Host Immune Responses to Clostridioides difficile: Toxins and Beyond

Britt Nibbering, Dale N Gerding, Ed J Kuijper, Romy D Zwittink, Wiep Klaas Smits, Britt Nibbering, Dale N Gerding, Ed J Kuijper, Romy D Zwittink, Wiep Klaas Smits

Abstract

Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.

Keywords: Clostridioides difficile; NTCD; immune response; non-toxigenic C. difficile; non-toxin proteins; toxins.

Conflict of interest statement

DG holds technology for the use of non-toxigenic C. difficile for the prevention and treatment of CDI licensed to Destiny Pharma plc, Brighton, United Kingdom. EK has received an unrestricted research grant from Vedanta Bioscience, Boston, United States. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Nibbering, Gerding, Kuijper, Zwittink and Smits.

Figures

FIGURE 1
FIGURE 1
Comparison of the immune responses to toxigenic Clostridioides difficile (C. difficile) and non-toxin proteins. (A) Responses to toxigenic C. difficile and its toxins. Toxins damage colonocytes which results in the loss of epithelial barrier integrity and the production of antimicrobial peptides (AMPs), such as LL-37, interleukins (ILs), IL-25 and IL-33, and reactive oxygen species (ROS) and nitrogen oxygen species (NOS). Subepithelial enteric glial cells add to a pro-inflammatory environment by the production of S100B and IL-6 and the toxin affected epithelial cells attract plasminogen which in turn contributes to the production IL-10, IL-12, and other cytokines. The resident microbiome also contributes by producing AMPs and pro-inflammatory cytokines and as the barrier function of the colon is decreased translocation of the intestinal microbiome contributes to further enhances inflammation. Subsequently, resident colonic epithelial cells produce chemokines to attract immune cells to the site of infection, such as IL-8 and CXCL-1. Neutrophils arrive at the site of infection and provide support by tackling the vegetative cells and secreting pro-inflammatory cytokines, including interferon γ (IFN-γ) and aid in the production of other pro-inflammatory molecules, such as ROS. IFN-γ performs several actions, namely stimulation of phagocytosis by macrophages and the repair mechanisms of colonocytes. Eosinophils are drawn to the site of infection by IL-25 and produce pro-inflammatory cytokines, including IL-4, that both results in a Th2 response and a dampening of the immune response and tissue repair. During C. difficile infection (CDI), macrophages phagocytose vegetative cells and potentially spores and secrete pro-inflammatory cytokines, such as IL-1β and IL-6. Innate lymphoid cells are attracted by IL-33, IL-23 and IL-1β and ILC3s produce pro-inflammatory cytokines, including IL-17a, IFN- γ, and tumor necrosis factor (TNF) and in that way stimulate a Th17 response. ILCs also produce IL-22 that stimulates phagocytosis by macrophages, the killing of commensals by neutrophils, and AMP production by epithelial cells. ILC2 cells secrete IL-13 and IL-5 of which the latter attracts eosinophils. Dendritic cells (DCs) produce TNF-α in response to damaged epithelium and phagocytose these cells. Finally, plasma cells produce antibodies targeting toxins and vegetative cells. (B) Responses to non-toxin proteins and non-toxigenic C. difficile. SLPs can induce the production of IL-10 and directly stimulate phagocytosis by macrophages and SLPA has also been shown to trigger a pro-inflammatory immune response through IL-6, TNF-α, and IL-12p40 production by activated macrophages. Furthermore, SLPs activate DCs which in turn skew the adaptive immune response towards Th1 and Th17. FliC is recognized by toll like receptor 5 on colonocytes which produce IL-8 and CCL20 which attracts neutrophils, DCs, and lymphocytes. Finally, plasma cells produce antibodies against a variety of non-toxin proteins. Created with BioRender.com.
FIGURE 2
FIGURE 2
Clostridioides difficile cell envelope. A vegetative C. difficile cell expresses many proteins on its outer surface that the immune system can recognize. Additionally, C. difficile toxins are highly immunogenic. The flagella consists of FliD and FliC proteins. Cell wall proteins (Cwps), such as Cwp22 and Surface layer proteins (SLPs). TcdA, TcdB, and CDT. SLPs and other Cwps consist of a high molecular weight domain (HMW) in dark purple and a low molecular weight (LMW) protein in light purple. The LMW domain is exposed to the environment and can be recognized by the immune system. The bars represent putative lipid-containing polymers (Fagan et al., 2009). Created with BioRender.com.

References

    1. Abt M. C., Lewis B. B., Caballero S., Xiong H., Carter R. A., Sušac B., et al. (2015). Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe 18 27–37. 10.1016/j.chom.2015.06.011
    1. Abt M. C., McKenney P. T., Pamer E. G. (2016). Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14 609–620. 10.1038/nrmicro.2016.108
    1. Aktories K., Schwan C., Jank T. (2017). Clostridium difficile toxin biology. Annu. Rev. Microbiol. 71 281–307. 10.1146/annurev-micro-090816-093458
    1. Amadou Amani S., Lang G. A., Ballard J. D., Lang M. L. (2021). The murine neonatal Fc receptor is required for transport of immunization-induced C. difficile-specific IgG to the gut and protection against disease but does not affect disease susceptibility. Infect. Immun. 89:e0027421. 10.1128/iai.00274-21
    1. Amadou Amani S., Shadid T., Ballard J. D., Lang M. L. (2020). Clostridioides difficile infection induces an inferior IgG response to that induced by immunization and is associated with a lack of T follicular helper cell and memory B cell expansion. Infect. Immun. 88:e00829-19. 10.1128/IAI.00829-19
    1. Anosova N. G., Brown A. M., Li L., Liu N., Cole L. E., Zhang J., et al. (2013). Systemic antibody responses induced by a two-component Clostridium difficile toxoid vaccine protect against C. difficile-associated disease in hamsters. J. Med. Microbiol. 62(Pt 9) 1394–1404. 10.1099/jmm.0.056796-0
    1. Anosova N. G., Cole L. E., Li L., Zhang J., Brown A. M., Mundle S., et al. (2015). A combination of three fully human toxin A- and toxin B-specific monoclonal antibodies protects against challenge with highly virulent epidemic strains of Clostridium difficile in the hamster model. Clin. Vaccine Immunol. 22 711–725. 10.1128/CVI.00763-14
    1. Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 337–341. 10.1126/science.1198469
    1. Ausiello C. M., Cerquetti M., Fedele G., Spensieri F., Palazzo R., Nasso M., et al. (2006). Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. Microbes Infect. 8 2640–2646. 10.1016/j.micinf.2006.07.009
    1. Awad M. M., Hutton M. L., Quek A. J., Klare W. P., Mileto S. J., Mackin K., et al. (2020). Human plasminogen exacerbates Clostridioides difficile enteric disease and alters the spore surface. Gastroenterology 159 1431–1443.e6. 10.1053/j.gastro.2020.06.032
    1. Bacci S., Mølbak K., Kjeldsen M. K., Olsen K. E. P. (2011). Binary toxin and death after Clostridium difficile infection. Emerg. Infect. Dis. 17 976–982. 10.3201/eid/1706.101483
    1. Bacon A. E., III, Fekety R. (1994). Immunoglobulin G directed against toxins A and B of Clostridium difficile in the general population and patients with antibiotic-associated diarrhea. Diagn. Microbiol. Infect. Dis. 18 205–209. 10.1016/0732-8893(94)90021-3
    1. Baliban S. M., Michael A., Shammassian B., Mudakha S., Khan A. S., Cocklin S., et al. (2014). An optimized, synthetic DNA vaccine encoding the toxin A and toxin B receptor binding domains of Clostridium difficile induces protective antibody responses in vivo. Infect. Immun. 82 4080–4091. 10.1128/IAI.01950-14
    1. Barketi-Klai A., Monot M., Hoys S., Lambert-Bordes S., Kuehne S. A., Minton N., et al. (2014). The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection. PLoS One 9:e96876. 10.1371/journal.pone.0096876
    1. Batah J., Denève-Larrazet C., Jolivot P.-A., Kuehne S., Collignon A., Marvaud J.-C., et al. (2016). Clostridium difficile flagella predominantly activate TLR5-linked NF-κB pathway in epithelial cells. Anaerobe 38 116–124. 10.1016/j.anaerobe.2016.01.002
    1. Bernal I., Hofmann J. D., Bulitta B., Klawonn F., Michel A.-M., Jahn D., et al. (2018). Clostridioides difficile activates human mucosal-associated invariant T cells. Front. Microbiol. 9:2532. 10.3389/fmicb.2018.02532
    1. Borriello S. P., Barclay F. E. (1985). Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. J. Med. Microbiol. 19 339–350. 10.1099/00222615-19-3-339
    1. Bradshaw W. J., Roberts A. K., Shone C. C., Acharya K. R. (2018). The structure of the S-layer of Clostridium difficile. J. Cell Commun. Signal. 12 319–331. 10.1007/s12079-017-0429-z
    1. Braun V., Hundsberger T., Leukel P., Sauerborn M., von Eichel-Streiber C. (1996). Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181 29–38. 10.1016/s0378-1119(96)00398-8
    1. Brun P., Scarpa M., Grillo A., Palù G., Mengoli C., Zecconi A., et al. (2008). Clostridium difficile TxAC314 and SLP-36kDa enhance the immune response toward a co-administered antigen. J. Med. Microbiol. 57(Pt 6) 725–731. 10.1099/jmm.0.47736-0
    1. Bruxelle J. F., Mizrahi A., Hoys S., Collignon A., Janoir C., Péchiné S. (2016). Immunogenic properties of the surface layer precursor of Clostridium difficile and vaccination assays in animal models. Anaerobe 37 78–84. 10.1016/j.anaerobe.2015.10.010
    1. Bruxelle J.-F., Mizrahi A., Hoÿs S., Collignon A., Janoir C., Péchiné S. (2017). Clostridium difficile flagellin FliC: evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PLoS One 12:e0187212. 10.1371/journal.pone.0187212
    1. Bruxelle J. F., Tsapis N., Hoys S., Collignon A., Janoir C., Fattal E., et al. (2018). Protection against Clostridium difficile infection in a hamster model by oral vaccination using flagellin FliC-loaded pectin beads. Vaccine 36 6017–6021. 10.1016/j.vaccine.2018.08.013
    1. Buonomo E. L., Cowardin C. A., Wilson M. G., Saleh M. M., Pramoonjago P., Petri W. A., Jr. (2016). Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep. 16 432–443. 10.1016/j.celrep.2016.06.007
    1. Buonomo E. L., Madan R., Pramoonjago P., Li L., Okusa M. D., Petri W. A., Jr. (2013). Role of interleukin 23 signaling in Clostridium difficile colitis. J. Infect. Dis. 208 917–920. 10.1093/infdis/jit277
    1. Cao J., Wang D., Xu F., Gong Y., Wang H., Song Z., et al. (2014). Activation of IL-27 signalling promotes development of postinfluenza pneumococcal pneumonia. EMBO Mol. Med. 6 120–140. 10.1002/emmm.201302890
    1. Carter G. P., Lyras D., Allen D. L., Mackin K. E., Howarth P. M., O’Connor J. R., et al. (2007). Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J. Bacteriol. 189 7290–7301. 10.1128/jb.00731-07
    1. Castagliuolo I., Keates A. C., Wang C. C., Pasha A., Valenick L., Kelly C. P., et al. (1998). Clostridium difficile toxin A stimulates macrophage-inflammatory protein-2 production in rat intestinal epithelial cells. J. Immunol. 160 6039–6045.
    1. Castro-Dopico T., Clatworthy M. R. (2019). IgG and Fcγ receptors in intestinal immunity and inflammation. Front. Immunol. 10:805. 10.3389/fimmu.2019.00805
    1. Centers for Disease Control and Prevention [CDC] (2019). Clostridioides difficile [Online]. Available online at: (accessed July 2020)
    1. Chandrasekaran R., Lacy D. B. (2017). The role of toxins in Clostridium difficile infection. FEMS Microbiol. Rev. 41 723–750. 10.1093/femsre/fux048
    1. Chang J. Y., Antonopoulos D. A., Kalra A., Tonelli A., Khalife W. T., Schmidt T. M., et al. (2008). Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J. Infect. Dis. 197 435–438. 10.1086/525047
    1. Chen K., Zhu Y., Zhang Y., Hamza T., Yu H., Saint Fleur A., et al. (2020). A probiotic yeast-based immunotherapy against Clostridioides difficile infection. Sci. Transl. Med. 12:eaax4905. 10.1126/scitranslmed.aax4905
    1. Chen Y. S., Chen I. B., Pham G., Shao T. Y., Bangar H., Way S. S., et al. (2020). IL-17-producing γδ T cells protect against Clostridium difficile infection. J. Clin. Invest. 130 2377–2390. 10.1172/jci127242
    1. Cirillo C., Sarnelli G., Esposito G., Turco F., Steardo L., Cuomo R. (2011). S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation. World J. Gastroenterol. 17 1261–1266. 10.3748/wjg.v17.i10.1261
    1. Collins L., Lynch M., Marszalowska I., Kristek M., Rochfort K., O’Connell M., et al. (2014). Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages. Microbes Infect. 16 391–400. 10.1016/j.micinf.2014.02.001
    1. Coombes J. L., Powrie F. (2008). Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8 435–446. 10.1038/nri2335
    1. Costa D. V. S., Moura-Neto V., Bolick D. T., Guerrant R. L., Fawad J. A., Shin J. H., et al. (2021). S100B inhibition attenuates intestinal damage and diarrhea severity during Clostridioides difficile infection by modulating inflammatory response. Front. Cell. Infect. Microbiol. 11:739874. 10.3389/fcimb.2021.739874
    1. Cowardin C. A., Buonomo E. L., Saleh M. M., Wilson M. G., Burgess S. L., Kuehne S. A., et al. (2016). The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat. Microbiol. 1:16108. 10.1038/nmicrobiol.2016.108
    1. Cowardin C. A., Kuehne S. A., Buonomo E. L., Marie C. S., Minton N. P., Petri W. A., Jr. (2015). Inflammasome activation contributes to interleukin-23 production in response to Clostridium difficile. mBio 6:e02386-14. 10.1128/mBio.02386-14
    1. de Bruyn G., Gordon D. L., Steiner T., Tambyah P., Cosgrove C., Martens M., et al. (2021). Safety, immunogenicity, and efficacy of a Clostridioides difficile toxoid vaccine candidate: a phase 3 multicentre, observer-blind, randomised, controlled trial. Lancet Infect. Dis. 21 252–262. 10.1016/s1473-3099(20)30331-5
    1. de Oliveira Júnior C. A., Silva R. O. S., Diniz A. N., Pires P. S., Lobato F. C. F., de Assis R. A. (2016). Prevention of Clostridium difficile infection in hamsters using a non-toxigenic strain. Ciência Rural 46 853–859.
    1. De Roo A. C., Regenbogen S. E. (2020). Clostridium difficile Infection: an epidemiology update. Clin. Colon Rectal Surg. 33 49–57. 10.1055/s-0040-1701229
    1. Di Bella S., Ascenzi P., Siarakas S., Petrosillo N., di Masi A. (2016). Clostridium difficile toxins A and B: insights into pathogenic properties and extraintestinal effects. Toxins 8:134. 10.3390/toxins8050134
    1. Donald R. G. K., Flint M., Kalyan N., Johnson E., Witko S. E., Kotash C., et al. (2013). A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology (Reading) 159(Pt 7) 1254–1266. 10.1099/mic.0.066712-0
    1. Donlan A. N., Simpson M. E., Petri W. A., Jr. (2020). Type 2 cytokines IL-4 and IL-5 reduce severe outcomes from Clostridiodes difficile infection. Anaerobe 66:102275. 10.1016/j.anaerobe.2020.102275
    1. Drudy D., Calabi E., Kyne L., Sougioultzis S., Kelly E., Fairweather N., et al. (2004). Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol. Med. Microbiol. 41 237–242. 10.1016/j.femsim.2004.03.007
    1. Engevik M. A., Danhof H. A., Shrestha R., Chang-Graham A. L., Hyser J. M., Haag A. M., et al. (2020). Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 12:1788898. 10.1080/19490976.2020.1795388
    1. Fachi J. L., Sécca C., Rodrigues P. B., de Mato F. C. P., Di Luccia B., Felipe J. d. S., et al. (2020). Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J. Exp. Med. 217:jem.20190489. 10.1084/jem.20190489
    1. Fagan R. P., Albesa-Jové D., Qazi O., Svergun D. I., Brown K. A., Fairweather N. F. (2009). Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol. Microbiol. 71 1308–1322. 10.1111/j.1365-2958.2009.06603.x
    1. Fagan R. P., Fairweather N. F. (2014). Biogenesis and functions of bacterial S-layers. Nat. Rev. Microbiol. 12 211–222. 10.1038/nrmicro3213
    1. Fagan R. P., Janoir C., Collignon A., Mastrantonio P., Poxton I. R., Fairweather N. F. (2011). A proposed nomenclature for cell wall proteins of Clostridium difficile. J. Med. Microbiol. 60(Pt 8) 1225–1228. 10.1099/jmm.0.028472-0
    1. Farrow M. A., Chumbler N. M., Lapierre L. A., Franklin J. L., Rutherford S. A., Goldenring J. R., et al. (2013). Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc. Natl. Acad. Sci. U.S.A. 110 18674–18679. 10.1073/pnas.1313658110
    1. Frisbee A. L., Saleh M. M., Young M. K., Leslie J. L., Simpson M. E., Abhyankar M. M., et al. (2019). IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nat. Commun. 10:2712. 10.1038/s41467-019-10733-9
    1. Gamage S. D., Patton A. K., Strasser J. E., Chalk C. L., Weiss A. A. (2006). Commensal bacteria influence Escherichia coli O157:H7 persistence and Shiga toxin production in the mouse intestine. Infect. Immun. 74 1977–1983. 10.1128/IAI.74.3.1977-1983.2006
    1. Gardiner D. F., Rosenberg T., Zaharatos J., Franco D., Ho D. D. (2009). A DNA vaccine targeting the receptor-binding domain of Clostridium difficile toxin A. Vaccine 27 3598–3604. 10.1016/j.vaccine.2009.03.058
    1. Geiger T. L., Abt M. C., Gasteiger G., Firth M. A., O’Connor M. H., Geary C. D., et al. (2014). Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211 1723–1731. 10.1084/jem.20140212
    1. Gerding D. N., Meyer T., Lee C., Cohen S. H., Murthy U. K., Poirier A., et al. (2015). Administration of spores of nontoxigenic Clostridium difficile Strain M3 for prevention of recurrent C difficile infection: a randomized clinical trial. JAMA 313 1719–1727. 10.1001/jama.2015.3725
    1. Gerding D. N., Sambol S. P., Johnson S. (2018). Non-toxigenic Clostridioides (formerly Clostridium) difficile for Prevention of C. difficile infection: from bench to bedside back to bench and back to bedside. Front. Microbiol. 9:1700. 10.3389/fmicb.2018.01700
    1. Ghose C., Eugenis I., Sun X., Edwards A. N., McBride S. M., Pride D. T., et al. (2016). Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg. Microbes Infect. 5:e8. 10.1038/emi.2016.8
    1. Ghose C., Kelly C. P. (2015). The prospect for vaccines to prevent Clostridium difficile infection. Infect. Dis. Clin. North Am. 29 145–162. 10.1016/j.idc.2014.11.013
    1. Gieseck R. L., III, Wilson M. S., Wynn T. A. (2018). Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18 62–76. 10.1038/nri.2017.90
    1. Grazia Roncarolo M., Gregori S., Battaglia M., Bacchetta R., Fleischhauer K., Levings M. K. (2006). Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212 28–50. 10.1111/j.0105-2896.2006.00420.x
    1. Gupta S. B., Mehta V., Dubberke E. R., Zhao X., Dorr M. B., Guris D., et al. (2016). Antibodies to toxin B are protective against Clostridium difficile infection recurrence. Clin. Infect. Dis. 63 730–734. 10.1093/cid/ciw364
    1. Hall J. A., Bouladoux N., Sun C. M., Wohlfert E. A., Blank R. B., Zhu Q., et al. (2008). Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29 637–649. 10.1016/j.immuni.2008.08.009
    1. Hamo Z., Azrad M., Nitzan O., Peretz A. (2019). Characterization of the immune response during infection caused by Clostridioides difficile. Microorganisms 7:435. 10.3390/microorganisms7100435
    1. Hasegawa M., Kamada N., Jiao Y., Liu M. Z., Núñez G., Inohara N. (2012). Protective role of commensals against Clostridium difficile infection via an IL-1β-mediated positive-feedback loop. J. Immunol. 189 3085–3091. 10.4049/jimmunol.1200821
    1. Hasegawa M., Yada S., Liu M. Z., Kamada N., Muñoz-Planillo R., Do N., et al. (2014). Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity 41 620–632. 10.1016/j.immuni.2014.09.010
    1. Hasegawa M., Yamazaki T., Kamada N., Tawaratsumida K., Kim Y. G., Núñez G., et al. (2011). Nucleotide-binding oligomerization domain 1 mediates recognition of Clostridium difficile and induces neutrophil recruitment and protection against the pathogen. J. Immunol. 186 4872–4880. 10.4049/jimmunol.1003761
    1. Hennequin C., Porcheray F., Waligora-Dupriet A.-J., Collignon A., Barc M.-C., Bourlioux P., et al. (2001). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 47 87–96. 10.1099/00221287-147-1-87
    1. Hernández Del Pino R. E., Barbero A. M., Español L. Á, Morro L. S., Pasquinelli V. (2021). The adaptive immune response to Clostridioides difficile: a tricky balance between immunoprotection and immunopathogenesis. J. Leukoc. Biol. 109 195–210. 10.1002/JLB.4VMR0720-201R
    1. Higgins D., Dworkin J. (2012). Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36 131–148. 10.1111/j.1574-6976.2011.00310.x
    1. Hing T. C., Ho S., Shih D. Q., Ichikawa R., Cheng M., Chen J., et al. (2013). The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 62 1295–1305. 10.1136/gutjnl-2012-302180
    1. Ho T. D., Ellermeier C. D. (2011). PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function σ factors in Clostridium difficile. Infect. Immun. 79 3229–3238. 10.1128/IAI.00019-11
    1. Huang A., Marini B., Frame D., Aronoff D., Nagel J. (2014). Risk factors for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl. Infect. Dis. 16 744–750. 10.1111/tid.12267
    1. Huang T., Perez Cordon G., Shi L., Li G., Sun X., Wang X., et al. (2015). Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells. Pathog. Dis. 73:ftv008. 10.1093/femspd/ftv008
    1. Ikutani M., Yanagibashi T., Ogasawara M., Tsuneyama K., Yamamoto S., Hattori Y., et al. (2012). Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188 703–713. 10.4049/jimmunol.1101270
    1. Jafari N. V., Kuehne S. A., Bryant C. E., Elawad M., Wren B. W., Minton N. P., et al. (2013). Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 8:e69846. 10.1371/journal.pone.0069846
    1. Jafari N. V., Songane M., Stabler R. A., Elawad M., Wren B. W., Allan E., et al. (2014). Host immunity to Clostridium difficile PCR ribotype 017 strains. Infect. Immun. 82 4989–4996. 10.1128/IAI.02605-14
    1. Jarchum I., Liu M., Lipuma L., Pamer E. G. (2011). Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis. Infect. Immun. 79 1498–1503. 10.1128/IAI.01196-10
    1. Jarchum I., Liu M., Shi C., Equinda M., Pamer E. G. (2012). Critical role for MyD88-mediated neutrophil recruitment during Clostridium difficile colitis. Infect. Immun. 80 2989–2996. 10.1128/IAI.00448-12
    1. Johnson S., Gerding D. N., Janoff E. N. (1992). Systemic and mucosal antibody responses to toxin A in patients infected with Clostridium difficile. J. Infect. Dis. 166 1287–1294. 10.1093/infdis/166.6.1287
    1. Johnson S., Lavergne V., Skinner A. M., Gonzales-Luna A. J., Garey K. W., Kelly C. P., et al. (2021). Clinical practice guideline by the infectious diseases society of America (IDSA) and society for healthcare epidemiology of America (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 73 e1029–e1044. 10.1093/cid/ciab549
    1. Jose S., Madan R. (2016). Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections. Anaerobe 41 85–90. 10.1016/j.anaerobe.2016.04.001
    1. Karlsson S., Dupuy B., Mukherjee K., Norin E., Burman L. G., Akerlund T. (2003). Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect. Immun. 71 1784–1793. 10.1128/iai.71.4.1784-1793.2003
    1. Karyal C., Hughes J., Kelly M. L., Luckett J. C., Kaye P. V., Cockayne A., et al. (2021). Colonisation factor CD0873, an attractive oral vaccine candidate against Clostridioides difficile. Microorganisms 9:306. 10.3390/microorganisms9020306
    1. Keller J. J., Kuijper E. J. (2015). Treatment of recurrent and severe Clostridium difficile infection. Annu. Rev. Med. 66 373–386. 10.1146/annurev-med-070813-114317
    1. Kelly C. P., Becker S., Linevsky J. K., Joshi M. A., O’Keane J. C., Dickey B. F., et al. (1994). Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J. Clin. Invest. 93 1257–1265. 10.1172/JCI117080
    1. Kirk J. A., Banerji O., Fagan R. P. (2017). Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb. Biotechnol. 10 76–90. 10.1111/1751-7915.12372
    1. Kitchin N., Remich S. A., Peterson J., Peng Y., Gruber W. C., Jansen K. U., et al. (2020). A phase 2 study evaluating the safety, tolerability, and immunogenicity of two 3-dose regimens of a Clostridium difficile vaccine in healthy US adults aged 65 to 85 years. Clin. Infect. Dis. 70 1–10. 10.1093/cid/ciz153
    1. Kovacs-Simon A., Leuzzi R., Kasendra M., Minton N., Titball R. W., Michell S. L. (2014). Lipoprotein CD0873 is a novel adhesin of Clostridium difficile. J. Infect. Dis. 210 274–284. 10.1093/infdis/jiu070
    1. Kulaylat A. S., Buonomo E. L., Scully K. W., Hollenbeak C. S., Cook H., Petri W. A., Jr., et al. (2018). Development and validation of a prediction model for mortality and adverse outcomes among patients with peripheral eosinopenia on admission for Clostridium difficile infection. JAMA Surg. 153 1127–1133. 10.1001/jamasurg.2018.3174
    1. Kyne L., Warny M., Qamar A., Kelly C. P. (2000). Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 342 390–397. 10.1056/nejm200002103420604
    1. Kyne L., Warny M., Qamar A., Kelly C. P. (2001). Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357 189–193. 10.1016/S0140-6736(00)03592-3
    1. Leav B. A., Blair B., Leney M., Knauber M., Reilly C., Lowy I., et al. (2010). Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 28 965–969. 10.1016/j.vaccine.2009.10.144
    1. Leffler D. A., Lamont J. T. (2015). Clostridium difficile infection. N. Engl. J. Med. 372 1539–1548. 10.1056/NEJMra1403772
    1. Leslie J. L., Jenior M. L., Vendrov K. C., Standke A. K., Barron M. R., O’Brien T. J., et al. (2021). Protection from lethal Clostridioides difficile infection via intraspecies competition for cogerminant. mBio 12:e00522-21. 10.1128/mBio.00522-21
    1. Lessa F. C., Gould C. V., McDonald L. C. (2012). Current status of Clostridium difficile infection epidemiology. Clin. Infect. Dis. 55(Suppl. 2) S65–S70. 10.1093/cid/cis319
    1. Li C., Harmanus C., Zhu D., Meng X., Wang S., Duan J., et al. (2018). Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive Clostridium difficile strain associated with severe diarrhea. Emerg. Microbes Infect. 7 211–211. 10.1038/s41426-018-0211-1
    1. Li H., Zhou X., Huang Y., Liao B., Cheng L., Ren B. (2021). Reactive oxygen species in pathogen clearance: the killing mechanisms, the adaption response, and the side effects. Front. Microbiol. 11:622534. 10.3389/fmicb.2020.622534
    1. Li Y. T., Cai H. F., Wang Z. H., Xu J., Fang J. Y. (2016). Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol. Ther. 43 445–457. 10.1111/apt.13492
    1. Littmann E. R., Lee J.-J., Denny J. E., Alam Z., Maslanka J. R., Zarin I., et al. (2021). Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat. Commun. 12:755. 10.1038/s41467-020-20793-x
    1. Liu R., Suárez J. M., Weisblum B., Gellman S. H., McBride S. M. (2014). Synthetic polymers active against Clostridium difficile vegetative cell growth and spore outgrowth. J. Am. Chem. Soc. 136 14498–14504. 10.1021/ja506798e
    1. Liu Y.-H., Chang Y.-C., Chen L.-K., Su P.-A., Ko W.-C., Tsai Y.-S., et al. (2018). The ATP-P2X7 signaling axis is an essential sentinel for intracellular Clostridium difficile pathogen-induced inflammasome activation. Front. Cell. Infect. Microbiol. 8:84. 10.3389/fcimb.2018.00084
    1. Lowy I., Molrine D. C., Leav B. A., Blair B. M., Baxter R., Gerding D. N., et al. (2010). Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 362 197–205. 10.1056/NEJMoa0907635
    1. Luo D., Liu X., Xing L., Sun Y., Huang J., Zhang L., et al. (2019). Immunogenicity and protection from receptor-binding domains of toxins as potential vaccine candidates for Clostridium difficile. Vaccines 7:180. 10.3390/vaccines7040180
    1. Luo R., Greenberg A., Stone C. D. (2015). Outcomes of Clostridium difficile infection in hospitalized leukemia patients: a nationwide analysis. Infect. Control Hosp. Epidemiol. 36 794–801. 10.1017/ice.2015.54
    1. Lynch M., Walsh T. A., Marszalowska I., Webb A. E., Mac Aogain M., Rogers T. R., et al. (2017). Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol. Biol. 17:90. 10.1186/s12862-017-0937-8
    1. Macchioni L., Davidescu M., Fettucciari K., Petricciuolo M., Gatticchi L., Gioè D., et al. (2017). Enteric glial cells counteract Clostridium difficile toxin B through a NADPH oxidase/ROS/JNK/caspase-3 axis, without involving mitochondrial pathways. Sci. Rep. 7:45569. 10.1038/srep45569
    1. Marshall J. S., Warrington R., Watson W., Kim H. L. (2018). An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14:49. 10.1186/s13223-018-0278-1
    1. Martin-Verstraete I., Peltier J., Dupuy B. (2016). The regulatory networks that control Clostridium difficile toxin synthesis. Toxins (Basel) 8:153. 10.3390/toxins8050153
    1. McBride S. M., Sonenshein A. L. (2011). The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology (Reading) 157(Pt 5) 1457–1465. 10.1099/mic.0.045997-0
    1. McDermott A. J., Falkowski N. R., McDonald R. A., Pandit C. R., Young V. B., Huffnagle G. B. (2016). Interleukin-23 (IL-23), independent of IL-17 and IL-22, drives neutrophil recruitment and innate inflammation during Clostridium difficile colitis in mice. Immunology 147 114–124. 10.1111/imm.12545
    1. McDonald J. A. K., Mullish B. H., Pechlivanis A., Liu Z., Brignardello J., Kao D., et al. (2018). Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155 1495–1507.e15. 10.1053/j.gastro.2018.07.014
    1. Merrigan M. M., Venugopal A., Roxas J. L., Anwar F., Mallozzi M. J., Roxas B. A. P., et al. (2013). Surface-layer protein A (SlpA) is a major contributor to host-cell adherence of Clostridium difficile. PLoS One 8:e78404. 10.1371/journal.pone.0078404
    1. Meyer G. K. A., Neetz A., Brandes G., Tsikas D., Butterfield J. H., Just I., et al. (2007). Clostridium difficile toxins A and B directly stimulate human mast cells. Infect. Immun. 75 3868–3876. 10.1128/IAI.00195-07
    1. Monot M., Eckert C., Lemire A., Hamiot A., Dubois T., Tessier C., et al. (2015). Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci. Rep. 5:15023. 10.1038/srep15023
    1. Nagao-Kitamoto H., Leslie J. L., Kitamoto S., Jin C., Thomsson K. A., Gillilland M. G., III, et al. (2020). Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota. Nat. Med. 26 608–617. 10.1038/s41591-020-0764-0
    1. Nagaro K. J., Phillips S. T., Cheknis A. K., Sambol S. P., Zukowski W. E., Johnson S., et al. (2013). Nontoxigenic Clostridium difficile protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 C. difficile. Antimicrob. Agents Chemother. 57:5266. 10.1128/AAC.00580-13
    1. Nakagawa T., Mori N., Kajiwara C., Kimura S., Akasaka Y., Ishii Y., et al. (2016). Endogenous IL-17 as a factor determining the severity of Clostridium difficile infection in mice. J. Med. Microbiol. 65 821–827. 10.1099/jmm.0.000273
    1. Navalkele B. D., Chopra T. (2018). Bezlotoxumab: an emerging monoclonal antibody therapy for prevention of recurrent Clostridium difficile infection. Biologics 12 11–21. 10.2147/BTT.S127099
    1. Negrut N., Bungau S., Behl T., Khan S. A., Vesa C. M., Bustea C., et al. (2020). Risk factors associated with recurrent Clostridioides difficile infection. Healthcare (Basel) 8:352. 10.3390/healthcare8030352
    1. Nelson R. T., Boyd J., Gladue R. P., Paradis T., Thomas R., Cunningham A. C., et al. (2001). Genomic organization of the CC chemokine mip-3alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization. Genomics 73 28–37. 10.1006/geno.2001.6482
    1. Ní Eidhin D. B., O’Brien J. B., McCabe M. S., Athié-Morales V., Kelleher D. P. (2008). Active immunization of hamsters against Clostridium difficile infection using surface-layer protein. FEMS Immunol. Med. Microbiol. 52 207–218. 10.1111/j.1574-695X.2007.00363.x
    1. Oatley P., Kirk J. A., Ma S., Jones S., Fagan R. P. (2020). Spatial organization of Clostridium difficile S-layer biogenesis. Sci. Rep. 10:14089. 10.1038/s41598-020-71059-x
    1. Oksi J., Anttila V. J., Mattila E. (2020). Treatment of Clostridioides (Clostridium) difficile infection. Ann. Med. 52 12–20. 10.1080/07853890.2019.1701703
    1. Oliveira Júnior C. A., Silva R. O. S., Lage A. P., Coura F. M., Ramos C. P., Alfieri A. A., et al. (2019). Non-toxigenic strain of Clostridioides difficile Z31 reduces the occurrence of C. difficile infection (CDI) in one-day-old piglets on a commercial pig farm. Vet. Microbiol. 231 1–6. 10.1016/j.vetmic.2019.02.026
    1. Orrell K. E., Melnyk R. A. (2021). Large clostridial toxins: mechanisms and roles in disease. Microbiol. Mol. Biol. Rev. 85:e0006421. 10.1128/mmbr.00064-21
    1. Papatheodorou P., Barth H., Minton N., Aktories K. (2018). Cellular uptake and mode-of-action of Clostridium difficile toxins. Adv. Exp. Med. Biol. 1050 77–96. 10.1007/978-3-319-72799-8_6
    1. Paredes-Sabja D., Cofre-Araneda G., Brito-Silva C., Pizarro-Guajardo M., Sarker M. R. (2012). Clostridium difficile spore-macrophage interactions: spore survival. PLoS One 7:e43635. 10.1371/journal.pone.0043635
    1. Péchiné S., Bruxelle J. F., Janoir C., Collignon A. (2018). Targeting Clostridium difficile surface components to develop immunotherapeutic strategies against Clostridium difficile infection. Front. Microbiol. 9:1009. 10.3389/fmicb.2018.01009
    1. Péchiné S., Denève C., Le Monnier A., Hoys S., Janoir C., Collignon A. (2011). Immunization of hamsters against Clostridium difficile infection using the Cwp84 protease as an antigen. FEMS Immunol. Med. Microbiol. 63 73–81. 10.1111/j.1574-695X.2011.00832.x
    1. Péchiné S., Hennequin C., Boursier C., Hoys S., Collignon A. (2013). Immunization using GroEL decreases Clostridium difficile intestinal colonization. PLoS One 8:e81112. 10.1371/journal.pone.0081112
    1. Péchiné S., Janoir C., Collignon A. (2005). Variability of Clostridium difficile surface proteins and specific serum antibody response in patients with Clostridium difficile-associated disease. J. Clin. Microbiol. 43 5018–5025. 10.1128/JCM.43.10.5018-5025.2005
    1. Perelle S., Gibert M., Bourlioux P., Corthier G., Popoff M. R. (1997). Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect. Immun. 65 1402–1407. 10.1128/iai.65.4.1402-1407.1997
    1. Quraishi M. N., Widlak M., Bhala N., Moore D., Price M., Sharma N., et al. (2017). Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46 479–493. 10.1111/apt.14201
    1. Ramírez-Vargas G., Rodríguez C. (2020). Putative conjugative plasmids with tcdB and cdtAB genes in Clostridioides difficile. Emerg. Infect. Dis. 26 2287–2290. 10.3201/eid2609.191447
    1. Rampuria P., Lang G. A., Devera T. S., Gilmore C., Ballard J. D., Lang M. L. (2017). Coordination between T helper cells, iNKT cells, and their follicular helper subsets in the humoral immune response against Clostridium difficile toxin B. J. Leukoc. Biol. 101 567–576. 10.1189/jlb.4A0616-271R
    1. Razim A., Pacyga K., Martirosian G., Szuba A., Gamian A., Myc A., et al. (2019). Mapping epitopes of a novel peptidoglycan cross-linking enzyme Cwp22 recognized by human sera obtained from patients with Clostridioides difficile infection and cord blood. Microorganisms 7:565. 10.3390/microorganisms7110565
    1. Rea M. C., Dobson A., O’Sullivan O., Crispie F., Fouhy F., Cotter P. D., et al. (2011). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1) 4639–4644. 10.1073/pnas.1001224107
    1. Rees W. D., Steiner T. S. (2018). Adaptive immune response to Clostridium difficile infection: a perspective for prevention and therapy. Eur. J. Immunol. 48 398–406. 10.1002/eji.201747295
    1. Riedel T., Neumann-Schaal M., Wittmann J., Schober I., Hofmann J. D., Lu C.-W., et al. (2020). Characterization of Clostridioides difficile DSM 101085 with A–B–CDT+ phenotype from a late recurrent colonization. Genome Biol. Evol. 12 566–577. 10.1093/gbe/evaa072
    1. Rupnik M., Wilcox M. H., Gerding D. N. (2009). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7 526–536. 10.1038/nrmicro2164
    1. Ryan A., Lynch M., Smith S. M., Amu S., Nel H. J., McCoy C. E., et al. (2011). A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog. 7:e1002076. 10.1371/journal.ppat.1002076
    1. Saavedra P. H. V., Huang L., Ghazavi F., Kourula S., Vanden Berghe T., Takahashi N., et al. (2018). Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nat. Commun. 9:4846. 10.1038/s41467-018-07386-5
    1. Saleh M. M., Frisbee A. L., Leslie J. L., Buonomo E. L., Cowardin C. A., Ma J. Z., et al. (2019). Colitis-induced Th17 cells increase the risk for severe subsequent Clostridium difficile infection. Cell Host Microbe 25 756–765.e5. 10.1016/j.chom.2019.03.003
    1. Samarkos M., Mastrogianni E., Kampouropoulou O. (2018). The role of gut microbiota in Clostridium difficile infection. Eur. J. Intern. Med. 50 28–32. 10.1016/j.ejim.2018.02.006
    1. Sambol S., Merrigan M., Tang J., Johnson S., Gerding D. (2003). Colonization for the prevention of Clostridium difficile disease in hamsters. J. Infect. Dis. 186 1781–1789. 10.1086/345676
    1. Sandolo C., Péchiné S., Le Monnier A., Hoys S., Janoir C., Coviello T., et al. (2011). Encapsulation of Cwp84 into pectin beads for oral vaccination against Clostridium difficile. Eur. J. Pharm. Biopharm. 79 566–573. 10.1016/j.ejpb.2011.05.011
    1. Savidge T. C., Urvil P., Oezguen N., Ali K., Choudhury A., Acharya V., et al. (2011). Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins. Nat. Med. 17 1136–1141. 10.1038/nm.2405
    1. Seal D., Borriello S. P., Barclay F., Welch A., Piper M., Bonnycastle M. (1987). Treatment of relapsing Clostridium difficile diarrhoea by administration of a non-toxigenic strain. Eur. J. Clin. Microbiol. 6 51–53. 10.1007/BF02097191
    1. Sehgal K., Khanna S. (2021). Immune response against Clostridioides difficile and translation to therapy. Therap. Adv. Gastroenterol. 14:17562848211014817. 10.1177/17562848211014817
    1. Shen J., Mehrotra D. V., Dorr M. B., Zeng Z., Li J., Xu X., et al. (2020). Genetic association reveals protection against recurrence of Clostridium difficile infection with bezlotoxumab treatment. mSphere 5 1–13. 10.1128/mSphere.00232-20
    1. Singh T., Bedi P., Bumrah K., Singh J., Rai M., Seelam S. (2019). Updates in treatment of recurrent Clostridium difficile infection. J. Clin. Med. Res. 11 465–471. 10.14740/jocmr3854
    1. Smits W. K., Lyras D., Lacy D. B., Wilcox M. H., Kuijper E. J. (2016). Clostridium difficile infection. Nat. Rev. Dis. Primers 2:16020. 10.1038/nrdp.2016.20
    1. Sonnenberg G. F., Artis D. (2015). Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21 698–708. 10.1038/nm.3892
    1. Sougioultzis S., Kyne L., Drudy D., Keates S., Maroo S., Pothoulakis C., et al. (2005). Clostridium difficile toxoid vaccine in recurrent C. difficile-associated diarrhea. Gastroenterology 128 764–770. 10.1053/j.gastro.2004.11.004
    1. Spencer J., Leuzzi R., Buckley A., Irvine J., Candlish D., Scarselli M., et al. (2014). Vaccination against Clostridium difficile using toxin fragments: observations and analysis in animal models. Gut Microbes 5 225–232. 10.4161/gmic.27712
    1. Staley C., Weingarden A. R., Khoruts A., Sadowsky M. J. (2017). Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 101 47–64. 10.1007/s00253-016-8006-6
    1. Stewart D. B., Berg A., Hegarty J. (2013). Predicting recurrence of C. difficile colitis using bacterial virulence factors: binary toxin is the key. J. Gastrointest. Surg. 17 118–125. 10.1007/s11605-012-2056-6
    1. Tasteyre A., Barc M. C., Collignon A., Boureau H., Karjalainen T. (2001). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect. Immun. 69 7937–7940. 10.1128/IAI.69.12.7937-7940.2001
    1. Tourlomousis P., Wright J. A., Bittante A. S., Hopkins L. J., Webster S. J., Bryant O. J., et al. (2020). Modifying bacterial flagellin to evade Nod-like receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat. Microbiol. 5 1588–1597. 10.1038/s41564-020-00801-y
    1. Treiner E., Duban L., Bahram S., Radosavljevic M., Wanner V., Tilloy F., et al. (2003). Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422 164–169. 10.1038/nature01433
    1. van Prehn J., Reigadas E., Vogelzang E. H., Bouza E., Hristea A., Guery B., et al. (2021). European society of clinical microbiology and infectious diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 10.1016/j.cmi.2021.09.038 [Epub ahead of print].
    1. Vardakas K. Z., Polyzos K. A., Patouni K., Rafailidis P. I., Samonis G., Falagas M. E. (2012). Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int. J. Antimicrob. Agents 40 1–8. 10.1016/j.ijantimicag.2012.01.004
    1. Villano S. A., Seiberling M., Tatarowicz W., Monnot-Chase E., Gerding D. N. (2012). Evaluation of an oral suspension of VP20621, spores of nontoxigenic Clostridium difficile strain M3, in healthy subjects. Antimicrob. Agents Chemother. 56 5224–5229. 10.1128/AAC.00913-12
    1. Wang J., Ortiz C., Fontenot L., Mukhopadhyay R., Xie Y., Chen X., et al. (2020). Therapeutic mechanism of macrophage inflammatory protein 1 α neutralizing antibody (CCL3) in Clostridium difficile infection in mice. J. Infect. Dis. 221 1623–1635. 10.1093/infdis/jiz640
    1. Wang S., Wang Y., Cai Y., Kelly C. P., Sun X. (2018). Novel chimeric protein vaccines against Clostridium difficile infection. Front. Immunol. 9:2440. 10.3389/fimmu.2018.02440
    1. Warny M., Keates A. C., Keates S., Castagliuolo I., Zacks J. K., Aboudola S., et al. (2000). p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105 1147–1156. 10.1172/jci7545
    1. Wiegand P. N., Nathwani D., Wilcox M. H., Stephens J., Shelbaya A., Haider S. (2012). Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J. Hosp. Infect. 81 1–14. 10.1016/j.jhin.2012.02.004
    1. Wilcox M. H., Gerding D. N., Poxton I. R., Kelly C., Nathan R., Birch T., et al. (2017). Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376 305–317. 10.1056/NEJMoa1602615
    1. Wilson K. H., Sheagren J. N. (1983). Antagonism of toxigenic Clostridium difficile by nontoxigenic C. difficile. J. Infect. Dis. 147 733–736. 10.1093/infdis/147.4.733
    1. Xu B., Wu X., Gong Y., Cao J. (2021). IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of Clostridioides difficile infection. Gut Microbes 13:1968258. 10.1080/19490976.2021.1968258
    1. Xu H., Yang J., Gao W., Li L., Li P., Zhang L., et al. (2014). Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513 237–241. 10.1038/nature13449
    1. Yacyshyn M. B., Reddy T. N., Plageman L. R., Wu J., Hollar A. R., Yacyshyn B. R. (2014). Clostridium difficile recurrence is characterized by pro-inflammatory peripheral blood mononuclear cell (PBMC) phenotype. J. Med. Microbiol. 63(Pt 10) 1260–1273. 10.1099/jmm.0.075382-0
    1. Yang Z., Schmidt D., Liu W., Li S., Shi L., Sheng J., et al. (2014). A novel multivalent, single-domain antibody targeting TcdA and TcdB prevents fulminant Clostridium difficile infection in mice. J. Infect. Dis. 210 964–972. 10.1093/infdis/jiu196
    1. Yoshino Y., Kitazawa T., Ikeda M., Tatsuno K., Yanagimoto S., Okugawa S., et al. (2012). Clostridium difficile flagellin stimulates toll-like receptor 5, and toxin B promotes flagellin-induced chemokine production via TLR5. Life Sci. 92 211–217. 10.1016/j.lfs.2012.11.017
    1. Yu H., Chen K., Sun Y., Carter M., Garey K. W., Savidge T. C., et al. (2017). Cytokines are markers of the Clostridium difficile-induced inflammatory response and predict disease severity. Clin. Vaccine Immunol. 24:e00037-17. 10.1128/cvi.00037-17
    1. Zhang B.-Z., Cai J., Yu B., Hua Y., Lau C. C., Kao R. Y.-T. T., et al. (2016). A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. BMC Infect. Dis. 16:596. 10.1186/s12879-016-1924-1
    1. Zhang Z., Chen X., Hernandez L. D., Lipari P., Flattery A., Chen S. C., et al. (2015). Toxin-mediated paracellular transport of antitoxin antibodies facilitates protection against Clostridium difficile infection. Infect. Immun. 83 405–416. 10.1128/IAI.02550-14
    1. Zheng Y., Valdez P. A., Danilenko D. M., Hu Y., Sa S. M., Gong Q., et al. (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14 282–289. 10.1038/nm1720
    1. Zhu D., Bullock J., He Y., Sun X. (2019). Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environ. Microbiol. 21 3076–3090. 10.1111/1462-2920.14706
    1. Zhu D., Sorg J. A., Sun X. (2018). Clostridioides difficile biology: sporulation, germination, and corresponding therapies for C. difficile infection. Front. Cell. Infect. Microbiol. 8:29. 10.3389/fcimb.2018.00029

Source: PubMed

3
Abonneren