cell Death in Pseudomonas aeruginosa Biofilm Development. J. Bacteriol. 2003;185:4585–4592. doi: 10.1128/JB.185.15.4585-4592.2003.
    1. Darch S.E., West S.A., Winzer K., Diggle S.P. Density-Dependent Fitness Benefits in Quorum-Sensing Bacterial Populations. Proc. Natl. Acad. Sci. USA. 2012;109:8259–8263. doi: 10.1073/pnas.1118131109.
    1. Van Gestel J., Vlamakis H., Kolter R. Division of Labor in Biofilms: The Ecology of Cell Differentiation. Microbiol. Spectr. 2015;3:MB-0002-2014. doi: 10.1128/microbiolspec.MB-0002-2014.
    1. Crabbé A., Jensen P.Ø., Bjarnsholt T., Coenye T. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol. 2019;27:850–863. doi: 10.1016/j.tim.2019.05.003.
    1. Stewart P.S., Franklin M.J. Physiological Heterogeneity in Biofilms. Nat. Rev. Microbiol. 2008;6:199–210. doi: 10.1038/nrmicro1838.
    1. Dragoš A., Kiesewalter H., Martin M., Hsu C.-Y., Hartmann R., Wechsler T., Eriksen C., Brix S., Drescher K., Stanley-Wall N., et al. Division of Labor during Biofilm Matrix Production. Curr. Biol. 2018;28:1903–1913.e5. doi: 10.1016/j.cub.2018.04.046.
    1. Heffernan B., Murphy C.D., Casey E. Comparison of Planktonic and Biofilm Cultures of Pseudomonas fluorescens DSM 8341 Cells Grown on Fluoroacetate. Appl. Environ. Microbiol. 2009;75:2899–2907. doi: 10.1128/AEM.01530-08.
    1. Williamson K.S., Richards L.A., Perez-Osorio A.C., Pitts B., McInnerney K., Stewart P.S., Franklin M.J. Heterogeneity in Pseudomonas aeruginosa Biofilms Includes Expression of Ribosome Hibernation Factors in the Antibiotic-Tolerant Subpopulation and Hypoxia-Induced Stress Response in the Metabolically Active Population. J. Bacteriol. 2012;194:2062–2073. doi: 10.1128/JB.00022-12.
    1. Macfarlane S., Macfarlane G.T. Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl. Environ. Microbiol. 2006;72:6204–6211. doi: 10.1128/AEM.00754-06.
    1. Bjarnsholt T., Alhede M., Alhede M., Eickhardt-Sørensen S.R., Moser C., Kühl M., Jensen P.Ø., Høiby N. The in vivo Biofilm. Trends Microbiol. 2013;21:466–474. doi: 10.1016/j.tim.2013.06.002.
    1. Folsom J.P., Richards L., Pitts B., Roe F., Ehrlich G.D., Parker A., Mazurie A., Stewart P.S. Physiology of Pseudomonas aeruginosa in Biofilms as Revealed by Transcriptome Analysis. BMC Microbiol. 2010;10:294. doi: 10.1186/1471-2180-10-294.
    1. Sønderholm M., Kragh K.N., Koren K., Jakobsen T.H., Darch S.E., Alhede M., Jensen P.Ø., Whiteley M., Kühl M., Bjarnsholt T. Pseudomonas aeruginosa Aggregate Formation in an Alginate Bead Model System Exhibits In Vivo -Like Characteristics. Appl. Environ. Microbiol. 2017;83:e00113-17. doi: 10.1128/AEM.00113-17.
    1. Cornforth D.M., Dees J.L., Ibberson C.B., Huse H.K., Mathiesen I.H., Kirketerp-Møller K., Wolcott R.D., Rumbaugh K.P., Bjarnsholt T., Whiteley M. Pseudomonas aeruginosa Transcriptome during Human Infection. Proc. Natl. Acad. Sci. USA. 2018;115:E5125–E5134. doi: 10.1073/pnas.1717525115.
    1. Rossi E., Falcone M., Molin S., Johansen H.K. High-Resolution In Situ Transcriptomics of Pseudomonas aeruginosa Unveils Genotype Independent Patho-Phenotypes in Cystic Fibrosis Lungs. Nat. Commun. 2018;9:3459. doi: 10.1038/s41467-018-05944-5.
    1. Winstanley C., O’Brien S., Brockhurst M.A. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol. 2016;24:327–337. doi: 10.1016/j.tim.2016.01.008.
    1. Barken K.B., Pamp S.J., Yang L., Gjermansen M., Bertrand J.J., Klausen M., Givskov M., Whitchurch C.B., Engel J.N., Tolker-Nielsen T. Roles of Type IV Pili, Flagellum-Mediated Motility and Extracellular DNA in the Formation of Mature Multicellular Structures in Pseudomonas aeruginosa Biofilms. Environ. Microbiol. 2008;10:2331–2343. doi: 10.1111/j.1462-2920.2008.01658.x.
    1. Inhülsen S., Aguilar C., Schmid N., Suppiger A., Riedel K., Eberl L. Identification of Functions Linking Quorum Sensing with Biofilm Formation in Burkholderia cenocepacia H111. Microbiologyopen. 2012;1:225–242. doi: 10.1002/mbo3.24.
    1. Tolker-Nielsen T. Biofilm Development. Microbiol. Spectr. 2015;3 doi: 10.1128/microbiolspec.MB-0001-2014.
    1. Karatan E., Watnick P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. Microbiol. Mol. Biol. Rev. 2009;73:310–347. doi: 10.1128/MMBR.00041-08.
    1. Jefferson K.K. What Drives Bacteria to Produce a Biofilm? FEMS Microbiol. Lett. 2004;236:163–173. doi: 10.1111/j.1574-6968.2004.tb09643.x.
    1. Gambino M., Cappitelli F. Mini-Review: Biofilm Responses to Oxidative Stress. Biofouling. 2016;32:167–178. doi: 10.1080/08927014.2015.1134515.
    1. Kang D., Kirienko N.V. Interdependence between Iron Acquisition and Biofilm Formation in Pseudomonas aeruginosa. J. Microbiol. 2018;56:449–457. doi: 10.1007/s12275-018-8114-3.
    1. Kaplan J.B. Antibiotic-Induced Biofilm Formation. Int. J. Artif. Organs. 2011;34:737–751. doi: 10.5301/ijao.5000027.
    1. Chodur D.M., Coulter P., Isaacs J., Pu M., Fernandez N., Waters C.M., Rowe-Magnus D.A. Environmental Calcium Initiates a Feed-Forward Signaling Circuit That Regulates Biofilm Formation and Rugosity in Vibrio Vulnificus. mBio. 2018;9:e01377-18. doi: 10.1128/mBio.01377-18.
    1. Hung D.T., Zhu J., Sturtevant D., Mekalanos J.J. Bile Acids Stimulate Biofilm Formation in Vibrio Cholerae. Mol. Microbiol. 2006;59:193–201. doi: 10.1111/j.1365-2958.2005.04846.x.
    1. Koestler B.J., Waters C.M. Intestinal GPS: Bile and Bicarbonate Control Cyclic Di-GMP to Provide Vibrio Cholerae Spatial Cues within the Small Intestine. Gut Microbes. 2014;5:775–780. doi: 10.4161/19490976.2014.985989.
    1. Köseoğlu V.K., Hall C.P., Rodríguez-López E.M., Agaisse H. The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect. Immun. 2019;87:e00861-18. doi: 10.1128/IAI.00861-18.
    1. McKenney P.T., Yan J., Vaubourgeix J., Becattini S., Lampen N., Motzer A., Larson P.J., Dannaoui D., Fujisawa S., Xavier J.B., et al. Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus That Facilitates Intestinal Colonization. Cell Host Microbe. 2019;25:695–705.e5. doi: 10.1016/j.chom.2019.03.008.
    1. Pumbwe L., Skilbeck C.A., Nakano V., Avila-Campos M.J., Piazza R.M.F., Wexler H.M. Bile Salts Enhance Bacterial Co-Aggregation, Bacterial-Intestinal Epithelial Cell Adhesion, Biofilm Formation and Antimicrobial Resistance of Bacteroides Fragilis. Microb. Pathog. 2007;43:78–87. doi: 10.1016/j.micpath.2007.04.002.
    1. Kelly S.M., Lanigan N., O’Neill I.J., Bottacini F., Lugli G.A., Viappiani A., Turroni F., Ventura M., van Sinderen D. Bifidobacterial Biofilm Formation Is a Multifactorial Adaptive Phenomenon in Response to Bile Exposure. Sci. Rep. 2020;10:11598. doi: 10.1038/s41598-020-68179-9.
    1. López M., Blasco L., Gato E., Perez A., Fernández-Garcia L., Martínez-Martinez L., Fernández-Cuenca F., Rodríguez-Baño J., Pascual A., Bou G., et al. Response to Bile Salts in Clinical Strains of Acinetobacter baumannii Lacking the AdeABC Efflux Pump: Virulence Associated with Quorum Sensing. Front. Cell Infect. Microbiol. 2017;7:143. doi: 10.3389/fcimb.2017.00143.
    1. Wang X., Wang Y., Ling N., Shen Y., Zhang D., Liu D., Ou D., Wu Q., Ye Y. Roles of TolC on Tolerance to Bile Salts and Biofilm Formation in Cronobacter malonaticus. J. Dairy Sci. 2021;104:9521–9531. doi: 10.3168/jds.2021-20128.
    1. Ambalam P., Kondepudi K.K., Nilsson I., Wadström T., Ljungh A. Bile Enhances Cell Surface Hydrophobicity and Biofilm Formation of Bifidobacteria. Appl. Biochem. Biotechnol. 2014;172:1970–1981. doi: 10.1007/s12010-013-0596-1.
    1. Bechon N., Mihajlovic J., Lopes A.-A., Vendrell-Fernández S., Deschamps J., Briandet R., Sismeiro O., Martin-Verstraete I., Dupuy B., Ghigo J.-M. Bacteroides thetaiotaomicron Uses a Widespread Extracellular DNase to Promote Bile-Dependent Biofilm Formation. bioRxiv. 2021 doi: 10.1101/2021.06.04.447082.
    1. Bollinger R.R., Everett M.L., Palestrant D., Love S.D., Lin S.S., Parker W. Human Secretory Immunoglobulin A May Contribute to Biofilm Formation in the Gut. Immunology. 2003;109:580–587. doi: 10.1046/j.1365-2567.2003.01700.x.
    1. Everett M.L., Palestrant D., Miller S.E., Bollinger R.R., Parker W. Immune Exclusion and Immune Inclusion: A New Model of Host-Bacterial Interactions in the Gut. Clin. Appl. Immunol. Rev. 2004;4:321–332. doi: 10.1016/j.cair.2004.03.001.
    1. Popowska M., Krawczyk-Balska A., Ostrowski R., Desvaux M. InlL from Listeria monocytogenes Is Involved in Biofilm Formation and Adhesion to Mucin. Front. Microbiol. 2017;8:660. doi: 10.3389/fmicb.2017.00660.
    1. Tu Q.V., McGuckin M.A., Mendz G.L. Campylobacter jejuni Response to Human Mucin MUC2: Modulation of Colonization and Pathogenicity Determinants. J. Med. Microbiol. 2008;57:795–802. doi: 10.1099/jmm.0.47752-0.
    1. Dwivedi R., Nothaft H., Garber J., Xin Kin L., Stahl M., Flint A., van Vliet A.H.M., Stintzi A., Szymanski C.M. L-Fucose Influences Chemotaxis and Biofilm Formation in Campylobacter jejuni. Mol. Microbiol. 2016;101:575–589. doi: 10.1111/mmi.13409.
    1. Motta J.-P., Flannigan K.L., Agbor T.A., Beatty J.K., Blackler R.W., Workentine M.L., Da Silva G.J., Wang R., Buret A.G., Wallace J.L. Hydrogen Sulfide Protects from Colitis and Restores Intestinal Microbiota Biofilm and Mucus Production. Inflamm. Bowel. Dis. 2015;21:1006–1017. doi: 10.1097/MIB.0000000000000345.
    1. Feraco D., Blaha M., Khan S., Green J.M., Plotkin B.J. Host Environmental Signals and Effects on Biofilm Formation. Microb. Pathog. 2016;99:253–263. doi: 10.1016/j.micpath.2016.08.015.
    1. Sperandio V., Torres A.G., Jarvis B., Nataro J.P., Kaper J.B. Bacteria-Host Communication: The Language of Hormones. Proc. Natl. Acad. Sci. USA. 2003;100:8951–8956. doi: 10.1073/pnas.1537100100.
    1. Plotkin B.J., Wu Z., Ward K., Nadella S., Green J.M., Rumnani B. Effect of Human Insulin on the Formation of Catheter-Associated E. coli biofilms. OJU. 2014;4:49–56. doi: 10.4236/oju.2014.45009.
    1. Klosowska K., Plotkin B.J. Human Insulin Modulation of Escherichia coli Adherence and Chemotaxis. Am. J. Infect. Dis. 2006;2:197–200. doi: 10.3844/ajidsp.2006.197.200.
    1. Scardaci R., Varese F., Manfredi M., Marengo E., Mazzoli R., Pessione E. Enterococcus faecium NCIMB10415 Responds to Norepinephrine by Altering Protein Profiles and Phenotypic Characters. J. Proteom. 2021;231:104003. doi: 10.1016/j.jprot.2020.104003.
    1. Cambronel M., Nilly F., Mesguida O., Boukerb A.M., Racine P.-J., Baccouri O., Borrel V., Martel J., Fécamp F., Knowlton R., et al. Influence of Catecholamines (Epinephrine/Norepinephrine) on Biofilm Formation and Adhesion in Pathogenic and Probiotic Strains of Enterococcus faecalis. Front. Microbiol. 2020;11:1501. doi: 10.3389/fmicb.2020.01501.
    1. Hiller C.C., Lucca V., Carvalho D., Borsoi A., Borges K.A., Furian T.Q., do Nascimento V.P. Influence of Catecholamines on Biofilm Formation by Salmonella enteritidis. Microb. Pathog. 2019;130:54–58. doi: 10.1016/j.micpath.2019.02.032.
    1. Maestre J.R., Aguilar L., Mateo M., Giménez M.-J., Méndez M.-L., Alou L., Granizo J.-J., Prieto J. In vitro Interference of Tigecycline at Subinhibitory Concentrations on Biofilm Development by Enterococcus faecalis. J. Antimicrob. Chemother. 2012;67:1155–1158. doi: 10.1093/jac/dks014.
    1. Ozma M.A., Khodadadi E., Rezaee M.A., Kamounah F.S., Asgharzadeh M., Ganbarov K., Aghazadeh M., Yousefi M., Pirzadeh T., Kafil H.S. Induction of Proteome Changes Involved in Biofilm Formation of Enterococcus faecalis in Response to Gentamicin. Microb. Pathog. 2021;157:105003. doi: 10.1016/j.micpath.2021.105003.
    1. Yu W., Hallinen K.M., Wood K.B. Interplay between Antibiotic Efficacy and Drug-Induced Lysis Underlies Enhanced Biofilm Formation at Subinhibitory Drug Concentrations. Antimicrob. Agents Chemother. 2018;62:e01603-17. doi: 10.1128/AAC.01603-17.
    1. Hoffman L.R., D’Argenio D.A., MacCoss M.J., Zhang Z., Jones R.A., Miller S.I. Aminoglycoside Antibiotics Induce Bacterial Biofilm Formation. Nature. 2005;436:1171–1175. doi: 10.1038/nature03912.
    1. Sun F., Yuan Q., Wang Y., Cheng L., Li X., Feng W., Xia P. Sub-Minimum Inhibitory Concentration Ceftazidime Inhibits Escherichia coli Biofilm Formation by Influencing the Levels of the IbpA Gene and Extracellular Indole. J. Chemother. 2020;32:7–14. doi: 10.1080/1120009X.2019.1678913.
    1. Alav I., Sutton J.M., Rahman K.M. Role of Bacterial Efflux Pumps in Biofilm Formation. J. Antimicrob. Chemother. 2018;73:2003–2020. doi: 10.1093/jac/dky042.
    1. Schembri M.A., Kjaergaard K., Klemm P. Global Gene Expression in Escherichia coli Biofilms. Mol. Microbiol. 2003;48:253–267. doi: 10.1046/j.1365-2958.2003.03432.x.
    1. Xavier K.B., Bassler B.L. Regulation of Uptake and Processing of the Quorum-Sensing Autoinducer AI-2 in Escherichia coli. J. Bacteriol. 2005;187:238–248. doi: 10.1128/JB.187.1.238-248.2005.
    1. Bay D.C., Stremick C.A., Slipski C.J., Turner R.J. Secondary Multidrug Efflux Pump Mutants Alter Escherichia coli Biofilm Growth in the Presence of Cationic Antimicrobial Compounds. Res. Microbiol. 2017;168:208–221. doi: 10.1016/j.resmic.2016.11.003.
    1. Matsumura K., Furukawa S., Ogihara H., Morinaga Y. Roles of Multidrug Efflux Pumps on the Biofilm Formation of Escherichia coli K-12. Biocontrol. Sci. 2011;16:69–72. doi: 10.4265/bio.16.69.
    1. Baugh S., Ekanayaka A.S., Piddock L.J.V., Webber M.A. Loss of or Inhibition of All Multidrug Resistance Efflux Pumps of Salmonella enterica Serovar Typhimurium Results in Impaired Ability to Form a Biofilm. J. Antimicrob. Chemother. 2012;67:2409–2417. doi: 10.1093/jac/dks228.
    1. Teteneva N.A., Mart’yanov S.V., Esteban-López M., Kahnt J., Glatter T., Netrusov A.I., Plakunov V.K., Sourjik V. Multiple Drug-Induced Stress Responses Inhibit Formation of Escherichia coli Biofilms. Appl. Environ. Microbiol. 2020;86:e01113-20. doi: 10.1128/AEM.01113-20.
    1. LeBlanc J.G., Chain F., Martín R., Bermúdez-Humarán L.G., Courau S., Langella P. Beneficial Effects on Host Energy Metabolism of Short-Chain Fatty Acids and Vitamins Produced by Commensal and Probiotic Bacteria. Microb. Cell Fact. 2017;16:79. doi: 10.1186/s12934-017-0691-z.
    1. Jacobson A., Lam L., Rajendram M., Tamburini F., Honeycutt J., Pham T., Van Treuren W., Pruss K., Stabler S.R., Lugo K., et al. A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to Salmonella Infection. Cell Host Microbe. 2018;24:296–307.e7. doi: 10.1016/j.chom.2018.07.002.
    1. Suzuki I., Shimizu T., Senpuku H. Role of SCFAs for Fimbrillin-Dependent Biofilm Formation of Actinomyces oris. Microorganisms. 2018;6:114. doi: 10.3390/microorganisms6040114.
    1. Yoneda S., Kawarai T., Narisawa N., Tuna E.B., Sato N., Tsugane T., Saeki Y., Ochiai K., Senpuku H. Effects of Short-Chain Fatty Acids on Actinomyces naeslundii Biofilm Formation. Mol. Oral. Microbiol. 2013;28:354–365. doi: 10.1111/omi.12029.
    1. Lamas A., Regal P., Vázquez B., Cepeda A., Franco C.M. Short Chain Fatty Acids Commonly Produced by Gut Microbiota Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression. Antibiotics. 2019;8:265. doi: 10.3390/antibiotics8040265.
    1. Hu M., Zhang C., Mu Y., Shen Q., Feng Y. Indole Affects Biofilm Formation in Bacteria. Indian J. Microbiol. 2010;50:362–368. doi: 10.1007/s12088-011-0142-1.
    1. Lee J.-H., Lee J. Indole as an Intercellular Signal in Microbial Communities. FEMS Microbiol. Rev. 2010;34:426–444. doi: 10.1111/j.1574-6976.2009.00204.x.
    1. Mueller R.S., Beyhan S., Saini S.G., Yildiz F.H., Bartlett D.H. Indole Acts as an Extracellular Cue Regulating Gene Expression in Vibrio cholerae. J. Bacteriol. 2009;191:3504–3516. doi: 10.1128/JB.01240-08.
    1. Martino P.D., Fursy R., Bret L., Sundararaju B., Phillips R.S. Indole Can Act as an Extracellular Signal to Regulate Biofilm Formation of Escherichia coli and Other Indole-Producing Bacteria. Can. J. Microbiol. 2003;49:443–449. doi: 10.1139/w03-056.
    1. Sasaki-Imamura T., Yano A., Yoshida Y. Production of Indole from L-Tryptophan and Effects of These Compounds on Biofilm Formation by Fusobacterium nucleatum ATCC 25586. Appl. Environ. Microbiol. 2010;76:4260–4268. doi: 10.1128/AEM.00166-10.
    1. Rattanaphan P., Mittraparp-Arthorn P., Srinoun K., Vuddhakul V., Tansila N. Indole Signaling Decreases Biofilm Formation and Related Virulence of Listeria monocytogenes. FEMS Microbiol. Lett. 2020;367:fnaa116. doi: 10.1093/femsle/fnaa116.
    1. Sutton T.D.S., Hill C. Gut Bacteriophage: Current Understanding and Challenges. Front. Endocrinol. 2019;10:784. doi: 10.3389/fendo.2019.00784.
    1. Lacqua A., Wanner O., Colangelo T., Martinotti M.G., Landini P. Emergence of Biofilm-Forming Subpopulations upon Exposure of Escherichia coli to Environmental Bacteriophages. Appl. Environ. Microbiol. 2006;72:956–959. doi: 10.1128/AEM.72.1.956-959.2006.
    1. Hosseinidoust Z., Tufenkji N., van de Ven T.G.M. Formation of Biofilms under Phage Predation: Considerations Concerning a Biofilm Increase. Biofouling. 2013;29:457–468. doi: 10.1080/08927014.2013.779370.
    1. Rossmann F.S., Racek T., Wobser D., Puchalka J., Rabener E.M., Reiger M., Hendrickx A.P.A., Diederich A.-K., Jung K., Klein C., et al. Phage-Mediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing. PLoS Pathog. 2015;11:e1004653. doi: 10.1371/journal.ppat.1004653.
    1. García-Contreras R., Zhang X.-S., Kim Y., Wood T.K. Protein Translation and Cell Death: The Role of Rare TRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes. PLoS ONE. 2008;3:e2394. doi: 10.1371/journal.pone.0002394.
    1. Papenfort K., Silpe J.E., Schramma K.R., Cong J.-P., Seyedsayamdost M.R., Bassler B.L. A Vibrio cholerae Autoinducer–Receptor Pair That Controls Biofilm Formation. Nat. Chem. Biol. 2017;13:551–557. doi: 10.1038/nchembio.2336.
    1. Silpe J.E., Bassler B.L. A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Cell. 2019;176:268–280.e13. doi: 10.1016/j.cell.2018.10.059.
    1. Fu Y., Luo Y., Grinspan A.M. Epidemiology of Community-Acquired and Recurrent Clostridioides difficile Infection. Ther. Adv. Gastroenterol. 2021;14:17562848211016248. doi: 10.1177/17562848211016248.
    1. Dubberke E.R., Olsen M.A. Burden of Clostridium difficile on the Healthcare System. Clin. Infect. Dis. 2012;55((Suppl. S2)):S88–S92. doi: 10.1093/cid/cis335.
    1. Reveles K.R., Lawson K.A., Mortensen E.M., Pugh M.J.V., Koeller J.M., Argamany J.R., Frei C.R. National Epidemiology of Initial and Recurrent Clostridium difficile Infection in the Veterans Health Administration from 2003 to 2014. PLoS ONE. 2017;12:e0189227. doi: 10.1371/journal.pone.0189227.
    1. Jon J.V., Mark H.W., Jane F. Antimicrobial Resistance Progression in the United Kingdom: A Temporal Comparison of Clostridioides difficile Antimicrobial Susceptibilities. Anaerobe. 2021;70:102385. doi: 10.1016/j.anaerobe.2021.102385.
    1. Czepiel J., Dróżdż M., Pituch H., Kuijper E.J., Perucki W., Mielimonka A., Goldman S., Wultańska D., Garlicki A., Biesiada G. Clostridium difficile Infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1211–1221. doi: 10.1007/s10096-019-03539-6.
    1. Simor A.E. Diagnosis, Management, and Prevention of Clostridium difficile Infection in Long-Term Care Facilities: A Review. J. Am. Geriatr. Soc. 2010;58:1556–1564. doi: 10.1111/j.1532-5415.2010.02958.x.
    1. Lawley T.D., Clare S., Walker A.W., Goulding D., Stabler R.A., Croucher N., Mastroeni P., Scott P., Raisen C., Mottram L., et al. Antibiotic Treatment of Clostridium difficile Carrier Mice Triggers a Supershedder State, Spore-Mediated Transmission, and Severe Disease in Immunocompromised Hosts. Infect. Immun. 2009;77:3661–3669. doi: 10.1128/IAI.00558-09.
    1. Pruss K.M., Sonnenburg J.L.C. Difficile Exploits a Host Metabolite Produced during Toxin-Mediated Disease. Nature. 2021;593:261–265. doi: 10.1038/s41586-021-03502-6.
    1. Abt M.C., McKenney P.T., Pamer E.G. Clostridium difficile Colitis: Pathogenesis and Host Defence. Nat. Rev. Microbiol. 2016;14:609–620. doi: 10.1038/nrmicro.2016.108.
    1. Finn E., Andersson F.L., Madin-Warburton M. Burden of Clostridioides difficile Infection (CDI)—A Systematic Review of the Epidemiology of Primary and Recurrent CDI. BMC Infect. Dis. 2021;21:1–11. doi: 10.1186/s12879-021-06147-y.
    1. Barbut F., Richard A., Hamadi K., Chomette V., Burghoffer B., Petit J.-C. Epidemiology of Recurrences or Reinfections of Clostridium difficile-Associated Diarrhea. J. Clin. Microbiol. 2000;38:2386–2388. doi: 10.1128/JCM.38.6.2386-2388.2000.
    1. Deakin L.J., Clare S., Fagan R.P., Dawson L.F., Pickard D.J., West M.R., Wren B.W., Fairweather N.F., Dougan G., Lawley T.D. The Clostridium difficile Spo0A Gene Is a Persistence and Transmission Factor. Infect. Immun. 2012;80:2704–2711. doi: 10.1128/IAI.00147-12.
    1. Castro-Córdova P., Mora-Uribe P., Reyes-Ramírez R., Cofré-Araneda G., Orozco-Aguilar J., Brito-Silva C., Mendoza-León M.J., Kuehne S.A., Minton N.P., Pizarro-Guajardo M., et al. Entry of Spores into Intestinal Epithelial Cells Contributes to Recurrence of Clostridioides difficile Infection. Nat. Commun. 2021;12:1140. doi: 10.1038/s41467-021-21355-5.
    1. Scherr T.D., Heim C.E., Morrison J.M., Kielian T. Hiding in Plain Sight: Interplay between Staphylococcal Biofilms and Host Immunity. Front. Immunol. 2014;5:37. doi: 10.3389/fimmu.2014.00037.
    1. Thomsen K., Kobayashi O., Kishi K., Shirai R., Østrup Jensen P., Heydorn A., Hentzer M., Calum H., Christophersen L., Høiby N., et al. Animal Models of Chronic and Recurrent Pseudomonas aeruginosa Lung Infection: Significance of Macrolide Treatment. APMIS. 2021 doi: 10.1111/apm.13161.
    1. Frost L.R., Cheng J.K.J., Unnikrishnan M. Clostridioides difficile Biofilms: A Mechanism of Persistence in the Gut? PLoS Pathog. 2021;17:e1009348. doi: 10.1371/journal.ppat.1009348.
    1. Donelli G., Vuotto C., Cardines R., Mastrantonio P. Biofilm-Growing Intestinal Anaerobic Bacteria. FEMS Immunol. Med. Microbiol. 2012;65:318–325. doi: 10.1111/j.1574-695X.2012.00962.x.
    1. Dawson L.F., Valiente E., Faulds-Pain A., Donahue E.H., Wren B.W. Characterisation of Clostridium difficile Biofilm Formation, a Role for Spo0A. PLoS ONE. 2012;7:e50527. doi: 10.1371/journal.pone.0050527.
    1. Dubois T., Tremblay Y.D.N., Hamiot A., Martin-Verstraete I., Deschamps J., Monot M., Briandet R., Dupuy B. A Microbiota-Generated Bile Salt Induces Biofilm Formation in Clostridium difficile. NPJ Biofilms Microbiomes. 2019;5:14. doi: 10.1038/s41522-019-0087-4.
    1. Poquet I., Saujet L., Canette A., Monot M., Mihajlovic J., Ghigo J.-M., Soutourina O., Briandet R., Martin-Verstraete I., Dupuy B. Clostridium difficile Biofilm: Remodeling Metabolism and Cell Surface to Build a Sparse and Heterogeneously Aggregated Architecture. Front. Microbiol. 2018;9:2084. doi: 10.3389/fmicb.2018.02084.
    1. Ghigo J.-M. Natural Conjugative Plasmids Induce Bacterial Biofilm Development. Nature. 2001;412:4. doi: 10.1038/35086581.
    1. Crowther G.S., Chilton C.H., Todhunter S.L., Nicholson S., Freeman J., Baines S.D., Wilcox M.H. Development and Validation of a Chemostat Gut Model to Study Both Planktonic and Biofilm Modes of Growth of Clostridium difficile and Human Microbiota. PLoS ONE. 2014;9:e88396. doi: 10.1371/journal.pone.0088396.
    1. Crowther G.S., Wilcox M.H., Chilton C.H. An In vitro Model of the Human Colon: Studies of Intestinal Biofilms and Clostridium difficile Infection. Methods Mol. Biol. 2016;1476:223–234. doi: 10.1007/978-1-4939-6361-4_17.
    1. Brauer M., Lassek C., Hinze C., Hoyer J., Becher D., Jahn D., Sievers S., Riedel K. What’s a Biofilm?—How the Choice of the Biofilm Model Impacts the Protein Inventory of Clostridioides difficile. Front. Microbiol. 2021;12:1453. doi: 10.3389/fmicb.2021.682111.
    1. Semenyuk E.G., Laning M.L., Foley J., Johnston P.F., Knight K.L., Gerding D.N., Driks A. Spore Formation and Toxin Production in Clostridium difficile Biofilms. PLoS ONE. 2014;9:e87757. doi: 10.1371/journal.pone.0087757.
    1. James G.A., Chesnel L., Boegli L., deLancey Pulcini E., Fisher S., Stewart P.S. Analysis of Clostridium difficile Biofilms: Imaging and Antimicrobial Treatment. J. Antimicrob. Chemother. 2018;73:102–108. doi: 10.1093/jac/dkx353.
    1. Tremblay Y.D.N., Durand B.A.R., Hamiot A., Martin-Verstraete I., Oberkampf M., Monot M., Dupuy B. Metabolic Adaption to Extracellular Pyruvate Triggers Biofilm Formation in Clostridioides difficile. ISME J. 2021 doi: 10.1038/s41396-021-01042-5.
    1. Pantaléon V., Monot M., Eckert C., Hoys S., Collignon A., Janoir C., Candela T. Clostridium difficile Forms Variable Biofilms on Abiotic Surface. Anaerobe. 2018;53:34–37. doi: 10.1016/j.anaerobe.2018.05.006.
    1. Semenyuk E.G., Poroyko V.A., Johnston P.F., Jones S.E., Knight K.L., Gerding D.N., Driks A. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse. Infect. Immun. 2015;83:4383–4391. doi: 10.1128/IAI.00145-15.
    1. Pantaléon V., Soavelomandroso A.P., Bouttier S., Briandet R., Roxas B., Chu M., Collignon A., Janoir C., Vedantam G., Candela T. The Clostridium difficile Protease Cwp84 Modulates Both Biofilm Formation and Cell-Surface Properties. PLoS ONE. 2015;10:e0124971. doi: 10.1371/journal.pone.0124971.
    1. Soavelomandroso A.P., Gaudin F., Hoys S., Nicolas V., Vedantam G., Janoir C., Bouttier S. Biofilm Structures in a Mono-Associated Mouse Model of Clostridium difficile Infection. Front. Microbiol. 2017;8:2086. doi: 10.3389/fmicb.2017.02086.
    1. Buckley A.M., Spencer J., Candlish D., Irvine J.J., Douce G.R. Infection of Hamsters with the UK Clostridium difficile Ribotype 027 Outbreak Strain R20291. J. Med. Microbiol. 2011;60:1174–1180. doi: 10.1099/jmm.0.028514-0.
    1. Rainha K., Fernandes Ferreira R., Trindade C.N.R., Carneiro L.G., Penna B., Endres B.T., Begum K., Alam M.J., Garey K.W., Domingues Regina Maria C.P., et al. Characterization of Clostridium difficile Ribotypes in Domestic Dogs in Rio de Janeiro, Brazil. Anaerobe. 2019;58:22–29. doi: 10.1016/j.anaerobe.2019.06.007.
    1. Martínez-Meléndez A., Morfin-Otero R., Villarreal-Treviño L., Baines S.D., Camacho-Ortíz A., Garza-González E. Analysis of Biofilm Production and Expression of Adhesion Structures of Circulating Clostridium difficile Strains from Mexico. Enferm. Infecc. y Microbiol. Clínica. 2021 doi: 10.1016/j.eimc.2021.01.017.
    1. Barkin J.A., Sussman D.A., Fifadara N., Barkin J.S. Clostridium difficile Infection and Patient-Specific Antimicrobial Resistance Testing Reveals a High Metronidazole Resistance Rate. Dig. Dis. Sci. 2017;62:1035–1042. doi: 10.1007/s10620-017-4462-9.
    1. Ðapa T., Leuzzi R., Ng Y.K., Baban S.T., Adamo R., Kuehne S.A., Scarselli M., Minton N.P., Serruto D., Unnikrishnan M. Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile. J. Bacteriol. 2013;195:545–555. doi: 10.1128/JB.01980-12.
    1. Vuotto C., Moura I., Barbanti F., Donelli G., Spigaglia P. Subinhibitory Concentrations of Metronidazole Increase Biofilm Formation in Clostridium difficile Strains. Pathog. Dis. 2016;74:ftv114. doi: 10.1093/femspd/ftv114.
    1. Johnson S., Louie T.J., Gerding D.N., Cornely O.A., Chasan-Taber S., Fitts D., Gelone S.P., Broom C., Davidson D.M. For the Polymer Alternative for CDI Treatment (PACT) investigators Vancomycin, Metronidazole, or Tolevamer for Clostridium difficile Infection: Results From Two Multinational, Randomized, Controlled Trials. Clin. Infect. Dis. 2014;59:345–354. doi: 10.1093/cid/ciu313.
    1. Dawson L.F., Peltier J., Hall C.L., Harrison M.A., Derakhshan M., Shaw H.A., Fairweather N.F., Wren B.W. Extracellular DNA, Cell Surface Proteins and c-Di-GMP Promote Biofilm Formation in Clostridioides difficile. Sci. Rep. 2021;11:3244. doi: 10.1038/s41598-020-78437-5.
    1. Scott W., Lowrance B., Anderson A.C., Weadge J.T. Identification of the Clostridial Cellulose Synthase and Characterization of the Cognate Glycosyl Hydrolase, CcsZ. PLoS ONE. 2020;15:e0242686. doi: 10.1371/journal.pone.0242686.
    1. Dannheim H., Will S.E., Schomburg D., Neumann-Schaal M. Clostridioides difficile 630Δerm in Silico and in vivo—Quantitative Growth and Extensive Polysaccharide Secretion. FEBS Open Bio. 2017;7:602–615. doi: 10.1002/2211-5463.12208.
    1. Barnes A.M.T., Ballering K.S., Leibman R.S., Wells C.L., Dunny G.M. Enterococcus faecalis Produces Abundant Extracellular Structures Containing DNA in the Absence of Cell Lysis during Early Biofilm Formation. mBio. 2012;3:e00193-12. doi: 10.1128/mBio.00193-12.
    1. Slater R.T., Frost L.R., Jossi S.E., Millard A.D., Unnikrishnan M. Clostridioides difficile LuxS Mediates Inter-Bacterial Interactions within Biofilms. Sci. Rep. 2019;9:9903. doi: 10.1038/s41598-019-46143-6.
    1. Maikova A., Peltier J., Boudry P., Hajnsdorf E., Kint N., Monot M., Poquet I., Martin-Verstraete I., Dupuy B., Soutourina O. Discovery of New Type I Toxin–Antitoxin Systems Adjacent to CRISPR Arrays in Clostridium difficile. Nucleic Acids Res. 2018;46:4733–4751. doi: 10.1093/nar/gky124.
    1. El Meouche I., Peltier J. Toxin Release Mediated by the Novel Autolysin Cwp19 in Clostridium difficile. Microb. Cell. 2018;5:421–423. doi: 10.15698/mic2018.09.648.
    1. Wydau-Dematteis S., El Meouche I., Courtin P., Hamiot A., Lai-Kuen R., Saubaméa B., Fenaille F., Butel M.-J., Pons J.-L., Dupuy B., et al. Cwp19 Is a Novel Lytic Transglycosylase Involved in Stationary-Phase Autolysis Resulting in Toxin Release in Clostridium difficile. mBio. 2018;9:e00648-18. doi: 10.1128/mBio.00648-18.
    1. Maldarelli G.A., Piepenbrink K.H., Scott A.J., Freiberg J.A., Song Y., Achermann Y., Ernst R.K., Shirtliff M.E., Sundberg E.J., Donnenberg M.S., et al. Type IV Pili Promote Early Biofilm Formation by Clostridium difficile. Pathog. Dis. 2016;74:ftw061. doi: 10.1093/femspd/ftw061.
    1. McKee R.W., Aleksanyan N., Garrett E.M., Tamayo R. Type IV Pili Promote Clostridium difficile Adherence and Persistence in a Mouse Model of Infection. Infect. Immun. 2018;86:e00943-17. doi: 10.1128/IAI.00943-17.
    1. Hennequin C., Janoir C., Barc M.-C., Collignon A., Karjalainen T. Identification and Characterization of a Fibronectin-Binding Protein from Clostridium difficile. Microbiology. 2003;149:2779–2787. doi: 10.1099/mic.0.26145-0.
    1. Tulli L., Marchi S., Petracca R., Shaw H.A., Fairweather N.F., Scarselli M., Soriani M., Leuzzi R. CbpA: A Novel Surface Exposed Adhesin of Clostridium difficile Targeting Human Collagen. Cell Microbiol. 2013;15:1674–1687. doi: 10.1111/cmi.12139.
    1. Valiente E., Bouché L., Hitchen P., Faulds-Pain A., Songane M., Dawson L.F., Donahue E., Stabler R.A., Panico M., Morris H.R., et al. Role of Glycosyltransferases Modifying Type B Flagellin of Emerging Hypervirulent Clostridium difficile Lineages and Their Impact on Motility and Biofilm Formation. J. Biol. Chem. 2016;291:25450–25461. doi: 10.1074/jbc.M116.749523.
    1. Faulds-Pain A., Twine S.M., Vinogradov E., Strong P.C.R., Dell A., Buckley A.M., Douce G.R., Valiente E., Logan S.M., Wren B.W. The Post-Translational Modification of the Clostridium difficile Flagellin Affects Motility, Cell Surface Properties and Virulence. Mol. Microbiol. 2014;94:272–289. doi: 10.1111/mmi.12755.
    1. Sievers S., Metzendorf N.G., Dittmann S., Troitzsch D., Gast V., Tröger S.M., Wolff C., Zühlke D., Hirschfeld C., Schlüter R., et al. Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front. Microbiol. 2019;10:258. doi: 10.3389/fmicb.2019.00258.
    1. Buckley A.M., Ewin D., Moura I.B., Wilcox M.H., Douce G.R. Insights into the Regulatory Mechanisms of Clostridioides difficile Biofilm Formation. bioRxiv. 2021 doi: 10.1101/2021.02.19.431970.
    1. Kearns D.B., Chu F., Branda S.S., Kolter R., Losick R. A Master Regulator for Biofilm Formation by Bacillus subtilis. Mol. Microbiol. 2005;55:739–749. doi: 10.1111/j.1365-2958.2004.04440.x.
    1. Lewis R.J., Brannigan J.A., Offen W.A., Smith I., Wilkinson A.J. An Evolutionary Link between Sporulation and Prophage Induction in the Structure of a Repressor:Anti-Repressor Complex11Edited by J. M. Thornton. J. Mol. Biol. 1998;283:907–912. doi: 10.1006/jmbi.1998.2163.
    1. Girinathan B.P., Ou J., Dupuy B., Govind R. Pleiotropic Roles of Clostridium difficile Sin Locus. PLoS Pathog. 2018;14:e1006940. doi: 10.1371/journal.ppat.1006940.
    1. Rezzonico F., Duffy B. Lack of Genomic Evidence of AI-2 Receptors Suggests a Non-Quorum Sensing Role for LuxS in Most Bacteria. BMC Microbiol. 2008;8:154. doi: 10.1186/1471-2180-8-154.
    1. Martin M.J., Clare S., Goulding D., Faulds-Pain A., Barquist L., Browne H.P., Pettit L., Dougan G., Lawley T.D., Wren B.W. The Agr Locus Regulates Virulence and Colonization Genes in Clostridium difficile 027. J. Bacteriol. 2013;195:3672–3681. doi: 10.1128/JB.00473-13.
    1. Soutourina O.A., Monot M., Boudry P., Saujet L., Pichon C., Sismeiro O., Semenova E., Severinov K., Le Bouguenec C., Coppée J.-Y., et al. Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile. PLoS Genet. 2013;9:e1003493. doi: 10.1371/journal.pgen.1003493.
    1. McKee R.W., Harvest C.K., Tamayo R. Cyclic Diguanylate Regulates Virulence Factor Genes via Multiple Riboswitches in Clostridium difficile. mSphere. 2018;3:e00423-18. doi: 10.1128/mSphere.00423-18.
    1. Arato V., Gasperini G., Giusti F., Ferlenghi I., Scarselli M., Leuzzi R. Dual Role of the Colonization Factor CD2831 in Clostridium difficile Pathogenesis. Sci. Rep. 2019;9:5554. doi: 10.1038/s41598-019-42000-8.
    1. Corver J., Cordo’ V., van Leeuwen H.C., Klychnikov O.I., Hensbergen P.J. Covalent Attachment and Pro-Pro Endopeptidase (PPEP-1)-Mediated Release of Clostridium difficile Cell Surface Proteins Involved in Adhesion. Mol. Microbiol. 2017;105:663–673. doi: 10.1111/mmi.13736.
    1. Boudry P., Gracia C., Monot M., Caillet J., Saujet L., Hajnsdorf E., Dupuy B., Martin-Verstraete I., Soutourina O. Pleiotropic Role of the RNA Chaperone Protein Hfq in the Human Pathogen Clostridium difficile. J. Bacteriol. 2014;196:3234–3248. doi: 10.1128/JB.01923-14.
    1. Cuenot E., Garcia-Garcia T., Douche T., Gorgette O., Courtin P., Denis-Quanquin S., Hoys S., Tremblay Y.D.N., Matondo M., Chapot-Chartier M.-P., et al. The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile. Infect. Immun. 2019;87:e00005-19. doi: 10.1128/IAI.00005-19.
    1. Jain S., Smyth D., O’Hagan B.M.G., Heap J.T., McMullan G., Minton N.P., Ternan N.G. Inactivation of the DnaK Gene in Clostridium difficile 630 Δerm Yields a Temperature-Sensitive Phenotype and Increases Biofilm-Forming Ability. Sci. Rep. 2017;7:17522. doi: 10.1038/s41598-017-17583-9.
    1. Walter B.M., Cartman S.T., Minton N.P., Butala M., Rupnik M. The SOS Response Master Regulator LexA Is Associated with Sporulation, Motility and Biofilm Formation in Clostridium difficile. PLoS ONE. 2015;10:e0144763. doi: 10.1371/journal.pone.0144763.
    1. Oliveira P.H., Ribis J.W., Garrett E.M., Trzilova D., Kim A., Sekulovic O., Mead E.A., Pak T., Zhu S., Deikus G., et al. Epigenomic Characterization of Clostridioides difficile Finds a Conserved DNA Methyltransferase That Mediates Sporulation and Pathogenesis. Nat. Microbiol. 2020;5:166–180. doi: 10.1038/s41564-019-0613-4.
    1. Trzilova D., Anjuwon-Foster B.R., Torres Rivera D., Tamayo R. Rho Factor Mediates Flagellum and Toxin Phase Variation and Impacts Virulence in Clostridioides difficile. PLoS Pathog. 2020;16:e1008708. doi: 10.1371/journal.ppat.1008708.
    1. Garrett E.M., Sekulovic O., Wetzel D., Jones J.B., Edwards A.N., Vargas-Cuebas G., McBride S.M., Tamayo R. Phase Variation of a Signal Transduction System Controls Clostridioides difficile Colony Morphology, Motility, and Virulence. PLoS Biol. 2019;17:e3000379. doi: 10.1371/journal.pbio.3000379.
    1. Sekulovic O., Mathias Garrett E., Bourgeois J., Tamayo R., Shen A., Camilli A. Genome-Wide Detection of Conservative Site-Specific Recombination in Bacteria. PLoS Genet. 2018;14:e1007332. doi: 10.1371/journal.pgen.1007332.
    1. Emerson J.E., Reynolds C.B., Fagan R.P., Shaw H.A., Goulding D., Fairweather N.F. A Novel Genetic Switch Controls Phase Variable Expression of CwpV, a Clostridium difficile Cell Wall Protein. Mol. Microbiol. 2009;74:541–556. doi: 10.1111/j.1365-2958.2009.06812.x.
    1. Anjuwon-Foster B.R., Tamayo R. A Genetic Switch Controls the Production of Flagella and Toxins in Clostridium difficile. PLoS Genet. 2017;13:e1006701. doi: 10.1371/journal.pgen.1006701.
    1. Reyes Ruiz L.M., Williams C.L., Tamayo R. Enhancing Bacterial Survival through Phenotypic Heterogeneity. PLoS Pathog. 2020;16:e1008439. doi: 10.1371/journal.ppat.1008439.
    1. Cargill J.S., Upton M. Low Concentrations of Vancomycin Stimulate Biofilm Formation in Some Clinical Isolates of Staphylococcus epidermidis. J. Clin. Pathol. 2009;62:1112–1116. doi: 10.1136/jcp.2009.069021.
    1. Bedran T.B.L., Grignon L., Spolidorio D.P., Grenier D. Subinhibitory Concentrations of Triclosan Promote Streptococcus Mutans Biofilm Formation and Adherence to Oral Epithelial Cells. PLoS ONE. 2014;9:e89059. doi: 10.1371/journal.pone.0089059.
    1. Wu S., Li X., Gunawardana M., Maguire K., Guerrero-Given D., Schaudinn C., Wang C., Baum M.M., Webster P. Beta- Lactam Antibiotics Stimulate Biofilm Formation in Non-Typeable Haemophilus influenzae by Up-Regulating Carbohydrate Metabolism. PLoS ONE. 2014;9:e99204. doi: 10.1371/journal.pone.0099204.
    1. McDonald L.C., Gerding D.N., Johnson S., Bakken J.S., Carroll K.C., Coffin S.E., Dubberke E.R., Garey K.W., Gould C.V., Kelly C., et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin. Infect. Dis. 2018;66:e1–e48. doi: 10.1093/cid/cix1085.
    1. Wultańska D., Piotrowski M., Pituch H. The Effect of Berberine Chloride and/or Its Combination with Vancomycin on the Growth, Biofilm Formation, and Motility of Clostridioides difficile. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1391–1399. doi: 10.1007/s10096-020-03857-0.
    1. Vardakas K.Z., Polyzos K.A., Patouni K., Rafailidis P.I., Samonis G., Falagas M.E. Treatment Failure and Recurrence of Clostridium difficile Infection Following Treatment with Vancomycin or Metronidazole: A Systematic Review of the Evidence. Int. J. Antimicrob. Agents. 2012;40:1–8. doi: 10.1016/j.ijantimicag.2012.01.004.
    1. Ridlon J.M., Kang D.-J., Hylemon P.B. Bile Salt Biotransformations by Human Intestinal Bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200.
    1. Wells J.E., Williams K.B., Whitehead T.R., Heuman D.M., Hylemon P.B. Development and Application of a Polymerase Chain Reaction Assay for the Detection and Enumeration of Bile Acid 7α-Dehydroxylating Bacteria in Human Feces. Clin. Chim. Acta. 2003;331:127–134. doi: 10.1016/S0009-8981(03)00115-3.
    1. Piotrowski M., Wultańska D., Obuch-Woszczatyński P., Pituch H. Fructooligosaccharides and Mannose Affect Clostridium difficile Adhesion and Biofilm Formation in a Concentration-Dependent Manner. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1975–1984. doi: 10.1007/s10096-019-03635-7.
    1. Pereira F.C., Wasmund K., Cobankovic I., Jehmlich N., Herbold C.W., Lee K.S., Sziranyi B., Vesely C., Decker T., Stocker R., et al. Rational Design of a Microbial Consortium of Mucosal Sugar Utilizers Reduces Clostridium difficile Colonization. Nat. Commun. 2020;11:5104. doi: 10.1038/s41467-020-18928-1.
    1. Engevik M.A., Engevik A.C., Engevik K.A., Auchtung J.M., Chang-Graham A.L., Ruan W., Luna R.A., Hyser J.M., Spinler J.K., Versalovic J. Mucin-Degrading Microbes Release Monosaccharides That Chemoattract Clostridioides difficile and Facilitate Colonization of the Human Intestinal Mucus Layer. ACS Infect. Dis. 2020;7:1126–1142. doi: 10.1021/acsinfecdis.0c00634.
    1. Buffie C.G., Bucci V., Stein R.R., McKenney P.T., Ling L., Gobourne A., No D., Liu H., Kinnebrew M., Viale A., et al. Precision Microbiome Restoration of Bile Acid-Mediated Resistance to Clostridium difficile. Nature. 2015;517:205–208. doi: 10.1038/nature13828.
    1. Normington C., Moura I.B., Bryant J.A., Ewin D.J., Clark E.V., Kettle M.J., Harris H.C., Spittal W., Davis G., Henn M.R., et al. Biofilms Harbour Clostridioides difficile, Serving as a Reservoir for Recurrent Infection. NPJ Biofilms Microbiomes. 2021;7:1–10. doi: 10.1038/s41522-021-00184-w.
    1. Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz M.A., Hussain T., Ali M., Rafiq M., Kamil M.A. Bacterial Biofilm and Associated Infections. J. Chin. Med. Assoc. 2018;81:7–11. doi: 10.1016/j.jcma.2017.07.012.
    1. Stewart D.B., Wright J.R., Fowler M., McLimans C.J., Tokarev V., Amaniera I., Baker O., Wong H.-T., Brabec J., Drucker R., et al. Integrated Meta-Omics Reveals a Fungus-Associated Bacteriome and Distinct Functional Pathways in Clostridioides difficile Infection. mSphere. 2019;4:e00454-19. doi: 10.1128/mSphere.00454-19.
    1. Hall-Stoodley L., Costerton J.W., Stoodley P. Bacterial Biofilms: From the Natural Environment to Infectious Diseases. Nat. Rev. Microbiol. 2004;2:95–108. doi: 10.1038/nrmicro821.
    1. Sauer K., Camper A.K., Ehrlich G.D., Costerton J.W., Davies D.G. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. J. Bacteriol. 2002;184:1140–1154. doi: 10.1128/jb.184.4.1140-1154.2002.
    1. Yan F., Yu Y., Gozzi K., Chen Y., Guo J., Chai Y. Genome-Wide Investigation of Biofilm Formation in Bacillus cereus. Appl. Environ. Microbiol. 2017;83:e00561-17. doi: 10.1128/AEM.00561-17.
    1. Hall-Stoodley L., Stoodley P. Evolving Concepts in Biofilm Infections. Cell Microbiol. 2009;11:1034–1043. doi: 10.1111/j.1462-5822.2009.01323.x.
    1. Mathur H., Rea M.C., Cotter P.D., Hill C., Ross R.P. The Efficacy of Thuricin CD, Tigecycline, Vancomycin, Teicoplanin, Rifampicin and Nitazoxanide, Independently and in Paired Combinations against Clostridium difficile Biofilms and Planktonic Cells. Gut Pathog. 2016;8:20. doi: 10.1186/s13099-016-0102-8.
    1. Mah T.-F.C., O’Toole G.A. Mechanisms of Biofilm Resistance to Antimicrobial Agents. Trends Microbiol. 2001;9:34–39. doi: 10.1016/S0966-842X(00)01913-2.
    1. Jefferson K.K., Goldmann D.A., Pier G.B. Use of Confocal Microscopy to Analyze the Rate of Vancomycin Penetration through Staphylococcus aureus Biofilms. Antimicrob. Agents Chemother. 2005;49:2467–2473. doi: 10.1128/AAC.49.6.2467-2473.2005.
    1. Walters M.C., Roe F., Bugnicourt A., Franklin M.J., Stewart P.S. Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin. Antimicrob. Agents Chemother. 2003;47:317–323. doi: 10.1128/AAC.47.1.317-323.2003.
    1. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E.P., Høiby N. Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production. Antimicrob. Agents Chemother. 2004;48:1175–1187. doi: 10.1128/AAC.48.4.1175-1187.2004.
    1. Bakkeren E., Huisman J.S., Fattinger S.A., Hausmann A., Furter M., Egli A., Slack E., Sellin M.E., Bonhoeffer S., Regoes R.R., et al. Salmonella Persisters Promote the Spread of Antibiotic Resistance Plasmids in the Gut. Nature. 2019;573:276–280. doi: 10.1038/s41586-019-1521-8.
    1. Álvarez R., Inostroza O., Garavaglia M., Minton N.P., Paredes-Sabja D., Gil F. Effect of Antibiotic Treatment on the Formation of Non-Spore Clostridium difficile Persister-like Cells. J. Antimicrob. Chemother. 2018;73:2396–2399. doi: 10.1093/jac/dky186.
    1. Pettit L.J., Browne H.P., Yu L., Smits W., Fagan R.P., Barquist L., Martin M.J., Goulding D., Duncan S.H., Flint H.J., et al. Functional Genomics Reveals That Clostridium difficile Spo0A Coordinates Sporulation, Virulence and Metabolism. BMC Genom. 2014;15:160. doi: 10.1186/1471-2164-15-160.
    1. Clevers H. The Intestinal Crypt, A Prototype Stem Cell Compartment. Cell. 2013;154:274–284. doi: 10.1016/j.cell.2013.07.004.
    1. Johansson M.E.V., Sjövall H., Hansson G.C. The Gastrointestinal Mucus System in Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2013;10:352–361. doi: 10.1038/nrgastro.2013.35.
    1. Johansson M.E.V., Hansson G.C. Immunological Aspects of Intestinal Mucus and Mucins. Nat. Rev. Immunol. 2016;16:639–649. doi: 10.1038/nri.2016.88.
    1. Buckley A.M., Moura I.B., Arai N., Spittal W., Clark E., Nishida Y., Harris H.C., Bentley K., Davis G., Wang D., et al. Trehalose-Induced Remodelling of the Human Microbiota Affects Clostridioides difficile Infection Outcome in an In vitro Colonic Model: A Pilot Study. Front. Cell. Infect. Microbiol. 2021;11:670935. doi: 10.3389/fcimb.2021.670935.
    1. Abbas A., Zackular J.P. Microbe–Microbe Interactions during Clostridioides difficile Infection. Curr. Opin. Microbiol. 2020;53:19–25. doi: 10.1016/j.mib.2020.01.016.
    1. Jenior M.L., Leslie J.L., Powers D.A., Garrett E.M., Walker K.A., Dickenson M.E., Petri W.A., Tamayo R., Papin J.A. Conserved Virulence-Linked Metabolic Reprogramming in Clostridioides difficile Identified through Genome-Scale Metabolic Network Analysis. bioRxiv. 2020 doi: 10.1101/2020.11.09.373480.
    1. Henson M.A. Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection. PLoS Comput. Biol. 2021;17:e1008782. doi: 10.1371/journal.pcbi.1008782.
    1. Phalak P., Henson M.A. Metabolic Modeling of Clostridium difficile Associated Dysbiosis of the Gut Microbiota. Processes. 2019;7:97. doi: 10.3390/pr7020097.
    1. Knippel R.J., Wexler A.G., Miller J.M., Beavers W.N., Weiss A., de Crécy-Lagard V., Edmonds K.A., Giedroc D.P., Skaar E.P. Clostridioides difficile Senses and Hijacks Host Heme for Incorporation into an Oxidative Stress Defense System. Cell Host Microbe. 2020;28:411–421.e6. doi: 10.1016/j.chom.2020.05.015.
    1. Fletcher J.R., Pike C.M., Parsons R.J., Rivera A.J., Foley M.H., McLaren M.R., Montgomery S.A., Theriot C.M. Clostridioides difficile Exploits Toxin-Mediated Inflammation to Alter the Host Nutritional Landscape and Exclude Competitors from the Gut Microbiota. Nat. Commun. 2021;12:462. doi: 10.1038/s41467-020-20746-4.

Source: PubMed

3
Abonneren