Periodontal inflammation: Integrating genes and dysbiosis

Shaoping Zhang, Ning Yu, Roger M Arce, Shaoping Zhang, Ning Yu, Roger M Arce

Abstract

Biofilm bacteria co-evolve and reach a symbiosis with the host on the gingival surface. The disruption of the homeostatic relationship between plaque bacteria and the host can initiate and promote periodontal disease progression. Recent advances in sequencing technologies allow researchers to profile disease-associated microbial communities and quantify microbial metabolic activities and host transcriptional responses. In addition to confirming the findings from previous studies, new putative pathogens and novel genes that have not previously been associated with periodontitis, emerge. For example, multiple studies have reported that Synergistetes bacteria are associated with periodontitis. Genes involved in epithelial barrier defense were downregulated in periodontitis, while excessive expression of interleukin-17 was associated with a hyperinflammatory response in periodontitis and with a unique microbial community. Bioinformatics-enabled gene ontology pathway analyses provide a panoramic view of the bacterial and host activities as they shift from periodontal health to disease. Additionally, host innate factors, such as genetic variants identified by either a candidate-gene approach or genome-wide association analyses, have an impact on subgingival bacterial colonization. Transgenic mice carrying candidate genetic variants, or with the deletion of candidate genes mimicking the deleterious loss-of-function variant effect, provide experimental evidence validating the biologic relevance of the novel markers associated with the microbial phenotype identified through a statistical approach. Further refinement in bioinformatics, data management approaches, or statistical tools, are required to gain insight into host-microbe interactions by harmonizing the multidimensional "big" data at the genomic, transcriptional, and proteomic levels.

Keywords: genome-wide association study (GWAS); inflammation; microbiome; periodontitis; transcriptome.

© 2019 The Authors. Periodontology 2000 Published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Both of the single nucleotide polymorphisms rs4074082 and rs9772881 are significantly associated with periodontal complex trait 3 (PCT3 or Aggregatibacter actinomycetemcomitans trait) (P < 5 × 10−8). Manhattan plot for PCT3 (A) and locuzoom view of rs4074082 (B) are presented
Figure 2
Figure 2
Plakophilin 2 (PKP2) loss‐of‐function inhibits cell proliferation and cell‐to‐cell contact. PKP2 knockdown in primary gingival epithelial cells significantly hindered cell proliferation, as assayed by the MTS assay (A) and impaired cell spreading with increased gaps among cells 1‐h post‐seeding (B)
Figure 3
Figure 3
TRAF3 interacting protein‐2 (Traf3ip2)−/− mice harbored more Porphyromonas gingivalis A7436 and had less neutrophil infiltration than age‐matched wild‐type (WT) control animals. Mice were orally inoculated with P. gingivalis A7436 for 14 d. Plaque samples were collected 2 d after the last inoculation and P. gingivalis was quantified by real‐time quantitative PCR against a standard. (A) Significantly more P. gingivalis was present in oral plaque from Traf3ip2−/− mice than in oral plaque from wild‐type controls (*P = .008 Mann‐Whitney test). (B) Fewer neutrophils (leukocyte antigen‐6‐gene‐positive cells stained by immunohistochemistry, as indicated by arrows) were present in the gingival tissue of Traf3ip2−/− mice (upper panel) than in the WT controls (lower panel); E, enamel
Figure 4
Figure 4
Global profiling or “‐omics” data sets obtained from the host and plaque biofilm are integrated through refined bioinformatics, computational biology, and statistics tools to evaluate the host's determinates on bacterial colonization in plaque biofilm and host responses to a dysbiotic microflora in the subgingival environment. GWA, genome‐wide association analysis; rRNA, ribosomal RNA

References

    1. Nivatpumin P, Pangthipampai P, Jirativanont T, Dej‐Arkom S, Triyasunant N, Tempeetikul T. Anesthetic techniques and incidence of complications in fetoscopic surgery. J Med Assoc Thail. 2016;99(5):602‐610.
    1. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282(5396):2085‐2088.
    1. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240‐273.
    1. Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med. 2003;198(10):1563‐1572.
    1. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan‐ and lipoteichoic acid‐induced cell activation is mediated by Toll‐like receptor 2. J Biol Chem. 1999;274(25):17406‐17409.
    1. Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG‐I has an essential function in double‐stranded RNA‐induced innate antiviral responses. Nat Immunol. 2004;5(7):730‐737.
    1. Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD‐like receptors in host defense and disease. Immunity. 2007;27(4):549‐559.
    1. Löe H, Anerud A, Boysen H, Morrison E. Natural history of periodontal disease in man: rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age. J Clin Periodontol. 1986;13(5):431‐440.
    1. Löe H, Anerud A, Boysen H, Smith M. The natural history of periodontal disease in man: the rate of periodontal destruction before 40 years of age. J Periodontol. 1978;49(12):607‐620.
    1. Sawle AD, Kebschull M, Demmer RT, Papapanou PN. Identification of master regulator genes in human periodontitis. J Dent Res. 2016;95(9):1010‐1017.
    1. Kebschull M, Demmer RT, Grün B, Guarnieri P, Pavlidis P, Papapanou PN. Gingival tissue transcriptomes identify distinct periodontitis phenotypes. J Dent Res. 2014;93(5):459‐468.
    1. Jönsson D, Ramberg P, Demmer RT, Kebschull M, Dahlén G, Papapanou PN. Gingival tissue transcriptomes in experimental gingivitis. J Clin Periodontol. 2011;38(7):599‐611.
    1. Offenbacher S, Barros SP, Paquette DW, et al. Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans. J Periodontol. 2009;80(12):1963‐1982.
    1. Demmer RT, Behle JH, Wolf DL, et al. Transcriptomes in healthy and diseased gingival tissues. J Periodontol. 2008;79(11):2112‐2124.
    1. Diaz PI, Hoare A, Hong B. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc. 2016;44(7):397‐472.
    1. Moore WEC, Moore LVH. The bacteria of periodontal diseases. Periodontol 2000. 1994;5(1):66‐77.
    1. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134‐144.
    1. Coretti L, Cuomo M, Florio E, et al. Subgingival dysbiosis in smoker and non‐smoker patients with chronic periodontitis. Mol Med Rep. 2017;15(4):2007‐2014.
    1. Marchesan JT, Morelli T, Moss K, et al. Association of Synergistetes and cyclodipeptides with periodontitis. J Dent Res. 2015;94(10):1425‐1431.
    1. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet. 2012;13(2):135‐145.
    1. Kinane DF, Hart TC. Genes and gene polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med. 2003;14(6):430‐449.
    1. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19(3):212‐219.
    1. Divaris K, Monda KL, North KE, et al. Genome‐wide association study of periodontal pathogen colonization. J Dent Res. 2012;91:S21‐S28.
    1. Divaris K, Monda KL, North KE, et al. Exploring the genetic basis of chronic periodontitis: a genome‐wide association study. Hum Mol Genet. 2013;22(11):2312‐2324.
    1. Offenbacher S, Divaris K, Barros SP, et al. Genome‐wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Hum Mol Genet. 2016;25(10):2113‐2129.
    1. Offenbacher S, Jiao Y, Kim SJ, et al. GWAS for Interleukin‐1β levels in gingival crevicular fluid identifies IL37 variants in periodontal inflammation. Nat Commun. 2018;9(1):3686.
    1. Zhang S, Divaris K, Moss K, et al. The novel ASIC2 locus is associated with severe gingival inflammation. JDR Clin Transl Res. 2016;1(2):163‐170.
    1. Nibali L, Henderson B, Sadiq ST, Donos N. Genetic dysbiosis: the role of microbial insults in chronic inflammatory diseases. J Oral Microbiol. 2014;6(1):22962.
    1. Moutsopoulos NM, Konkel J, Sarmadi M, et al. Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL‐17‐driven inflammatory bone loss. Sci Transl Med. 2014;6(229):229ra40.
    1. Kim YG, Kim M, Kang JH, et al. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns. Hum Genomics. 2016;10(1):28.
    1. Collin C, Moll R, Kubicka S, Ouhayoun JP, Franke WW. Characterization of human cytokeratin 2, an Epidermal cytoskeletal protein synthesized late during differentiation. Exp Cell Res. 1992;202(1):132‐141.
    1. Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000. 2017;75(1):116‐151.
    1. Zenobia C, Hajishengallis G. Basic biology and role of interleukin‐17 in immunity and inflammation. Periodontol 2000. 2015;69(1):142‐159.
    1. Langrish CL, Chen Y, Blumenschein WM, et al. IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233‐240.
    1. Louten J, Boniface K, de Waal Malefyt R. Development and function of TH17 cells in health and disease. J Allergy Clin Immunol. 2009;123(5):1004‐1011.
    1. Sallusto F, Lanzavecchia A. Human Th17 cells in infection and autoimmunity. Microbes Infect. 2009;11(5):620‐624.
    1. Boisson B, Wang C, Pedergnana V, et al. An ACT1 mutation selectively abolishes interleukin‐17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39(4):676‐686.
    1. Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL‐17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206(2):299‐311.
    1. Dutzan N, Kajikawa T, Abusleme L, et al. A dysbiotic microbiome triggers TH17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med. 2018;10(463):eaat0797.
    1. Löe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36(3):177‐187.
    1. Page R, Schroeder H. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest. 1976;34(3):235‐249.
    1. Seymour GJ, Powell RN, Cole KL, et al. Experimental gingivitis in humans: a histochemical and immunological characterization of the lymphoid cell subpopulations. J Periodontal Res. 1983;18(4):375‐385.
    1. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409‐419.
    1. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481‐490.
    1. Dewhhirst F. The oral microbiome: critical for understanding oral health and disease. J Calif Dent Assoc. 2016;44(7):409‐410.
    1. Kistler JO, Booth V, Bradshaw DJ, Wade WG. Bacterial community development in experimental gingivitis. PLoS ONE. 2013;8(8):e711227.
    1. Diaz PI, Chalmers NI, Rickard AH, et al. Molecular characterization of subject‐specific oral microflora during initial colonization of enamel. Appl Environ Microbiol. 2006;72(4):2837‐2848.
    1. Abusleme L, Dupuy AK, Dutzan N, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016‐1025.
    1. Griffen AL, Beall CJ, Campbell JH, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6(6):1176‐1185.
    1. Kirst ME, Li EC, Alfant B, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol. 2015;81(2):783‐793.
    1. Hong BY, Araujo MVF, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. Microbiome profiles in periodontitis in relation to host and disease characteristics. PLoS ONE. 2015;10(5):e0127077.
    1. Rosenzweig SD, Holland SM. Phagocyte immunodeficiencies and their infections. J Allergy Clin Immunol. 2004;113(4):620‐626.
    1. Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250(1):50‐55.
    1. Colombo APV, Boches SK, Cotton SL, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol. 2009;80(9):1421‐1432.
    1. Moutsopoulos NM, Chalmers NI, Barb JJ, et al. Subgingival microbial communities in leukocyte adhesion deficiency and their relationship with local immunopathology. PLoS Pathog. 2015;11(3):1‐19.
    1. Roberts MW, Atkinson JC. Oral manifestations associated with leukocyte adhesion deficiency: a five‐year case study. Pediatr Dent. 1990;12(2):107‐111.
    1. Park OJ, Yi H, Jeon JH, et al. Pyrosequencing analysis of subgingival microbiota in distinct periodontal conditions. J Dent Res. 2015;94(7):921‐927.
    1. Vartoukian SR, Palmer RM, Wade WG. Diversity and morphology of members of the phylum “Synergistetes” in periodontal health and disease. Appl Environ Microbiol. 2009;75(11):3777‐3786.
    1. You M, Mo S, Watt RM, Leung WK. Prevalence and diversity of Synergistetes taxa in periodontal health and disease. J Periodontal Res. 2013;48(2):159‐168.
    1. Brack C, Mikolasch A, Schauer F. 2,5‐Diketopiperazines produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus . Mar Biotechnol. 2014;16(4):385‐395.
    1. Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V. Plant growth‐promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross‐talk with quorum sensing bacterial sensors. Curr Microbiol. 2002;45(4):250‐254.
    1. Holden MTG, Chhabra SR, De Nys R, et al. Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria. Mol Microbiol. 1999;33(6):1254‐1266.
    1. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012‐e01014.
    1. Niederman R, Buyle‐Bodin Y, Lu BY, Robinson P, Naleway C. Short‐chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76(1):575‐579.
    1. Chang MC, Tsai YL, Chen YW, et al. Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts. J Periodontal Res. 2013;48(1):66‐73.
    1. Yost S, Duran‐Pinedo AE, Teles R, Krishnan K, Frias‐Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7(1):27.
    1. Rhodin K, Divaris K, North KE, et al. Chronic periodontitis genomewide association studies: gene-centric and gene set enrichment analyses. J Dent Res. 2014;93(9):882–890.
    1. Round JL, Lee SM, Li J, et al. The toll‐like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974‐977.
    1. Vijay‐Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll‐like receptor 5. Science. 2010;328(5975):228‐231.
    1. Eskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del‐1 inhibits IL‐17‐mediated inflammatory bone loss. Nat Immunol. 2012;13(5):465‐473.
    1. Kornman KS. The interleukin‐1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24(1):72‐77.
    1. Socransky SS, Haffajee AD, Smith C, Duff GW. Microbiological parameters associated with IL‐1 gene polymorphisms in periodontitis patients. J Clin Periodontol. 2000;27(11):810‐818.
    1. Schulz S, Stein JM, Altermann W, et al. Single nucleotide polymorphisms in interleukin‐1gene cluster and subgingival colonization with Aggregatibacter actinomycetemcomitans in patients with aggressive periodontitis. Hum Immunol. 2011;72(10):940‐946.
    1. Krátká Z, Bártová J, Krejsa O, Otčenášková M, Janatová T, Dušková J. Interleukin‐1 gene polymorphisms as assessed in a 10‐year study of patients with early‐onset periodontitis. Folia Microbiol (Praha). 2007;52(2):183‐188.
    1. Agerbaek MR, Lang NP, Persson GR. Microbiological composition associated with interleukin-1 gene polymorphism in subjects undergoing supportive periodontal therapy. J Periodontol. 2006;77(8):1397–1402.
    1. Ferreira SB, Trombone APF, Repeke CE, et al. An interleukin‐1β (IL‐1β) single‐nucleotide polymorphism at position 3954 and red complex periodontopathogens independently and additively modulate the levels of IL‐1β in diseased periodontal tissues. Infect Immun. 2008;76(8):3725‐3734.
    1. Wyss C, Hunziker P, Klauser S. Support of peptide-dependent growth of Bacteroides forsythus by synthetic fragments of haemoglobin or fetuin. Arch Oral Biol. 1993;38(11):979–984.
    1. Nibali L, Di Iorio A, Onabolu O, Lin GH. Periodontal infectogenomics: systematic review of associations between host genetic variants and subgingival microbial detection. J Clin Periodontol. 2016;43(11):889‐900.
    1. Nibali L, Ready DR, Parkar M, et al. Gene polymorphisms and the prevalence of key periodontal pathogens. J Dent Res. 2007;86(5):416‐420.
    1. Nibali L, Madden I, Franch Chillida F, Heitz‐Mayfield LJA, Brett PM, Donos N. IL6 ‐174 Genotype associated with Aggregatibacter actinomycetemcomitans in Indians. Oral Dis. 2011;17(2):232‐237.
    1. Nibali L, D'Aiuto F, Ready D, Parkar M, Yahaya R, Donos N. No association between A. actinomycetemcomitans or P. gingivalis and chronic or aggressive periodontitis diagnosis. Quintessence Int. 2012;43(3):247‐254.
    1. Schulz S, Schlitt A, Lutze A, et al. The importance of genetic variants in TNFα for periodontal disease in a cohort of coronary patients. J Clin Periodontol. 2012;39(8):699‐706.
    1. Trombone AP, Cardoso CR, Repeke CE, et al. Tumor necrosis factor-alpha -308G/A single nucleotide polymorphism and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased periodontal tissues. J Periodontal Res. 2009;44(5):598–608.
    1. Patnala R, Clements J, Batra J. Candidate gene association studies: a comprehensive guide to useful in silico tools. BMC Genet. 2013;14:39.
    1. ARIC . The atherosclerosis risk in communit (aric) stui)y: design and objectives. Am J Epidemiol. 1989;129(4):687‐702.
    1. Heidecker B, Lamirault G, Kasper EK, et al. The gene expression profile of patients with new‐onset heart failure reveals important gender‐specific differences. Eur Heart J. 2010;31(10):1188‐1196.
    1. Seit‐Nebi A, Cheng W, Xu H, Han J. MLK4 has negative effect on TLR4 signaling. Cell Mol Immunol. 2012;9(1):27‐33.
    1. Izawa A, Ishihara Y, Mizutani H, et al. Inflammatory bone loss in experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in interleukin‐1 receptor antagonist knockout mice. Infect Immun. 2014;82(5):1904‐1913.
    1. Wang S‐W, Lee J‐K, Ku C‐C, et al. Jun Dimerization protein 2 in oxygen restriction; control of senescence. Curr Pharm Des. 2011;17(22):2278‐2289.
    1. Malcolm J, Awang RA, Oliver‐Bell J, et al. IL‐33 exacerbates periodontal disease through induction of RANKL. J Dent Res. 2015;94(7):968‐975.
    1. Garces de Los Fayos Alonso I, Liang HC, Turner SD, Lagger S, Merkel O, Kenner L. The role of activator protein‐1 (AP‐1) family members in CD30‐positive lymphomas. Cancers (Basel). 2018;10(4):93.
    1. Huang Q, Qin L, Dai S, et al. AIP1 suppresses atherosclerosis by limiting hyperlipidemia‐induced inflammation and vascular endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2013;33(4):795‐804.
    1. McCombe PA, Henderson RD. The Role of Immune and Inflammatory Mechanisms in ALS. Curr Mol Med. 2011;11(3):246‐254.
    1. Freitag‐Wolf S, Dommisch H, Graetz C, et al. Genome‐wide exploration identifies sex‐specific genetic effects of alleles upstream NPY to increase the risk of severe periodontitis in men. J Clin Periodontol. 2014;41(12):1115‐1121.
    1. Dinarello CA, Nold‐Petry C, Nold M, et al. Suppression of innate inflammation and immunity by interleukin‐37. Eur J Immunol. 2016;46(5):1067‐1081.
    1. Nold MF, Nold‐Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL‐37 is a fundamental inhibitor of innate immunity. Nat Immunol. 2010;11(11):1014‐1022.
    1. Bulau A‐M, Nold MF, Li S, et al. Role of caspase‐1 in nuclear translocation of IL‐37, release of the cytokine, and IL‐37 inhibition of innate immune responses. Proc Natl Acad Sci USA. 2014;111(7):2650‐2655.
    1. McNamee EN, Masterson JC, Jedlicka P, et al. Interleukin 37 expression protects mice from colitis. Proc Natl Acad Sci USA. 2011;108(40):16711‐16716.
    1. Yu N, Yang J, Mishina Y, et al. Genome editing: a new horizon for oral and craniofacial research. J Dent Res. 2019;98(1):36‐45.

Source: PubMed

3
Abonneren